
Implementing a Volunteer Notification System Into a

Scalable, Analytical Realtime Data Processing Environment

Jesko Elsner, Tomas Sivicki, Philipp Meisen, Tobias Meisen, and Sabina Jeschke

Institute of Information Management in Mechanical Engineering

IMA/ZLW & IfU - RWTH Aachen University

{ Jesko.Elsner, Tomas.Sivicki, Philipp.Meisen, Tobias.Meisen, Sabina.Jeschke } @ima-zlw-ifu.rwth-aachen.de

Abstract - The pace at which next-generation Internet of

Things networks, consisting of wirelessly distributed sensors

and devices, are being developed is speeding up. More and

more devices produce data in automated manners and the

demand of smartphones and wearable devices is continuously

increasing. With respect to volunteer notification systems

(VNS), the resulting vast amounts of data can be utilized for

profiling and predicting the whereabouts of people that,

combined with machine learning algorithms, complement

artificial intelligence (AI)-based decision systems. Hence, VNS

benefit from keeping pace with the current developments by

using the corresponding data streams in order to improve

decision making during the volunteer selection process. In

emergency scenarios, the velocity, low latency and reaction

times of the system are essential, which results in the need of

online stream-processing and real-time computational

solutions. This paper will focus on a basic concept for

implementing a VNS approach into a scalable, fault-tolerant

environment that uses state-of-the-art analytical tools to

process information streams in real-time as well as on demand,

and applies machine learning algorithms for an AI-based

volunteer selection. This work concentrates on leveraging open

source Big Data technologies with the aim to deliver a robust,

secure and highly available enterprise-class Big Data platform.

Within the given context, this work will furthermore give an

insight on state-of-the-art proprietary solutions for Big Data

processing that are currently available.

Keywords - Volunteer Notification System; Internet of

Things; Big Data; Stream Processing; Machine Learning

I. INTRODUCTION

As we are moving towards the Internet of Things (IoT),

the number of sensors that are deployed around the world,

and devices supporting various different sensory

technologies, is growing at a rapid pace [1]. These sensors

and devices continuously (and automated) generate high

amounts of data. However, in order to add value to the

collected raw data, further processing is required that will

help understanding the meaning and correlations within.

Bundling the accumulated data into a so called real-time

information pipeline does enable scalable real-time query /

in-stream processing technologies [2] and regular batch

processing, which is currently supported by various state-of-

the-art Big Data analytical environments, as will be

discussed later. To a given problem (query), the introduced

approach will process both persisted as well as real-time

data to generate results, which can be further processed

instantaneously or stored for subsequent processing.

Various machine learning extensions on top of the basic

environment do furthermore provide possibilities for

extensive profiling and learning approaches that are based

on the collected data, whereas the resulting decisions are

generated near real-time, enabling a scalable volunteer

selection architecture within the application scenario of a

Volunteer Notification System (VNS), as primary

introduced in [3].

Hence, this paper is going to provide an insight of the

various technologies that can be efficiently used in order to

create a scalable, reliable and fault tolerant environment as

architectural base for a reasonable VNS implementation.

A. Structure

Section I will continue by introducing the various

terminologies that are used throughout this work, whilst

Section II will discuss the state-of-the-art with respect to the

(Big Data) domain specific technologies and analytical

frameworks. Section III will give detailed insights on the

basic implementation approach and the corresponding

concepts and methods, discussing the scalability effects (of

the most problematic system components) of the underlying

technologies in comparison. The last section, Section IV,

will present a brief conclusion on the elaborated approach

and shortly discuss those proprietary solutions and standards

that are currently well established in the industry.

B. Volunteer Notification System

A VNS is an approach to integrate laypersons and
medically trained volunteers into emergency medical
services (EMS). By tracking the users’ location, and in case
of a medical emergency, a VNS aims to alarm those potential
voluntary first-aiders who can arrive on scene fast enough to
provide the most urgent measures until professional EMS
arrive at the victims location.

