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Abstract—This paper provides the design of a system employ-
ing an Android application connected to body sensors, which
is capable of assessing the mood and memory performance of
humans. The mood detection is based on the heart rate, its
variability, as well as on the captured brain waves. The memory
performance is evaluated based on specific brain waves observed
as well. Experiments were conducted to assess the main features
of the system. The mood experiment has been successful at
raising the mood levels of the majority of participants when
being shown stimuli composed of images and sounds. Negative
or neutral mood levels could be explained by participants having
other thoughts or emotions during the experiment, and by the
attenuation and dampening of the body sensors’ signals. The
ability of participants to reach a particular mood (relaxed,
engaged, and sad) more quickly in response to a conducive
stimulus is related to a person’s physical characteristics; for
example, younger participants reach a particular mood more
quickly than older participants. The memory experiment has
been successful at raising the memory levels of the majority of
participants when being asked to perform a modified Sternberg
memory task. Results show a positive memory activity for
the majority of participants, even in the presence of signal
attenuation in the body sensors.

Keywords-Mood Detection; Body Sensors; Heart Rate Variabil-
ity; Android Application; Brain Waves.

I. INTRODUCTION

Mood detectors can identify trends pointing to a person’s
mood. They can be found in modern computers, laptops,
smartphones, tablets, sensors such as skin sensors, elec-
troencephalography sensors, and voice recognition sensors.
Thanks to existing technology, they can be carried every-
where and accessed anytime. Furthermore, these devices
feature lower costs, high speed, low power consumption, and
many other benefits for the subject, clinician or researcher.

Mood detectors can be integrated in our daily lives, such
as when driving a car. The driver might feel stressed and
tired when driving long distances. A car with sensors can
understand the driver’s emotion and feelings and prevent an
accident, which could save many lives. Sensors could nest

in the steering wheel and door handles to pick up electric
signals from the skin. A camera mounted on the windshield
could analyze facial expressions. When the driver is stressed,
the car’s sensors could soften the light and music, or broaden
the headlight beams to compensate for the loss of vision [1].

The importance of mood detection has been increasingly
recognized because it could prevent mood disorders from
affecting us and harming us in our daily lives. Mood disorders
include depression and bipolar disorders. Anyone can be
affected from mood disorders: children, teenagers, adults,
and the elderly. Stressful events in our lives can result in
transitory depression, or any of several mood disorders.
Symptoms include being sad, anxious, hopeless, helpless, and
having low self-esteem. These symptoms can be overcome
with the knowledge of one’s current mood by using the
above-mentioned devices and taking the right actions, such
as a psychiatric consultation and/or the commencement of
medication.

A. Application Features

Mood detection is a growing and rapidly developing field.
Many existing devices can approximate one’s current mood.
Devices such as wrist sensors can provide information on
stress levels when worn. They can communicate this infor-
mation via the internet. For example, a sensor worn on a
child’s wrist might detect that the child is stressed. The stress
signal is communicated via the internet and the parent can
see on his/her smartphone that the child is stressed, thereby
enabling the parent to take action to reduce that stress level
[2].

In recent years, many applications for smartphones and
tablets capable of telling a person’s mood have been released.
Samsung has developed a smartphone that can tell one’s
mood based on how the phone is used. For example, it
monitors the speed at which the user is typing some text,
and how much the device shakes [3]. The ”mood detection
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and memory evaluation” Android application combines many
of the features from the applications mentioned below:

• The system requires Bluetooth Low Energy in order to
work.

• Mood is measured using brain and heart sensors, so it is
very accurate.

• Mood data and user data is sent to the Web on a Dropbox
Web Server, which is safe and secure.

• Mood data can be compared between users.

• Mood data for each user can be graphed, so it is easy for
the user to compare his/her mood on a daily basis.

The paper is organized as follows: section 2 briefly dis-
cusses the system’s features such as mood and memory
performance algorithms and the valence/arousal model. Sec-
tion 3 discusses the experimental work. Finally, Section 4
concludes on the paper work and speculates on the future of
this growing field.

