
Protecting the Privacy with Human-Readable Pseudonyms:
One-Way Pseudonym Calculation on Base of Primitive Roots

Uwe Roth
SANTEC

CRP Henri Tudor
Luxembourg, Luxemburg

uwe.roth@tudor.lu

Abstract—Pseudonyms are used in medical data to protect the
privacy of patients: Demographics like name, gender and age
are removed from the medical data and are replaced by a
unique pseudonym. Medical data with the same pseudonym
belongs to the same person. A pseudonym should be random or
at least pseudo-random and should not allow drawing
conclusions about the identity of the patient. Random
pseudonyms are not always possible and therefore must be
somehow calculated out of an identifier of the patient, e.g., by
hashing or encrypting the identifier of the patient. In this
paper an alternative algorithm is proposed to calculate
pseudonyms on the base of primitive roots. The algorithm
guarantees a collision free pseudo-random distribution of the
pseudonyms, but creates pseudonyms with a bit-depth that
easily can be transformed to a human readable representation.
This is important if the pseudonym has to be used (be read, be
written) in a day-to-day workflow. The pseudonymisation
algorithm acts as a one-way function if all of the calculation
parameters are kept secret.

Keywords-patient privacy-enhancing technologies; secure
patient data storage; pseudonymisation; one-way function;
primitive root.

I. INTRODUCTION
Pseudonymisation is a process where demographics and

identifier of a person are removed out of an information
record and replaced by a pseudonym. This step is demanded
to protect the privacy of patients in cases of secondary usage
of medical data, e.g., for research or statistical purposes. In
these cases knowledge about the identity of the person is
unnecessary and therefore must be protected against
disclosure. In contrast to anonymisation, a pseudonym
allows to link data from several sources to the same person,
which helps to improve the quality of the research or
statistics.

An example for the need of pseudonymization is the
storage of medical data, samples, blood and urine in
biobanks. Researchers are not interested in the identity of the
person behind this material. But a pseudonym is needed to
link the samples from the same person, which have been
taken at different locations and during different collection
events. The pseudonym will not only allow the linkage to the
same person but also allows protecting the identity of the
patient behind the sensitive data.

Concepts on how identities of patients and their
pseudonyms are used and managed (including identity
matching, identity vigilance, linkage of identifiers from
different domains) to securely exchange data are discussed in
many publications (e.g., [1] and [2]). These concepts are not
in the focus of this paper.

Assuming, that all the problems of identity matching are
solved, the pseudonym number or pseudonym string itself
has to be calculated or determinate at one point. There are
several options to create a pseudonym with a given set of
demographics. Some of these techniques base on hashing or
encryption of a unique identifying number of the person.
Others simply chose a random number and link this number
with the identity.

Things are getting difficult if the pseudonym must be
short enough to be human readable and usable, which limits
the number of effective bits of the pseudonym to approx. 32
to 40 bits (equivalent 6-8 chars). Current hashing and
encryption algorithms work with 128 bits minimum. In that
case, the outcome of the process must be cropped to the
desired bit-length, which leads to an unpredictable risk for
pseudonym collisions.

Adopted solutions that take the small number of bits into
account (e.g., [3]) still base on techniques that are used in
symmetric encryption or hashing algorithms like the
Advanced Encryption Standard AES [4] or the Secure Hash
Algorithm SHA [5] (permutation, rotation, transformation,
diffusion). With the small bit-depth of the initial data and the
missing of deeper cryptanalysis, it is difficult to estimate
how secure these algorithms finally are and how difficult it is
to re-compute the person identifier with a given pseudonym.

The solution described in this paper is based on
asymmetric encryption techniques as it is used as a one-way
trapdoor-function. Because the used technique is hard, the
described pseudonymisation algorithm in total is also hard.

The paper is structured as follows:
In Section II – Methods, firstly, a short introduction into

the mathematical foundations of primitive roots is given.
Then it is shown that this approach can be used for the
calculation of pseudonyms. The section ends with
suggestions how to find a necessary primitive root and how
the calculations can be implemented fast and efficient.

In Section III – Results, the bit depth of the secrets that
are used in the pseudonym calculation is shown especially if
these secrets are sufficient to protect the original person

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine

identifier. A special focus is made on the human readability
of the pseudonym and the speed to calculate the pseudonym.