Whilst the volunteer selection process can be efficiently
enhanced by an AI-driven selection system [4], rather than
merely using the last known location of a volunteer, this
general approach is greatly limited by the input data stream
and the available processing power. Thus, in order to provide
a technical solution for the basic research questions in
regards to an intelligent VNS, the scope of this work will
focus on providing a solution in which the supported input
data - that is generated by a multitude of devices - ideally is

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

limitless and the computational power will be matter of
theoretically seamless scalability.

C. The Internet of Things paradigm

The IoT paradigm proposes that everyday objects will be
globally accessible over the Internet or other adequate
network structures. Opposite to the Internet world, things
with a physical shape usually belong to resource-challenged
environments where energy, data throughput, and computing
resources are scarce.

The focus of typical IoT activities lies on establishing
connectivity at a certain protocol level to enable truly
distributed machine-to-machine (M2M) applications. In the
general protocol specification, the devices must
communicate with each other (D2D). A device’s data then
must be collected and forwarded to the server infrastructure
(D2S), whereas the server infrastructure will share the
various device data (S2S), possibly providing it back to
devices, analytical environments, people and any other
subscriber for a specific type of data.

In regards to a VNS, the specific machines are handheld
or wearable devices and corresponding servers. Hence, a
device-to-server (D2S) infrastructure and a protocol that will
secure this communication environment against data loss and
eavesdropping, fulfills the basic requirement in the context
of a VNS approach. A communication protocol of this type
is the commonly used MQ Telemetry Protocol (MQTT) [5].
As device-to-device communication is not necessarily
needed within a VNS approach, a pub/sub messaging system
similar to a push notification system as lightweight as MQTT
offers a suitable approach to fulfil the systems’
communication requirements. A more in-depth view about
MQTT and similar pub/sub systems will be discussed in
Section II.

D. Big Data in the context of a VNS

In a data-driven society, massive amounts of data are

being collected from people, sensors, algorithms and of

course, the Web itself; storing it in conventional database

systems (i.e., online transaction processing) or data

warehouses (i.e., online analytical processing) that itself

conform to an additional layer on top of single or multiple

databases. The term Big Data describes the challenge for

handling this continuously increasing data, whereas mainly

three reasons posture the arising difficulties: the sheer

volume, the velocity (how fast new data is continuously

produced) and the variety of different data-types. For some

time, an additional challenge has been observed; the so

called veracity, which describes the challenge to exclude

uncertainty and inconsistency within the collected data.

The VNS must handle these challenges gracefully and

overcome the resulting difficulties with scalability and

reliability in terms of the technologies that are being

implemented. In general, the system approach that is to be

illustrated in the upcoming sections of this work will be able

to handle large amounts of continuously generated input

data and will furthermore be able to detect faulty (i.e.,

inconsistent) information in an online matter.

Figure 1. Big Data Analytics within a VNS

E. Stream Processing

As computer systems are creating ever more data at

increasing speeds, Hadoop-style batch processing has

awakened engineers to the value of big data analysis,

whereas the current trend is focusing on the demand for

real-time processing. In essence, people do not only want all

of their data analyzed, but they want it done as soon as

possible, which is driving the current Big Data research

trend towards so called high-velocity data [7]. Exemplary

use cases within this context are real-time analytics,

machine learning, and new generation of decision support

and fraud detection systems [8].
The desire to extract real-time insight from high-velocity

data led to the creation of so called Stream Processing
Engines. These engines include open source projects, such as
Twitter’s Storm [9], Apache Spark [10] and LinkedIn’s
Samza [11] as well as proprietary solutions, such as Amazon
Kinesis [12] or Google's BigQuery [13]. These engines
provide functionalities for routing, transforming and
analyzing streams of data at high-velocity for a specified
time window or near real-time (depending of the velocity
and volume of streamed data chunks). The classical approach
in this context would instead store the real-time data in order
to apply data warehousing techniques for batch-processing in
a subsequent matter. Figure 1 illustrates the conceptual
coherence of the IoT paradigm and real-time Big Data
Analytics within the context of an intelligent volunteer
selection system.

II. STATE OF THE ART

A. Pub / Sub Messaging Systems

Publish-subscribe is a messaging pattern in which

occurring messages are not sent directly to a target receiver

but rather published to a channel. Subscribers have the

option to subscribe themselves on specific topics or

channels and hence express their interest on receiving

specific messages. The result is a lose coupling between

publisher and subscriber, as they are unaware of each other.

146Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

In many pub/sub systems, publishers post messages to

an intermediary message broker or event bus, and

subscribers register subscriptions with that broker, letting

the broker perform any type of necessary filtering. Pub/sub

Messaging Systems allow implementation of a device-to-

device, device-to-server and server-to-server interface, as

have been introduced earlier.

The MQTT protocol on the other hand is a lightweight

messaging protocol that uses a publish/subscribe

architecture to deliver messages over low bandwidth or

unreliable networks with a low footprint. Compared to a

classical REST/HTTP implementation [14], MQTT imparts

various advantages for the use within mobile applications,

such as faster response times, higher throughput, higher

messaging reliability, lower bandwidth usage and lower

battery consumption

In this context, Apache Kafka [15] is a publish/subscribe

log for integrating data between applications, stream

processing, and Hadoop data ingestion. The project aims to

provide a unified, high-throughput, low-latency platform for

handling real-time data feeds. The design is heavily

influenced by transaction logs to prevent data corruption

and/or loss. On the server side, Apache Kafka will be used

to create a pipeline between the MQTT broker cluster and

the Hadoop/Spark environment to persist and stream process

data; it will be managed by Apache Zookeeper for

scalability and reliability purposes.

An alternative to MQTT in a proprietary environment

are Amazon SNS, Amazon SQS as well as Amazon Kinesis,

which are all capable of real-time streaming/distributing

data between applications merely within Amazon Web

Services (AWS) [16].

B. The Apache Hadoop Ecosystem

Apache Hadoop [17] is an open source software project

that enables the distributed batch processing of large data

sets across clusters of commodity servers. It is designed to

scale up from a single server to thousands of machines, with

a very high degree of fault tolerance. Hadoop is

supplemented by an ecosystem of Apache projects, such as

Pig, Hive and Zookeeper and many more, which extend the

value of Hadoop and improves its usability. The core part of

Hadoop is the Hadoop file system (HDFS) which comprises

two major components: namespaces and block storage

service. The namespace service manages operations on files

and directories, such as creating and modifying files and

directories, whilst the block storage service implements the

actual data node cluster management, resulting block

operations and replication.

Hadoop was often criticized [18] [19] for its open-source

implementation of the MapReduce model [20] based on so

called JobTrackers, which due to its problematic structure

have be resolved with the implementation of Apache YARN

[21] and MapReduce 2 in the scope of Hadoop 2.x. YARN

is a resource manager that is based on separating the

processing engine and resource management capabilities of

MapReduce as it was implemented in Hadoop’s original

approach. YARN is often called the operating system of

Hadoop because it is responsible for managing and

monitoring workloads, maintaining a multi-tenant

environment, implementing security controls, and managing

high availability features of Hadoop. One crucial advantage

of YARN in the context of using the Hadoop ecosystem for

the VNS implementation is that is allows multiple

processing models to be implemented on top of HDFS,

thereby allowing Apache Spark to fit into the Hadoop

Ecosystem [22]. The resulting flexible architecture allowed

companies as Amazon and Google to create cloud

computing platforms (e.g., Amazon EMR and Google's

Cloud Platform) which implement enterprise-features out of

the box and give a transparent in-depth cost overview.

C. Apache Spark

Apache Spark is a cluster computing platform similar to

Hadoop designed to be fast and of general-purpose. Spark

extends the popular MapReduce model to efficiently support

more types of computations, including interactive queries

and stream processing. One of the main features that Spark

offers, is the ability to run even huge computational queries

fully in memory (split over various clusters), reaching

performance gains of up to 100 times compared to general

Hadoop MapReduce implementations under specific

circumstances. However, the system itself is also faster than

MapReduce when running merely on disc operations.

At its core, the Spark Engine itself is responsible for

scheduling, distributing, and monitoring applications

consisting of many computational tasks across many worker

machines powered by a high-level structure of components.