II. BACKGROUND

This section discusses essential background information of
the work. Please note that this application is not standalone
code, but is connected to body sensors communicating with
it via Bluetooth Low Energy.

A. Mood and Memory Performance Algorithms

This section discusses the procedure for measuring different
emotions and memory performance in real time through
the use of mood and memory performance algorithms. This
section also shows a pseudocode implementation of the mood
and memory performance algorithms.

The recognition of different emotions and memory perfor-
mance is achieved as follows:

• First, we record the resting heart rate of the participants.
Any significant rise in this heart rate (when the participant
is seated and relaxed) is explained by strong emotions, such
as excitement, happiness, anger, and arousal [4].

• Second, we record the heart rate variability of the partic-
ipant. We calculate it by using the formulas described in the
next subsections. The heart rate variability is a useful feature
in mood classification, since a bigger heart rate variability is
an indicator of good health and a lower heart rate variability
is an indicator of bad health, stress, and heart diseases.

• Third, we process the EEG data of the brain using the
procedures described in the next subsection. The processed
data consists of the EEG average band powers (alpha, beta,
gamma, and theta). Using relations and formulas discussed
in the next subsections, we obtain the arousal and valence

information and we use this information along with the 2D
valence/arousal model to recognize different emotions in real-
time. Furthermore, memory performance evaluation follows
almost the same procedure except that we look at the band
powers, especially the alpha band power to evaluate retention
in a short-term memory task.

1) Android Pseudocode Implementation

The pseudocode implementation of the relaxation mood
(how to find the relaxation level of an individual given
some parameters such as heart rate) is shown as all other
mood and memory performance algorithms follow a similar
implementation.

Referring to Algorithm 1, RelaxHR% measures how re-
laxed a person is from heart rate. A value close to 0%
indicates that a person is not relaxed, and a value close to
100% indicates that a person is very relaxed. RelaxSDNN%
measures how relaxed a person is from heart rate variability
(ageSDNN is the ideal SDNN a person should have given
his/her age). RelaxEEG% measures how relaxed a person
is from EEG. Together, these values are used to find the
relaxation level.

B. Data Processing

The procedure for data processing to obtain mood and
memory performance levels works as follows: first, the DC
offset and slow drift of the raw signal is removed. The
best way to do this is with a high-pass filter with a cut-
off frequency greater than 0.16Hz. The data segment is then
multiplied by a tapered window function which smoothly
forces the two ends of the data segment to match exactly. Step
changes and start-finish differences will put fake responses
into Fast Fourier Transform (FFT) data since the algorithms
assume an infinitely repeating copy of the segment of data.
The FFT algorithm is then executed. The FFT algorithm
returns a complex set of values at each frequency increment.
The magnitude of these complex numbers is squared by
multiplying each complex number by its complex conjugate.
Power is proportional to the square of the magnitude, so now
we have the power per frequency interval. The powers are
added up for each element of the frequency range of interest,
so now we have the average EEG band powers.

C. Resting Heart Rate

The resting heart rate is the heart pumping the lowest amount
of blood. If a person is sitting or lying, and is calm, relaxed
and in good health, his/her resting heart rate should range
between 60 and 100 beats per minute. A heart rate lower
than 60 could be explained by a medical condition, taking
drugs such as beta blockers, or being physically active and
very athletic. Active people often have lower resting heart
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Algorithm 1 Relaxation Mood Algorithm
Input: heart rate, heart rate variability (SDNN), valence, and