In Section IV – Discussion, potential attacks and re-
identification risks are discussed and an example for the
applicability is given.

The paper ends with a conclusion in Section V.

II. METHODS
The mathematics behind the pseudonym calculation of a

person ID is based on primitive roots of prime numbers as it
is used in the Diffie-Hellman protocol to ensure a secure key
exchange [6].

A. Modulo operation (mod)
a mod b, with a and b being positive integer numbers is

defined as the remainder of the division of the dividend a
and the devisor b. The result of the mod operation is an
integer value in the range from 0 to b-1.

Example: 112 mod 24 = 16 because 112/24 = 4 with the
remainder 16.

B. Discrete logarithm
Having the equation:

 b = ai mod p, with p prime, i ∈ {1..p-1} (1)

Then i is called the discrete logarithm, which is
equivalent to

 i=loga b (2)

The calculation of b is easy but currently there exists no
efficient way to find the discrete logarithm i with given a, b
and p.

This statement is only true if p is big enough to make the
use of pre-calculated solution tables impossible and if no
pre-knowledge about i exists that allows reducing the search
space.

C. Primitive roots
The property of a being a primitive root of prime p

means, that

 ai mod p, with i =1..p-1 (3)

results in all values of 1..p-1, with no value double or
missing. This property is relevant to create collision free
pseudonyms.

Primitive roots have been used already a long time ago to
create good random number generators [7]. Our algorithm
uses this knowledge to introduce pseudo-randomness into the
series of pseudonyms.

D. Adaption for the pseudonymisation calculation
With k bits that are reserved for the pseudonym, a prime

number p should be chosen that in best case is the highest
prime number lower than 2k. With the given p, the interval of
possible person IDs and pseudonyms is 1..p-1. The numbers
which are invalid in the k-bit number space are 0 and p..2k-1.
As an example: For k=31, the highest prime lower than 231 is
231-1. In this case, only 0 and 231-1 cannot be used as person
IDs or pseudonyms.

The difficulty to find the discrete logarithm i of the
equation ai mod p is based on the assumption that i is
randomly distributed and that no information can be used to
reduce the number of possible values. This may not be the
case if the persons ID is used as exponent i.

Two examples might help to demonstrate the problem. In
both cases, i equals the person ID id. In the first example the
exponent i is a continuous number starting with 1, so the nth
pseudonym belongs to the person ID n. If an attacker is able
to estimate the number of already pseudonymized persons,
the number of potential i is heavily reduced. In the second
case, the person ID is created out of the birthday and a
running number (e.g. 19850323012 for the 12th person born
in March 23 of 1985). Knowing that a person was born at a
certain day, also limits the number of potential i (in the given
example to 100).

To avoid the reduction of potential i with prior
knowledge about the person ID id, two processing-steps are
performed, including one non-linear step:

1. XOR:
The person ID will be XORed with a constant c≠0 of
k bits

2. EXPAND:
The intermediate result is multiplied with an
expansion factor q mod p, (1<q<p)

Step 1 might lead to an invalid results that is out of the
range of the allowed values (0, p..2k -1). If this happens the
XOR must be reversed. In case of p be close to 2k, the
number of invalid values (p.. 2k-1) can be minimized, which
lowers the risk to revers the XOR step.

p being prime guarantees that the result of step 2 is still in
the range of 1..p-1, avoiding any doubles.

At that point, even with pre-knowledge about the person
ID, no conclusions about the exponent i of the calculation ai
mod p can be made, which would allow to reduce the search
space. Finally, the main calculation step ai mod p can be
performed.

Unfortunately, if the prime number p is small, it is
possible to calculate all possible b=ai mod p to set up a
solution table b↦i. For a prime smaller than 231, maximal
8GiB are needed to setup such a table (1GiB = 230 Byte).
Even for prime smaller than 240, a solution table with
maximal 5TiB needs to be pre-calculated (1TiB = 240 Byte).
Tables with that size fit in currently used RAM or hard disks
and are no burden for potential attackers. A solution to

t1:= id XOR c // XOR with secret c

if (t1 in [0, p..2^k-1]): // If out of range...
 t2:= id // ...reverse if necessary

t2:= (t1 * q) mod p // Expand with secret p

i:= t2 // This is the exponent

b:= a^i mod p // The main calculation

t3:= b XOR d // XOR with secret d

if (t3 in [0, p.. 2^k-1]): // If out of range...
 t3:= b // ...reverse if necessary

t4:= t3 << s // Shift-left s bits

while (t4 in [0, p.. 2^k-1]): // If out of range...
 t4:= t4 << s // ...repeat if necessary

psdn := t4 // This is the pseudonym

Figure 1. Pseudocode of the algorithm

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine

overcome this problem is to also keep the primitive root a
secret. In that case, with given b and p, for each a a different
i exists that fulfills the equation.