These components are designed to interoperate closely,

supporting a library-like combination of the various data

representations (graphs, matrices, SQL like queries). Spark

revolves around the concept of a resilient distributed dataset

(RDD), which is a fault-tolerant collection of elements that

can be operated in parallel. There are currently two types of

RDDs: firstly parallelized collections, parallelizing an

existing collection in your driver program, and secondly by

referencing a dataset in an external storage system

supported by Hadoop (e.g., the local file system, HDFS,

Cassandra, Amazon S3). This allows Spark to interoperate

with various stable established solutions in order to

efficiently focus on problems regarding the introduced big

data challenges. A recent cloud service that is entirely based

on Spark and runs on AWS has been introduced by

Databricks (who also drove the adoption of the Apache

Spark ecosystem) in 2014. It allows developers to create

scalable computing clusters running on Apache Spark for

data analysis, machine learning and similar use cases.

This work will incorporate Apache Spark and its core

components as the main cluster computing platform to

overcome weaknesses of classical Hadoop architectures and

to support the incorporation of the various proprietary

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

solutions, such as Amazon Web Services and the Databricks

Cloud Platform.

D. Data Streaming & Processing

LinkedIn's Kafka was designed to support not merely the

distribution of data, but also to provide the infrastructure

primitives that will enable real-time data processing. Samza

on the other hand provides elastic, fault-tolerant processing

as being layered on top of real-time feeds. A simple analogy

in respect to the batch domain is described by Kafka taking

the role of HDFS while Samza relates to MapReduce.

While this architecture scales horizontally due to its

MapReduce nature, speed is an important factor which

needs to be considered. A combination of Apache Kafka

with various Spark components (i.e., Spark SQL, MLlib and

Streaming Processor) will result in a more reliable,

vertically and horizontally scalable high-velocity

architecture. The lack of security options within Kafka and

Samza are an important criteria for using Spark's Security

implementation and an integrated secure tunnel between

Kafka and the corresponding MQTT brokers.

In terms of security, scalability and reliability a

commercial solution with Amazon Kinesis and Amazon

Elastic MapReduce provides leverage to these problems,

including the high-velocity implementation of Spark

components, which replicates the scenario in a more

enterprise-ready fashion.

As the fault tolerance plays an additional key role for a

successful scalable VNS implementation, Apache Cassandra

[23] is the state-of-the-art database system in combination

with Spark technologies; highly robust and fault tolerant. It

protects against data loss or corruption by replicating blocks

of data to multiple nodes and supporting replication between

geographically distributed nodes. Amazon and Google offer

similar enterprise ready data stores, such as Amazon

Redshift [24], Amazon DynamoDB [25] and Google Cloud

Datastore [26], whilst a general comparison between the

Cassandra File System (CFS) and HDFS is given in [27].

E. Webinterfaces & API

Responsive web design architecture and supporting the

HTML5 specification, esp. Websocket support [28], is

efficiently incorporated by implementing Nginx [29] as a

high-performance HTTP server for both, static web data as

well as proxy requests to an underlying Node.js [30]

runtime environment running server-side applications.

Node.js applications are entirely written in JavaScript,

whereas Express.js constitutes an adaptable MVC

framework [31]. Node.js is characterized to be fast (due to

event based architecture), offer high throughput, support

high amounts of concurrent connections, support clustering

and generally has a very low resource footprint. Offering

advanced scalability, load balancing, health checks and

some additional features, the Nginx Inc. released an

enterprise version under the label: Nginx+ [32]. Node.js in

this context enables the implementation of simple server

applications as well as the requirements in respect to APIs.

Figure 2. Realtime Data Pipeline

III. SYSTEM ARCHITECTURE

This section will illustrate the main strategy that

incorporates the introduced technologies into a general

system architecture that conforms to the requirements of an

enterprise application.

A. Realtime Data Pipeline

Within a VNS, the data that is to be analyzed is

generated by individual mobile or wearable devices. As

illustrated in Figure 2, clients publish their data to a server

which is connected to a message broker, which is

responsible for broadcasting the received messages to the

corresponding subscribers. Whilst a standard MQTT broker

solution is lightweight and performant for a limited amount

of connected clients (due to limits in the port range), a

horizontally scalable approach will have to balance the

various connections between multiple instances (load

balancing) residing on different machines. As clients

generally subscribe to specific topics in order to achieve

push-like notifications, horizontal scaling will result in

brokers having different information and topic structures.