arousal.
Output: relaxation level

if (HR/HRrest*100)<100 then
RelaxHR% = 100

else
if ((1-((HR / HRrest)-1))<0.0) then

RelaxHR% = 0
else

RelaxHR% = ((1 - ((HR / HRRest) - 1)) * 100)
end if

end if
if (age>=0&&age<=49) then

ageSDNN = 50
else

ageSDNN = 40
end if
if (SDNN/ageSDNN*100)>100 then

RelaxSDNN% = 100
else

RelaxSDNN% = ((SDNN/ageSDNN)*100)
end if
if (valence>0) then

if (arousal>0.4&& arousal<=1) then
RelaxEEG% = 100

else if (arousal>1) then
if ((1-(arousal-1))<0) then

RelaxEEG% = 0
else

RelaxEEG% = ((1 - (arousal - 1)) * 100)
end if

else
RelaxEEG% = (arousal/0.4)*100

end if
else

RelaxEEG% = 0
end if
RL = RelaxHR%/4 + RelaxSDNN%/4 + RelaxEEG%/2
return RL

rates because their heart muscle is in better condition and
does not need to work as hard to maintain a steady beat [5].

D. Heart Rate Variability

Heart rate variability (HRV) is the degree of fluctuation in the
length of intervals between heart beats. A bigger regularity
of heart beats lowers HRV and vice versa. Regularity of heart
beats is derived from a quantity of numbers equal to the time
elapsed between successive heart beats. These are named R-R
intervals and are measured in milliseconds (ms) [6].

HRV can be assessed in two ways: as Time Domain

Analysis, or in the frequency domain, as Power Spectral
Density Analysis. We will concentrate on Time Domain
Analysis because it is more simple and straightforward.

Time domain measures are the simplest to calculate and
include the mean normal-to-normal (NN) intervals during
the entire recording and statistical measures of the variance
between NN intervals. The most important time domain
measures are the SDNN (HRV), and the RMS-SD.

• The SDNN is the standard deviation of the NN intervals,
which is the square root of their variance. A variance is
mathematically equivalent to the total power of spectral
analysis, so it reflects all cyclic components of the variability
in recorded series of NN intervals. It is inappropriate to
compare SDNN values derived from the NN recordings of
different lengths. A recording can last a short period of time,
such as five minutes, or it can last a full 24-hour day. SDNN
is measured in milliseconds [6].

• The RMS-SD is the square root of the mean squared
differences of successive NN intervals. This measure esti-
mates high-frequency variations in heart rate in short-term
NN recordings that reflect an estimate of parasympathetic
regulation of the heart. RMS-SD is measured in milliseconds
[6].

Formulas to calculate these time domain measures are
given:

Let N be the total number of heart beats. Let MRR be the
mean of RR (or NN) intervals. It is calculated as follows:

MRR = Ī =
1

N − 1

N∑
n=2

I(n) (1)

In this formula, I(n) is the value in milliseconds of the nth
NN interval. The SDNN can be expressed as:

SDNN =

√√√√ 1

N − 1

N∑
n=2

[I(n) − Ī]2 (2)

Finally, the RMS-SD can be expressed as:

RMSSD =

√√√√ 1

N − 2

N∑
n=3

[I(n) − I(n− 1)]2 (3)

E. Valence/Arousal Model

The 2D Valence/Arousal model is used to characterize emo-
tions such as: happy, sad, relaxed, and angry. Emotions are
characterized based on their valence and arousal values. For
example, happiness is characterized by a positive valence and
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high arousal, anger is characterized by negative valence and
high arousal, relaxation is characterized by positive valence
and low arousal, and sadness is characterized by negative
valence and low arousal [7].

High arousal (excitation) is characterized by a high alpha
power and a low beta power (a high alpha activity and a
low beta activity). The ratio of the beta to the alpha power
characterizes the arousal level of a person (Arousal =
beta/alpha). The arousal level of a person is measured using
the frontal electrodes of the Emotiv Insight brain sensor. This
relationship holds because beta brainwaves are associated
with an alert or excited state, while alpha brain waves are
associated with a relaxed state [7].

To determine the valence level, we compare the activation
levels of the two cortical hemispheres. Left frontal inactiva-
tion is an indicator of a withdrawal response, which is often
linked to a negative emotion. On the other hand, right frontal
inactivation may be associated with an approach response, or
positive emotion [7].