The entropy of the secrets a, q and c that have been used
so far might be insufficient to avoid brute force attacks. So a
final round of confusion is performed:

3. XOR:
The intermediate result will be XORed with a
constant d≠0 of k bits

4. LEFTSHIFT:
The intermediate result will be shifted s bits left
(|s|>0)

As with step 1, step 3 must be reversed, if the result is
invalid. If the intermediate result of step 4 leads to an invalid
value, it must be repeated until the intermediate result is in
the allowed range. Both strategies do never introduce
duplicates.

The calculated pseudonym psdn finally is the outcome of
step 4. Fig. 1 on the previous page lists the entire algorithm
as pseudo code.

The complexity of an attacker to re-identify the person
ID is based on the secrets a, c, d, q and s and requires
knowledge about some person ID / pseudonym pairs to proof
if the secrets are correctly identified.

E. Example
Let k=31 and prime p=231-1=2147483647.
a=572574047 is a primitive root from p.
The initial value will be XORed with c=1656294509.
The intermediate result will be XORed with d=913413943.
The expansion factor is defined as q=41795.
Finally, an intermediate result will be shifted left with s=11
bits.
All calculation steps of the pseudonym for the identifier id=
300568 are the shown in Fig. 2.
The pseudonym that has been calculated from this identifier
is 353489627.

F. Finding a primitive root
For a given prime number p it is unnecessary to find all

primitive roots to select the secret a; only one primitive root
is needed. The density of primitive roots is quite high so it
requires approximately four random tries in case of p=231-1

until a primitive root is found. To proof if a selected a is a
primitive root, the series of ai mod p (i=1..p-1) has to be
checked. If ai mod p = 1 with i≠p-1, the series can be stopped
and a is not a primitive root. In that case we found two
exponents resulting in the same value: ai+1 mod p = a = a1
mod p.

The series can easily be calculated with

 a0 mod p = 1 (4)

 ai mod p = a(ai-1 mod p) mod p for i=1..p-1 (5)

G. Calculating ai mod p
For the calculation of ai mod p in the described

pseudonymisation algorithm, the pre-calculation of ai-1 mod
p is not available; so, the recursion as mention in the
previous sub-chapter is inapplicable. Alternatively the
calculation can be quickened if i is split into its binary
representation:

 𝑖 = 2! ∙ 𝑖!
!!!

!!!

 𝑤𝑖𝑡ℎ 𝑖! ∈ {0,1} (6)

Then

 𝑎! 𝑚𝑜𝑑 𝑝 = (7)

 𝑎 !!∙!!
!!!
!!! 𝑚𝑜𝑑 𝑝 = (8)

 𝑎!
!∙!!

!!!

!!!

 𝑚𝑜𝑑 𝑝 (9)

This calculation is very fast in case of pre-calculated
𝑎!! 𝑚𝑜𝑑 𝑝 using

 𝑎!! 𝑚𝑜𝑑 𝑝 = 𝑎 (10)

𝑎!! 𝑚𝑜𝑑 𝑝 = (𝑎!!!! 𝑚𝑜𝑑 𝑝)! 𝑚𝑜𝑑 𝑝

for j=1..k-1. (11)

III. RESULTS
The algorithm for the calculation of the pseudonym

would be useless, if the used secrets allow a brute-force
attack. This is not the case, if the entropy of the used secretes
is big enough. Furthermore, the size of the pseudonym must
allow a human-readable representation and the effort to
calculate the pseudonym must allow the calculation of a high
number of pseudonyms per time.

