
(Inter)facing the Business

(Industry Paper)

Alexander Hagemann

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: hagemann@hhla.de

Gerrit Krepinsky

Hamburger Hafen und Logistik AG
Bei St. Annen 1

20457 Hamburg, Germany
Email: krepinsky@hhla.de

Abstract—Over the past decades, a change from singular main-
frame applications into complex distributed application land-
scapes has occured. Consequently, the execution of business
processes takes place in a distributed manner, requiring an ex-
tensive amount of communication between different applications.
It becomes apparent that application interfaces are of overall
significance within distributed application landscapes. But in our
experience, interfaces usually do not get the required attention
during construction, which is in contrast to their importance.
Instead, only technical descriptions, e.g., syntactical descriptions,
are given and important functional as well as operational aspects
have been omitted leading to unstable and unneccesary complex
interfaces. To address the aforementioned problems, this paper
contributes a comprehensive overview on interface construction.
Therefore, all necessary interface specification components, an
interface design process and operational migration patterns are
given.

Keywords–interface; business process; interface design; inter-
face migration; distributed systems.

I. INTRODUCTION

In recent years, growing business demands enforced an in-
creasing information technology (IT) support of many business
processes. To rule the resulting functional complexity within
the IT, several applications are usually necessary. A direct con-
sequence of this fragmentation is the distribution of business
processes over applications which have to communicate with
each other in order to fulfill the requirements of the business
processes. This communication requires well defined interfaces
between these applications.

Generally, the design of application interfaces is a difficult
and critical task [1], [2], since the behavior of applications
belonging to the class of reactive systems, i.e., applications
responding continuously to the environment, is determined
by their interfaces only [3]. Consequently, badly designed
interfaces may lead to functional misbehavior and may prop-
agate internal application problems directly to communication
partners [4], [5]. Furthermore, interfaces have relatively long
life-cycles and are usually costly to modify. A change of
an interface specification always requires either its backward
compatibility, or a change of all implementing applications,
leading to further problems while launching the new interface
into an already running application landscape [6].

Within the literature, a lot of information exists regarding
different aspects of interfaces like performance, reliability,

routing etc. Typically, these documents either deal with tech-
nical protocols only and omit functional interface properties,
e.g., the internet protocol [7] or the Blink Protocol [8], or
are bound to specific functional domains like the Financial
Information eXchange [9] or the FIX Adapted for Streaming
[10] protocols. But none of them gives explicit guidelines for
an interface design. Other common approaches like service
oriented architectures (SOA) [11] or the representational state
transfer (REST) [12] represent rather general architectural
styles. Both are more suitable giving architectural guidelines
for application design, than for the construction of concrete
interfaces.

To overcome the above mentioned problems, an approach
to construct a consistent interface specification, allowing a
regulated communication using stable, understandable and
performing interfaces, and its transition into operation will
be presented in this paper. Beginning with an overview of
all required components to fully specify an interface in Sec-
tion II, Section III introduces and compares different design
approaches for the construction of interface specifications.
Finally, Section IV deals with the interface launch into an
already running application landscape.

II. INTERFACE BASICS

In order to design an appropriate interface, the general
structure of an interface must be considered. Once this has
been done, it will become obvious which information must be
provided to define an interface.

Drilling down into an interface, which is located in the
application layer in the Open Systems Interconnection model
(OSI model) [13], typically, a three layered structure, as
shown in Figure 1, becomes visible. Each of these layers
has a dedicated important purpose that can be summarized
as follows:

• functional layer: this topmost layer is responsible for
the functional semantics of the information exchanged.
Using the analog of natural speech, the functional
layer defines the meaning of words spoken.

• protocol layer: Within this layer the technical protocol
used to exchange the information is defined. Similar
to natural speech, the protocol layer represents the
language spoken, e.g., English.

• transport layer: Here, the necessary physical trans-
portation of the information is carried out. This layer

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Figure 1. The different layers of an interface. Dotted arrows denote virtual
connections within each layer. The communication takes part using the

connections denoted by solid arrows.

correlates to the signal transfer using sound waves in
a manner similar to natural speech.