To solve this problem, the various brokers (i.e., nodes)

need to be connected with each other and share their

message structure and permissions, forming a cluster of

machines that can be scaled at will. Modern systems, such

as RabbitMQ [33] and Apache’s ActiveMQ [34], support

the application of efficient clustering. Mirroring the

message queues between all machines will allow the

subscribers to connect to any existing node while still

having access to the whole cluster. Established commercial

projects that support scalable messaging systems and

efficient load balancing for MQTT connections are:

HiveMQ [35], CloudAMQP [36] and CloudMQTT [37].

B. Load Balancing

Since most standard load balancing approaches, such as

Amazon's Elastic Load Balancer, only support Round Robin

(RR) and Session Sticky Algorithms, they are not sufficient

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

for balancing MQTT clients or applications between

brokers. The already introduced commercial Nginx+

solution supports various advanced load balancing strategies

[38], but even the open-source standard Nginx version can

be extended with additional functionalities by incorporating

the programming language LUA and a TCP-proxy module

to support the programmatic injection of algorithms that can

filter requests of clients and balance connections between

brokers with high performance. This added functionality

enables a distinguished consideration of the various active

brokers in order to terminate obsolete sessions, run

additional scripts for scaling the cluster, and perform regular

health checks on running instances.

C. Ad-Hoc / Online Computation

As described in [39], ad-hoc computation on message

brokers is efficiently achieved by combining Apache Kafka

with Apache Sparks infrastructure; since Kafka efficiently

persists the message queue on a data store (e.g., Cassandra

or HDFS) while Apache Spark handles workloads both in

real-time as well as by batch processing. Kafka is

guaranteed to deliver reliable message durability and a fault-

tolerant near real-time computation with Spark Streaming

[40]. At this point, one might argue about missing security

measures within Apache Kafka [41].

Whereas various other messaging platforms (e.g.,

RabbitMQ) support the persistence of incoming data on data

stores, they are usually not performant enough or simply not

optimized for processing environments such as Kafka,

which itself is very robust in throughput of messages and

during read/write operations [42]. Whilst the Apache Spark

libraries provide methods for connecting to MQTT brokers

and streaming data, the underlying communication has to be

implemented manually. In contrast, Kafka can be

implemented as a complementing stream processing layer

between the MQTT cluster and Apache Spark [43].

Within a VNS, the streamed data will mainly consist of

location data of individual volunteers and case update data.

Thus, stream processing will be applied to regulate updates

concerning a specific case in real-time; deriving decisional,

predictive or anomaly detection results. However, an

efficient volunteer selection, based on accumulated profile

data, will mostly be computed in batches, as discussed in the

upcoming section.

As data store, Apache Cassandra constitutes a high

performance scalable database with linear scaling that

secures an enterprise-ready solution for this work. Similar,

proprietary options are Amazon DynamoDB and Amazon

RedShift, whereas HDFS would partly limit the

performance of Spark and other NoSQL data stores [44].

D. Batch/ Offline Computation

Batch processing on big amounts of accumulated data is

commonly implemented based on Hadoop clusters. Within a

VNS, finding the most reasonable candidates for an ongoing

medical emergency – within a minimum time interval –

hereby constitutes a batch processing problem with an

increasing (raw) data size over time. Location based data

will be analyzed in order to compute behavioral patterns of

volunteers; this can be done on a regular basis (iterative)

based on batch processing of the acquired location data and

in combination with various machine learning algorithms.

The results will be available for additional real-time

computations, whereas details for an AI-driven volunteer

selection discussed in [45].

Figure 3. Real time Data Processing

Apache Spark can accomplish both tasks of on- and

offline computation quite reliable and fast allowing the

results to be stored in data stores or be directly accessible

via API or MQTT subscribed topics. While real-time per-

case computation and live updates would amass resource

consumption it would be possible but unfeasible and

unnecessary. With a proper modelling of data stores direct

API access allows fast updates of a case without the need of

costly computations. Behavioral patterns can be learned

after an emergency scenario, as well due to the systems

structure.