A. Bit-depth of the secrets
Several secrets to calculate the pseudonym are used:
• The random number c that was used to XOR the

exponent
• The factor q that was used to expand the exponent
• The primitive root a
• The random number d that was used to XOR the

intermediate result
• The number of left-shifts of the intermediate result s

t1 = id XOR c
 = 300568 XOR 1656294509 =
 = 1656593013

t2 = (t1 ∙ q) mod p
 = (1656593013 ∙ 41795) mod 2147483647
 = 284715408

b = at2 mod p
 = 572574047284715408 mod 2147483647
 = 465777933

t3 = b XOR d
 = 465777933 XOR 913413943
 = 766681658

t4 = t3 <<s
 = 766681658 <<11
 = 353489627

psdn = t4
 = 353489627

Figure 2. Example calculation

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine

As an example, let us calculate the bit-depth of the
secrets in case of data types that are usually used to store
person IDs:

• 4-Byte signed integer:
The number space is sufficient for a third of the
entire living population on earth or four times the
number of the living population of the European
Union.

• 2-byte signed short integer
The number space is only useful for a small set of
persons, e.g., for persons of a clinical study.

• 5 chars of base64-encoded numbers or 6 chars of
base32-encoded numbers
(in case of efficient human readability)
The number space is sufficient for two times of the
living population of the European Union but
insufficient for the living population the People's
Republic of China.

With the information of Table I, we can calculate the
entropy of the secrets that are used during the calculation
(Table II).

For integer and the encoded char-values, the secret with
entropy of ≈124 bits is sufficient to avoid effective brute
force attacks. This is void for short integer. Here the entropy
of the secrets is only ≈64 bits. In that case, the calculation of
the pseudonym must be performed in two rounds with
different primitive root, expansion factor, XOR and shift
values. This does not fully double the entropy of the secrets
because the final steps XOR and SHIFTLEFT are directly
followed by another XOR step of the next round. All three
steps can be simplified to only one XOR plus SHIFTLEFT.
However, the entropy of the secret (≈111 bits) is sufficient
today.

B. Human readability and usability
Without going into details, the readability of a

pseudonym depends on the used character set plus the
number of chars. Usually eight chars grouped in four chars is
the maximum that a user in a day-to-day base accepts if the
pseudonym has to be read and manually typed into a system.
To represent the living population of the People's Republic
of China at least 31 bits are needed that have to be encoded
in the maximal eight chars. This allows either to use reduced

character set (base32 instead of base64) or to introduce chars
that are used for error correction or error detection. If a
smaller population needs to be pseudonymized, the Faldum
code [3] could be used. This code is able to encode 230
persons in eight chars, including two chars for error
detection.

C. Calculation speed
There are only a few steps involved in the calculation of

the pseudonym. The calculation of ai mod p is identified as
the most time consuming calculation. The calculation is
straightforward and avoids several rounds until the final
result is available. Multiplications are always more time
consuming than XOR or shift operations so it is assumed that
the pseudonym calculation is slower that the competitive
approaches. In the known scenarios, the number of
pseudonymisation calculations per time is sufficient: Tests
have shown that on average hardware (Intel Core 2 Duo,
2.66 GHz) 132.5-thousand pseudonyms per second can be
calculated.

IV. DISCUSSION
Important for the evaluation of the algorithm is the

resistance against attacks and the possibility for re-
identification.

A. Attacks
It is known that for b = ai mod p (p prime, a primitive

root of p) it is difficult to calculate the discrete logarithm i, if
b, a, and p are known and p being big enough to avoid
solution tables. In our case, also the primitive root a is
unknown. On the other hand, there might be pre-knowledge
about i. With the non-linear diffusion steps that base on the
use of non-trivial secrets (e.g. q≠1, c≠0), the exponent is
complex enough to make the information of the initial series
useless.

Brute force attacks will only be possible if an attacker is
able to validate the set of parameters with a given set of
person IDs and their associated pseudonyms. An attacker
will in worst case only get both sets, not knowing which
person ID and pseudonym is finally linked. Depending on
the size of the set it is likely, that several parameter sets lead
to the same transformation of the set of person IDs to the set
of pseudonyms. In case of leaked pairs of person ID plus
pseudonym, this information can only be used to perform a
brute force attack. A recalculation of the used parameters is
not possible.