Each of these layers communicates logically directly with
its counterpart located at the other application. Therefore, a
layer physically passes the information to its underlying layers
until the information is physically transported to the other
application. At this point, the information is passed upwards
up to the corresponding layer. Only if both sides within one
layer use identical functional models or transmission protocols,
respectively, communication will take place. Otherwise, the
communication is broken.

Given the layered structure of an interface, different aspects
arise which must be considered during the design, imple-
mentation, integration and operational phases of an interface
lifecycle. These aspects focus on different issues and enable the
development of robust interfaces. All aspects are independent
with respect to each other, focusing on a specific property an
interface must satisfy.

A. Functional aspect
While two or more applications are communicating with

each other over an interface, the applications assume different
functional roles, called server and client, respectively.

An application is called server with respect to an interface
if it is responsible for the business objects, business events and
related business functions that are exposed to other applications
through this interface. If business objects and business func-
tions of different business processes are affected, the necessary
access messages may be combined into a single interface.

Providing an interface is equivalent to defining an interface
contract [6] that must be signed by an application in order
to communicate with the server. The interface may support
synchronous and asynchronous communication as well as
message flows in both directions, i.e., sending and receiving
messages.

Note that this definition deviates slightly from the com-
monly used client-server definition where the server offers a
service which can be accessed by clients via a synchronous
request-reply communication protocol only [14]. Because syn-
chronous communications couples server and client tightly
at runtime, asynchronously based communication should be
preferred, avoiding these disadvantages [15].

A client is an application consuming an interface provided
by a server. Despite the fact that the interface contract is
initially defined by the server, a common agreement on the
contract is made when the client connects to the server.

Thereafter, none of the participating applications may change
the interface contract without agreement of the other party.

Often an application assumes multiple roles with respect
to different interfaces concurrently, i.e., the application can be
server and client simultaneously. It is important to emphasize
that this behavior is valid with respect to different interfaces
only while for a single interface, the roles of the participating
applications are always unambiguous.

B. Semantical aspect

The semantical aspect focuses on the kind of information
that may be exposed by the server via an interface. Generally,
any internal implementation detail of the server, i.e., the server
model, must never be exposed on an interface. Instead, the
information exposed must always be tied to the underlying
business processes, thus binding the interface implementation
to the domain model [6], [16].

Integration within an IT application landscape requires the
decoupling of business and software design due to different
responsibilities. In other words the business model and the
software model usually have different life cycles which must
be decoupled to reduce the dependencies between business and
software developers. Therefore, an integration model, linked to
the domain model, should be used on interfaces thus binding
their implementation to the domain model [16]. The integration
model finally conceals all internal application models and
details.

An interface itself consists of a set of messages, containing
business objects or business events only [17]. This set of
exposed information is naturally restricted due to the respon-
sibility of the server, i.e., only the business objects or business
events the server is responsible for may be communicated via
the interface.

C. Dynamical aspect

An important aspect of an interface is its dynamical behav-
ior describing all valid message sequences on the interface.
Since all messages received are processed within a specific
context inside the application, there exist important constraints
with respect to the message sequence. Thus, a message re-
ceived out of sequence will not be processed by the application,
instead this will result in an error.

Figure 2. Example of a simplified state machine describing the dynamical
behavior of an interface.

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Consequently, the dynamical behavior must be described
using an appropriate description. Using sequence diagrams of
the Unified Modelling Language (UML) is not sufficient for
this case, since they describe specific communication examples
only. Especially runtime problems, e.g., race conditions, can
not be described holistically using sequence diagrams. Instead,
it is strongly recommended to use finite state machines which
allow a complete description of the dynamical behavior, see
Figure 2 for an example.

D. Operational aspect

Usually, each interface requires the usage of specific infras-
tructure depending on the used transmission protocol, e.g., a
web server in case of REST over Hypertext Transfer Protocol
(HTTP) or a Java Messaging Service (JMS) server. To ensure
the correct usage of an interface the required infrastructure,
its deployment and the message channel topology must be
defined. The latter one defines the communication structure,
i.e., broadcast or point-to-point communication [15].