High alpha activity is an indication of low brain activity,
and vice versa. Thus, an increase in alpha activity together
with a decrease in beta activity may be associated with
cortical inactivation. The frontal electrodes of the Emotiv
Insight brain sensor, AF3 and AF4, are the most used
positions for looking at this activity, as the frontal lobe plays
a crucial role in emotion regulation and conscious experience.

We estimate the valence value in a person by computing
and comparing the alpha power α and beta power β in
channels AF3 and AF4, like so:

valence =
αAF4

βAF4
− αAF3

βAF3
(4)

III. EXPERIMENTAL STUDY

The experiment is performed to assess how effective is the
system at finding the mood and memory performance levels
of each participant. It presents part of the results obtained
from performing the experiment and a discussion based on
these results.

A. The System

The system is composed of the following components:

• External sensors, such as the Texas Instrument Sensor
Tag, the Polar H7 heart rate sensor, and the Emotiv Insight
brain sensor.

• The Cloud, where the Dropbox Core Api is used to store
the users’ data and access it anytime needed.

B. Subjects

Sixteen subjects (ages 22-80, 12 males and 4 females)
performed the experiment, which consisted in evaluating their
mood and memory performance levels while their heart and
brain data was recorded. Informed consent was obtained from
each subject prior to the study. Ethical approval was obtained
from the Research Ethics Board Office of McGill University.
The reference number is: 306-0116.

C. Stimulus

Both pictures and music were used to be the stimulus to elicit
emotion. To represent good moods such as relaxation, happi-
ness, engagement and arousal, pictures displaying beautiful
nature scenery, people jumping out of joy, beautiful birds,
plants, and animals, were selected. To represent bad moods
such as sadness, anger, and stress, pictures displaying angry
and wild animals, people crying, and children all alone sleep-
ing in the streets, were selected. Three to four music pieces
were chosen to represent each mood. Each lasted 30 seconds.
For example, annoying alarm clock sounds were chosen to
represent stress, bomb siren sounds were selected to represent
anger, ”Don’t Worry be Happy” by Bobby McFerrin was
selected to represent relaxation, ”Chariots of Fire” theme
song was selected to represent arousal, the theme song from
the movie ”Pirates of the Caribbean” was chosen to represent
engagement, ”Happy” by Pharrell Williams was selected to
represent happiness, and ”Very Sad Violin” classical music
was chosen to represent sadness.

This procedure achieved stimulation by increasing and
decreasing the neural activity of the brain. The cerebral
cortex became synchronized at any given moment. The limbic
system’s cingulate gyrus, which connected actions with emo-
tional responses, became synchronized. This synchronization
happened mostly in brain parts responsible of processing
sights, sounds, and emotions.

D. Testing Procedure

The experiment took a total time of 45 minutes. Data
was recorded using a tablet (Samsung Galaxy Tab 4). The
participant was instructed to sit and not to move his/her head
for the entire duration of the experiment. The Polar H7 heart
rate sensor was placed on the participant’s bare chest and the
Emotiv Insight brain sensor was placed on the participant’s
head. The data was stored on a Dropbox account. For added
security, the data in the Dropbox account was encrypted using
Boxcryptor. Boxcryptor features a fast and easy Dropbox
encryption, a state-of-the art AES-256 encryption standard,
and top security for all private and business needs. The
application was launched and the participant was prompted
to create an account. Creating an account requires him/her
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to enter a username, a password, his/her height, his/her
weight, and his/her sex. The participant was prompted to
take a picture of himself/herself. The air temperature, the
air humidity, and the air pressure were recorded using the
Texas Instrument Bluetooth Low Energy Sensor Tag. The
participant was asked if he/she was relaxed or not and if
not, he/she was given a short period of time (2 minutes) to
relax. When relaxed, the participant’s resting heart rate was
recorded. Then, for each stimulus composed of pictures and
sounds (each representing a particular mood such as relaxed,
engaged, stressed, happy, angry, aroused, and sad) which was
displayed on a laptop screen, the data was recorded on a
tablet before evoking the stimulus, the stimulus was evoked,
and the data was recorded on a tablet after evoking the
stimulus. At the end of each stimulus, there was a relaxation
period of 1 minute. The first part of the experiment took 35
minutes. In the second part of the experiment, the subject was
first given a 1-minute resting period. The memory test was
given immediately afterward, and the test subject’s memory
performance level was recorded. For the memory test, the
participant was shown three sets of 4-6 letters displayed
on a laptop screen. After being shown each set of letters,
the participant was given a brief moment (2-5 seconds) to
memorize the set of letters. The participant was then shown
a letter which may or may not be part of the set of letters
previously shown to him/her. The participant was asked to
state whether or not this letter belongs to the set of letters.
There were three sets of letters and three probes in the
memory experiment. EEG data was recorded twice per set
of letters: before showing the set of letters to the participant
and just after showing the set of letters to the participant
while he/she was busy memorizing them. The second part of
the experiment took 10 minutes.