Figure 3 illustrates the general architecture for a real-

time data processing environment, as has been discussed

within this section. Nowadays, Amazon EMR, Google

Cloud Platform and Databricks deliver the technologies

needed for a successful computation environment for similar

use cases and allow different services like data stores or

real-time computation ecosystems to be fully implemented

on commodity hardware.

IV. CONCLUSION

This work illustrated details on how to implement a

VNS into a distributed analytical environment with high

velocity data support. Scalability and reliability is hereby

achieved by utilizing merely open-source software solutions

without relying on any commercially driven software or

proprietary cloud solutions. While security and special

solutions for load balancing and regulating the

corresponding environments cannot be guaranteed by open-

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

source Apache software alone, new Big Data challenges

arise continuously and more open-source projects are being

incubated or upgraded; hopefully solving both, newer as

well as older challenges that were formally limited to

enterprise solutions.

ACKNOWLEDGMENT

This paper is based on work done in the
INTERREG IVa project EMuRgency (www.emurgency.eu).
The project is partially financed through the European
Regional Development Fund (ERDF) and co-financed by
several regions and partners of the EMuRgency consortium.

REFERENCES

[1] T. Danova, [online], http://read.bi/1hwjWTr [accessed
08/10/2014].

[2] M. Stonebraker, U. Cetintemel, and S. Zdonik. “The 8
requirements of real-time stream processing”, ACM
SIGMOD Record, Vol. 34, No. 4, 2005, pp. 42-47.

[3] J. Elsner, M. T. Schneiders, M. Haberstroh, D. Schilberg, and
S. Jeschke, “An Introduction to a Transnational Volunteer
Notification System Providing Cardiopulmonary
Resuscitation for Victims Suffering a Sudden Cardiac Arrest”,
eTelemed2013, April 2013, pp. 59-64.

[4] J. Elsner, P. Meisen, S. Thelen, D. Schilberg, and S. Jeschke,
“A Basic Concept for an AI Driven Volunteer Notification
System for Integrating Laypersons into Emergency Medical
Services”. International Journal On Advances in Life
Sciences, Vol. 5, No 3&4, 2013, pp. 223–236.

[5] J. Elsner, M. T. Schneiders, D. Schilberg, and S. Jeschke,
“Determination of Relevant First Aiders within a Volunteer
Notification System“, Med@Tel 2013, Luxemb., pp. 245-249.

[6] MQTT Protocol 3.1.1. Spec., [online], http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html [accessed
02/10/2014].

[7] C. Aggarwal, “Data Streams: Models and Algorithms”,
Series: Advances in Database Systems, Vol. 31, Kluwer,
2007.

[8] J. Taylor, “Real-Time Responses with Big Data”, 2014.

[9] Apache Storm [online], https://storm.incubator.apache.org/
[accessed 10/12/2014].

[10] Apache Spark [online], https://spark.apache.org/ [accessed
10/14/2014].

[11] Apache Samza [online], http://samza.incubator.apache.org/
[accessed 10/14/2014].

[12] Amazon Kinesis [online], http://aws.amazon.com/kinesis/
[accessed 10/14/2014].

[13] Google BigQuery [online],

 https://cloud.google.com/bigquery/ [accessed 10/14/2014].

[14] Wilde, Erik. “Putting things to REST”, School of Information,
Series: Recent Work, November 2007.

[15] Apache Kafka [online], http://kafka.apache.org/ [accessed
10/15/2014].

[16] Amazon Webservices such as SNS or SQS [online],
http://aws.amazon.com/sns/ [accessed 10/15/2014].

[17] Apache Hadoop [online], http://hadoop.apache.org/ [accessed
10/14/2014].

[18] J. Polo, "Big Data Processing with MapReduce", Big Data
Computing, Oktober 2013, pp. 295-313.

[19] M. Stonebraker et al. “MapReduce and parallel DBMSs:
friends or foes?”, Communications of the ACM, Vol. 53,
No.1, 2010, pp. 64-71.

[20] R. Lämmel, "Google’s MapReduce programming model
Revisited" Science of computer programming, Vol. 70, No. 1,
January 2008, pp. 1-30.