E. Interface components

Given the different aspects presented so far, each of them
describing a different important issue with respect to interfaces,
the necessary components for a complete interface specifica-
tion can be derived:

• message description: Syntactical descriptions of all
messages exchanged over the interface.

• dynamic description: The dynamic behavior of the
interface must be fully specified. This specification
includes all possible message sequences and the be-
havior of the applications in case of errors.

• semantic description: The meaning of messages on
the interface must be specified, i.e., their functional
behavior within the comprehensive business process.
This description must include the meaning of all
individual message fields.

• infrastructure description: A description of the neces-
sary infrastructure must be provided.

• quantity description: The non-functional performance
requirements for the interface must be described.

It is important to notice that an interface specification is a
signed bilateral contract, which may be changed by mutual
agreement of all participating parties only. This contract is
represented by the set of artifacts as described above, so none
of the artifacts given there may be missed.

III. INTERFACE DESIGN STYLES

The main problem to be solved in interface design concerns
the intended functional semantic on the interface. It directly
influences the kind of service offered by the server and
therefore the necessary number and style of all messages.

Looking at existing interfaces, they can be categorized to
our experience by their semantic design styles: CRUD based
interfaces, use case based interfaces and business process based
interfaces, each of them described in detail in the following
sections.

A. CRUD based design
The Create, Read, Update, Delete (CRUD) based design

directly uses the business objects described within the require-
ments and ignores any given business context. This results in
interfaces consisting of a minimal set of messages, representing
a set of CRUD messages for every business object the server
is functionally responsible for. Besides the advantages of
requiring very little design efforts and being very stable, this
interface design style has some important disadvantages.

First, the interface bears absolutely no business context,
leading to severe difficulties in understanding the underlying
business processes [1]. Second, the read operation demands
synchronous communication which represents an explicit con-
trol flow leading to a tight coupling of applications [4], [17]
and third, missing business context either leads to a distribution
of business functions over the clients or to business objects
incorporating the results of applied business functions.

B. Use case based design
An interface design based on use cases rests upon require-

ments formulated from the perspective of the primary actors
for individual systems only [18], i.e., the underlying business
process is not directly present. Due to the characteristics of use
cases, describing non-interrupted interactions with the system
[19] that represent the view of the primary actor [18], these
requirements are limited to the context of single activities
which are typically independent with respect to each other.
A representation of the underlying business process triggering
the desired activities is missing and therefore difficult to
reconstruct.

These preconditions usually lead to rather fine granular and
use case oriented interfaces comprising of a large number of
messages, carrying specific use case based information only.
Some important consequences arise from this design style.
First, all business functions that are identical from the business
process point of view, are hard to identify based on a use case
analysis only. The absence of a business context leads to an
interface design supporting individual use cases, which bear
no evident business process semantics. Consequently, these
interfaces usually offer a broad range of identical function-
alities named differently. Second, the missing business context
significantly increases the difficulty to understand the func-
tional behavior of the interface over time [1], leading to serious
problems in its usage. As a consequence, further unnecessary
messages are often introduced in order to provide some use
case specific information. Third, the lower level of abstraction
of a use case - compared to the business process - leads to
a rather fine granular interface structure. Performance issues
may arise with this interface style due to the enforced frequent
interface access [15]. And fourth, synchronous communication
often arises in order to collect all necessary information to
execute the use case, so a control flow arises [17] leading,
again, to a tight coupling of applications [4].

Note, that using a use case based design must not lead
compulsorily to a bad interface design. But given the size
of current applications with their numerous use cases and
the typical usage of distributed programming teams within
industrial projects, the necessary refactoring to introduce an
appropriate abstraction on the interface is usually omitted in
our experience.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

C. Business process based design
This design uses business process descriptions and further

requirements formulated with respect to those descriptions,
to align between individual business process activities and
applications. Using the Business Process Model and Notation
(BPMN) and representing applications via pools, interfaces can
be directly derived from the exchanged information between
individual business activities within the pools.

The resulting interfaces focus on business semantics and
directly support objects, events and functions of the business
processes, thus leading to a business model directly bound to
the interfaces [16] with following consequences.