E. Results

Results were gathered from the participants’ brain and
heart data under the following environmental conditions:
the temperature ranged from 60.28 deg/F to 67.57 deg/F,
the humidity ranged from 32.25 %rH to 48.18 %rH, and
the pressure ranged from 999.70 nPA to 1032.32 nPA. All
participants confirmed that they were relaxed at the beginning
of the experiment. All participants remained seated and did
not move their heads for the entire duration of the experiment.
Results for this paper contain relaxation data graphs such as
the relaxation level recorded before evoking the stimulus and
the relaxation level recorded after evoking the stimulus for
each participant, the age, height (in meters), and weight (in
kilograms) of each participant versus the difference in the
relaxation level recorded after evoking the stimulus and the
relaxation level recorded before evoking the stimulus. Mood
and memory performance levels are in percent. A mood level
of 0% suggests that the participant is not feeling at all in that
particular mood, and a mood level of 100% suggests that the

participant is feeling very strongly in that particular mood. A
memory performance level close to 100% may be associated
with strong memory activity, whereas a very low memory
performance level, approaching 0%, may be associated with
no memory activity.

Fig. 1. Relaxation Level before and after Evoking Stimuli for each
Participant

Fig. 2. Relaxation Level (after Evoking Stimuli - before Evoking Stimuli)
for each Participant versus their Age

Fig. 3. Relaxation Level (after Evoking Stimuli - before Evoking Stimuli)
for Each Participant versus their Height
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Fig. 4. Relaxation Level (after Evoking Stimuli - before Evoking Stimuli)
for each Participant versus their Weight

Fig. 5. Height of Participants versus their Age

F. Discussion

The experiment has been successful at raising the relaxation
levels of the majority of participants. Referring to Figure
1, about 56% of all participants had a higher relaxation
level after the stimulus as compared to before the stimu-
lus. The 44% remaining participants were found to have
varying reactions when exposed to such stimulus: some of
the 44% may have had other thoughts or emotions during
the experiment, and may have been preoccupied with other
matters, thereby negating any effect of the relaxation stimulus
on them. Another problem potentially accounting for the
variation in results is the fact that the brain sensor’s EEG
data had to travel from the brain cortex to the electrodes
of the brain sensor. During its travel, the signal may have
been attenuated or dampened as a result of traveling through
many brain regions. Thus, the quality of the signal using
this method is not optimal, and results in a lower-quality
EEG signal. Figure 2 showing the change in relaxation level
(the relaxation level after the stimulus minus the relaxation
level before the stimulus) was plotted against the age of all
participants. The graph reveals that almost all participants had