TABLE II. ENTROPY OF THE SECRET

Secret 4-byte signed
integer

5-char base64
6-char base32

2-byte signed
short integer

q: primitive roots ≈ 29 bit ≈ 29 bit ≈ 13 bit
q: expansion factor ≈ 31 bit ≈ 30 bit ≈ 16 bit
c: XOR exponent 31 bit 30 bit 15 bit

d: XOR result 31 bit 30 bit 15 bit
s: shift result ≈ 5 bit ≈ 5 bit ≈ 4 bit

total ≈127 bit ≈ 124 bit ≈ 63 bit

TABLE I. FACTS

 4-byte signed
integer

5-char base64
6-char base32

2-byte signed
short integer

Bits 32 30 16
maximal positive

value 231-1 230-1 215-1

highest possible
prime 231-1 230-35 215-19

highest possible
person ID 2 147 483 646 1 073 741 789 32 748

number of
invalid values 2 36 20

number of
possible

primitive roots
of the prime

534 600 000 459 950 400 10 912

The number of possible primitive roots can be calculated with Eulers φ-function and is
φ(φ(p))= φ(p-1).

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine

B. Re-Identification
A fast re-calculation of the person identifier is possible if

all secrets are known. In case of small p and a given a, the
solution table for b=ai mod p is made fast and every step of
the entire calculation process can be reversed.

Only if the solution table cannot be pre-calculated, it is
quicker to pseudonymise all known person IDs again to find
the correct person ID.

C. Applicability
The concept of pseudonym-creation was implemented in

a real-life scenario; in a research institute, a database with
data collected for long-term studies, had to be split up into
two versions: One version contains all the medical data plus
the demographics of the patient as usual. The second
pseudonymized version contains study specific extracts of
study related data only.

To simplify the migration and to avoid an adaption of the
used tools, the data-model in the pseudonymized version was
kept unchanged. As a consequence, the pseudonym had to be
in the same number range as the initial person ID. In our case
both are integer with 231-1 as the highest possible value.
Additionally, the person IDs is a consecutive running
number, starting with 1.

The algorithm that was described in the paper is now
used to calculate study specific pseudonyms. For each study,
a different set of secrets is used as the calculation
parameters. A tool was also provided to identify primitive
roots.

V. CONCLUSION
The described algorithm for the creation provides a

collision free one-way pseudonymisation technique for a
small bit-depth of the person identifiers that allows a further
use to create human readable and usable pseudonym. In

contrast to other solutions, the algorithm is based on a hard
problem and therefore is resistant against cryptoanalyis.

In case of more bits that are used of the person identifier,
the identification of primitive roots will become more time
consuming. The current strategy can only be optimized to a
certain extent. It might be interesting for the future to
identify the limit. But on the other hand, a pre-calculated
fixed primitive root could be used for higher bit-depth, if a
pre-calculation and storage of ai mod p is not possible. In that
case one could use cloud services to find the fixed primitive
root.

REFERENCES
[1] B. Alhaqbani and C. Fidge, "Privacy-preserving electronic

health record linkage using pseudonym identifiers," 10th
International Conference on e-health Networking,
Applications and Services, HealthCom 2008, pp. 108-117,
2008

[2] B. Riedl, V. Grascher, S. Fenz, and T. Neubauer,
"Pseudonymization for improving the Privacy in E-Health
Applications", Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, HICSS 2008,
p. 255, 2008

[3] A. Faldum, and K. Pommerening, “An optimal code for
patient identifiers,” Computer Methods and Programs in
Biomedicine, vol. 79, no. 1, pp. 81-88, 2005.

[4] J. Daemen, and V. Rijmen, The Design of Rijndael: Springer-
Verlag New York, Inc., 2002.

[5] D. E. 3rd, and T. Hansen, "US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF)," Request for
Comments 6234, RFC 6234 (Informational), 2011.

[6] W. Diffie, and M. Hellman, “New directions in
cryptography,” IEEE Trans. Inf. Theor., vol. 22, no. 6, pp.
644-654, 2006.

[7] S. K. Park, and K. W. Miller, “Random number generators:
good ones are hard to find,” Commun. ACM, vol. 31, no. 10,
pp. 1192-1201, 1988.

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-327-8

eTELEMED 2014 : The Sixth International Conference on eHealth, Telemedicine, and Social Medicine