Business processes support a high level of abstraction, thus
leading to rather coarse granular interfaces with respect to the
number of messages. The communication is driven by business
events, so asynchronous communication is naturally supported,
leading to data flows [17]. Finally, the functionality provided
by the server within the business processes becomes rather
clear, i.e., the business context is represented on the interface.

D. Design example
To explain and clarify the differences between these design

styles, the simplified process of loading a truck at a container
terminal will serve as an example throughout this section. This
process consists of the following steps, executed in the given
order:

• order clearance: the customer gives an order to the
container terminal to load a container on a truck.

• load clearance: in order to deliver the container,
several clearances must be given, e.g., by customs and
the container owner.

• transport planning: the container terminal plans the
necessary equipment to execute the order.

• load container: the container is loaded on the truck
using the planned equipment.

Two applications shall be constructed in order to implement
the process: the Administration, dealing with the administrative
parts of the process, and Operating, handling the physical
transport of the container. An interface between both applica-
tions will be designed according to the design style considered,
thus showing the differences between the design approaches.

1) CRUD based design: All relevant business objects of
the truck loading process are represented as classes which have
methods to create, read, update and delete the object. These
methods represent the interface of the owning application, i.e.,
the server, and are called by the clients, in order to execute
the business process.

For example, after creating an order using
createOrder(), the Administration calls
createInstruction() to start the loading
of the container on a truck. Subsequently, Op-
erating calls readCustomsClearance() and
readReleaseOrder() to check if the container is
released to be loaded on a truck. The corresponding return
objects must be interpreted within Operating to make this
decision. If the container has been loaded, Operating finally
calls deleteOrder(), deleteCustomsClearing()
and deleteReleaseOrder() to clear the Administration.

Figure 3. Constructed interface (right) resulting from applying the use case
based design approach.

It becomes clear that both applications, i.e., Administration
and Operating must implement some part of the underlying
business logic to deal with these type of interfaces. Since
the interface style bears no business semantics, the underlying
business process cannot be reconstructed easily. Note that the
size of the interface directly depends on the number of business
objects the server is responsible for.

2) Use case based design: Based on the requirements of
the truck loading process, corresponding use cases like order
clearance or create instruction can be derived, as shown in
Figure 3. Each of these use cases handles a specific functional
aspect with respect to its primary actor. The underlying busi-
ness process is executed through a set of use cases interacting
with each other.

For example, if an order has been given, Administration
calls createTruckLoadInstruction() to initiate the
container transport. Prior to loading, Operating checks the
container release status, using isCustomsCleared() and
isContainerReleased(). If the container has been re-
leased, it is loaded on truck and Operating informs Administra-
tion via containerLoadedOnTruck() that the order has
been executed. Administration may then clean up its internal
data structures.

As depicted on the right side of Figure 3, the resulting
interface contains a lot of methods for specific actions, i.e., the
level of abstraction is rather low. Consequently the interface is
valid for truck operations only and would require a couple
of additional methods to incorporate e.g., vessel and train
operations.

Furthermore the interface introduces syn-
chronous communication, as indicated by, e.g.,
the method pairs isCustomsCleared() and
customsClearanceResult(), leading to a blocking of
Operating while accessing the information.

3) Business process based design: In this case, the business
process itself serves as basis for interface design. Using
BPMN, the process of truck loading can be mapped onto the
applications as shown on the left side of Figure 4. Due to the
given high level of abstraction within the business process, it
is valid for all types of carriers, i.e., no further messages are
necessary to include vessel and train operations.

Once an order has been given, Administration informs
Operating via orderPlaced() that a new order has been

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Figure 4. Constructed interface (right) resulting from applying the business
process based design approach.

accepted. Within Operating, all necessary instructions for con-
tainer loading will be created. Once the truck has arrived and
Administration has published via containerReleased()
that the container is released to be loaded on a truck, the phys-
ical moves are executed. Afterwards, orderExecuted()
informs Administration, to clean up its internal data structures.