positive or neutral changes in relaxation levels and that most
participants with the greatest positive changes in relaxation
levels (higher than 40%) are the younger participants, those
aged 22 to 30. The older population, those aged 40 to 80,
had the most participants with negative changes in relaxation
levels (3 participants aged 50-80 versus 1 participant aged
26). The results reveal that the ability of the participants
to relax quickly in response to a conducive stimulus is
greater for younger individuals than for older ones. The
change in relaxation level was plotted against the height
of all participants (Figure 3). The results reveal that the
tallest individuals (heights ranging from 175 to 185 cm) had
the majority of values corresponding to the highest changes
(higher than 40%) in relaxation levels (5 individuals with
heights ranging from 175 to 185 cm versus 1 individual
with a height of 165 cm). The participants with all values
corresponding to negative changes in relaxation levels are
the shortest individuals (4 individuals with heights ranging
from 165 to 175 cm). The results mean that taller participants
are better able to relax quickly than shorter participants.
The graph (Figure 4) showing the change in relaxation level
against the weight of participants reveals that the majority
of individuals with the greatest changes in relaxation levels
are those with weights ranging from 60-90 kg. The graph
also shows that the individuals from the same weight range
have all values associated with negative changes in relaxation
levels. Therefore, the results stating that participants with a
weight range of 60-90 kg are better able to relax quickly
than the other participants are inconclusive. According to the
last graph (Figure 5), the majority of tall participants (those
with height ranging from 175 to 185 cm) are 20 to 30 years
old (7 participants with heights ranging from 175 to 185 cm
versus 2 participants with the same height range who are
50 to 70 years old). The results mean that in general taller
and younger participants are better able to relax quickly than
shorter and older participants.

The first, second, and third trial memory performance
levels before and after memorizing the set of letters for each
participant show that the experiment has been successful at
raising the memory performance levels of the participants.
Almost all participants had higher memory performance
levels after memorizing the set of letters as compared to
before memorizing the set of letters which is associated
with positive memory activity. The success rates of all trials
are 81%. The 19% remaining participants for each trial had
memory performance levels lower or equal after memorizing
the set of letters as compared to before memorizing the set of
letters. An explanation of the variation in results is the fact
that the brain sensor’s EEG data had to travel from the brain
cortex to the electrodes of the brain sensor. During its travel,
the signal may have been attenuated or dampened as a result
of traveling through many brain regions before reaching the
brain sensor’s electrodes. It is very likely that the more head
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hair a participant had, the more attenuated or dampened the
signal was when reaching the electrodes of the brain sensor.

IV. CONCLUSION AND FUTURE WORK

This paper has presented a system capable of detecting the
mood and memory performance of humans. A discussion
of the mood and memory performance algorithms, data
processing, resting heart rate, heart rate variability, and the
valence/arousal model, was given in Section 2. Section 3
described the testing procedure and a discussion on only part
of the results of the experiment was formed in order to respect
the paper’s length.

This application can be a first step in mental health
evaluation, and, as we know, it is up to the patient to take
the right decisions so that meaningful changes in health and
lifestyle can be made.

To increase the accuracy of mood and memory detection
in the future, we could use more external sensors such as
skin sensors and infrared sensors (infrared camera to measure
body temperature), all of which are connected via Bluetooth
Low Energy or another protocol to a smartphone, tablet,
or other electronic device. Although mood and memory
evaluation from heart and brain sensors is accurate, it does
not provide enough information on all body activity such
as skin (perspiration), arms and legs (motion), and back
(posture). The algorithms on mood and memory detection
could be more refined and accurate and, when combined with
the multiple external sensors, could be used to detect a bigger
range of emotions. To evaluate memory, we could use more
sophisticated devices such as fMRI (Functional Magnetic
Resonance Imaging) and MEG (Magnetoencephalography)
to get a better view of brain activity. In order to acquire such
devices, experience and funding would be required.

Mood and memory evaluation devices have become very
popular with the expansion and improvement of technology.
The field of mood detection and memory evaluation can
be expected to grow and evolve thanks to researchers and
developers who seek to improve quality of life by introducing
new devices and systems that help raise awareness of individ-
uals’ health and well-being. We hope that our contribution
can make difference in many fields of study, especially in
computer engineering, biomedicine, mental health and other
medical specialties.
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