[21] V. K. Vavilapalli et al. "Apache hadoop yarn: Yet another
resource negotiator", SOCC’13, ACM New York, 2013, pp.
1-16.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, "Spark: cluster computing with working sets",
HotCloud'10, USENIX Association 2010, pp. 10-10.

[23] Apache Cassandra [online], http://cassandra.apache.org/
[accessed 10/15/2014]

[24] Amazon RedShift [online], http://aws.amazon.com/redshift/
[accessed 10/15/2014]

[25] Amazon DynamoDB [online], [accessed 10/15/2014],
http://aws.amazon.com/dynamodb/

[26] Google Cloud Datastore [online], [accessed 10/15/2014],
https://cloud.google.com/datastore/

[27] Datastax Corporation, "Comparing the Hadoop Distributed
File System (HDFS) with the Cassandra File System (CFS)",
White Paper by Datastax, August 2013.

[28] I. Fette and A. Melnikov, "The websocket protocol", IETF,
December 2011.

[29] W. Reese, "Nginx: the high-performance web server and
reverse proxy", Linux Journal, Issue 173, September 2008.

[30] R. Fielding et al. "Hypertext transfer protocol –HTTP/1.1",
RFC Editor, USA, 1999.

[31] C. Le and X. Yang, "Research of applying MVC pattern in
distributed environment", Computer Engineering, Vol. 32,
No. 19, 2006, pp. 62-64.

[32] Nginx+ [online], http://nginx.com/products/technical-specs/
[accessed 10/16/2014].

[33] RabbitMQ [online], http://www.rabbitmq.com/ [accessed
10/16/2014].

[34] ActiveMQ [online], http://activemq.apache.org/ [accessed
10/16/2014].

[35] HiveMQ [online], http://www.hivemq.com/ [accessed
10/16/2014].

[36] CloudAMQP [online], https://www.cloudamqp.com/
[accessed 10/17/2014].

[37] CloudMQTT [online], http://www.cloudmqtt.com/docs.html
[accessed 10/17/2014].

[38] A. Piórkowski, A. Kempny, A. Hajduk, and J. Strzelczyk,
"Load balancing for heterogeneous web servers", Computer
Networks, Springer 2010, pp. 189-198.

[39] Real time Analytics with Apache Kafka and Apache Spark
[online], http://bit.ly/1Djbstn, [accessed 10/17/2014].

[40] M. Zaharia et al. "Discretized streams: Fault-tolerant
streaming computation at scale", Proc. of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP’13, 2013, pp. 423-438.

[41] Samza / Kafka Security [online], http://bit.ly/1pl550b
[accessed 10/17/2014]

[42] J. Kreps, N. Narkhede, and J.Rao, "Kafka: A distributed
messaging system for log processing", NetDB 2011.

[43] R. Ranjan, "Streaming Big Data Processing in Datacenter
Clouds", Cloud Computing, Vol. 1, No. 1, IEEE, 2014.

[44] J. Zollman, “NoSQL Databases”, Proceedings of the NetDB,
2011, [online], http://sewiki.iai.uni-
bonn.de/_media/teaching/labs/xp/2012b/seminar/10-nosql.pdf

[45] J. Elsner, Dissertation, “An AI Driven Volunteer Selection
System”, Aachen 2015, (unpublished)

150Copyright (c) IARIA, 2015. ISBN: 978-1-61208-384-1

eTELEMED 2015 : The Seventh International Conference on eHealth, Telemedicine, and Social Medicine

http://read.bi/1hwjWTr
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://storm.incubator.apache.org/
https://spark.apache.org/
http://samza.incubator.apache.org/
http://aws.amazon.com/kinesis/
https://cloud.google.com/bigquery/
http://kafka.apache.org/
http://aws.amazon.com/sns/
http://hadoop.apache.org/
http://cassandra.apache.org/
http://aws.amazon.com/redshift/
http://aws.amazon.com/dynamodb/
https://cloud.google.com/datastore/
http://nginx.com/products/technical-specs/
http://www.rabbitmq.com/
http://activemq.apache.org/
http://www.hivemq.com/
https://www.cloudamqp.com/
http://www.cloudmqtt.com/
http://bit.ly/1Djbstn
http://bit.ly/1pl550b