The dynamical behavior of the interface can be derived
directly from the BPMN description, see left side of Figure 4.
The resulting interface is quite small, meaningful and abstract,
so other carriers can easily be included. Additionally, the com-
munication between both applications is asynchronous. Note
that both applications, Administration and Operating, do not
technically depend on each other, instead they simply publish
their information without knowing the receiver, resulting in a
data flow [17].

E. Comparison
To give a recommendation for a specific interface design

style all design approaches described above have been com-
pared to each other using typical interface design goals like
robustness, performance and understandability [1].

1) Robustness: Interfaces are crucial with respect to the
stability of the overall application landscape. Poorly designed
interfaces may propagate internal application errors during
runtime, thus causing damage within other applications [4],
[1]. Robustness is achieved by avoiding functional distribution,
distributed transactions [5] and semantical ambiguity.

In case of a CRUD interface, the information provided by
the interface must be functionally interpreted by the client
since the server informs about changes on business objects
only without any functional context. This leads to multiple and
distributed implementations of business functions according to
the usage of the interface. In contrast, the use case and business
process based design styles can both concentrate the business
functions within the server, so no functional distribution will
arise.

In general, distributed technical transactions can be avoided
in all three design approaches. But modelling a control flow
instead of a data flow bears a higher risk of introducing
distributed transactions within the application landscape, due
to the usage of synchronous communication.

None of the design approaches specifically supports the

construction of an efficient message field structure nor pro-
hibits the introduction of content based constraints.

2) Performance: Obviously, interfaces must satisfy the
required performance, i.e., they must be able to deal with the
given quantity description. Otherwise, the business process will
not work correctly since required business functions may not
be executed in time. Performance is supported by designing
minimal interfaces with respect to the number of messages
and avoiding synchronous communication [3], [15].

The more abstract the interface is, the less messages are
needed due to the restriction of transmitting core concepts only.
With a CRUD based design, the most abstract design is chosen
while a use case based design includes relatively less functional
abstraction.

Asynchronous communication is usually directly supported
in the business process based design, while the other two
approaches support a rather synchronous communication style.
This holds especially for the CRUD based design, where the
read() operation always enforces synchronous communica-
tion.

3) Understandability: Well designed interfaces must have
a strong and documented relation to the underlying business
context [1] thus ensuring a good usability of the interface.
This will enhance the cost efficiency of the interface over
time since a much better acceptance of the interface within
the development teams will arise because the interface will be
easier to learn, remember and use correctly [1].

Understandability is given by a strong functional binding
between the business model and the implementation [16], the
usage of business objects and business events as message
content [3], [15] and a meaningful message naming schema.

Naturally, a business process based design leads to a direct
mapping between interface and business process description
thus enriching the interface with a comprehensive business
context. On the contrary, a CRUD based design bears no
business context at all due to its high level of abstraction.

Although all three approaches directly support the ex-
change of business objects, differences occur considering the
publication of business events. A CRUD based design supports
none of them per se, i.e., this approach forces a mapping
of business events onto business objects. This will lead to
serious problems in understanding the dynamical behavior
of the application landscape. Using a business process based
design instead, the published business events can be directly
derived from the underlying business process. In contrast, a use
case based design does not primarily focus on business events
but on individual user operations thus obscuring the business
context.

While the business process and the use case based designs
both support message naming schemas providing a rich func-
tional context, a CRUD based design uses only the given names
for create, read, update and delete messages.

4) Recommendation: Considering the above mentioned
desgin goals and the important advantage of supporting a
direct binding between business model and interface design,
the business process based design is the recommendated design
style for interfaces, leading to the best design compromise.

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

IV. INTERFACE OPERATIONS

Complex application landscapes require the rollout of
interface changes without shutting down all applications. To
achieve this goal interfaces must be versioned and deployed
during runtime, using the migration patterns described below.

A. Interface versioning
Every interface specification evolves over time due to

syntactic, semantic or dynamic changes on the interface. These
changes lead to different versions of the interface specification
which are not compatible to each other. Therefore, the imple-
menting applications must implement the correct version of the
interface specification. In a complex application landscape, this
is a common situation [6].

In order to guarantee a unique identification of a specific
interface occurrence over time, each individual interface oc-
currence must have a version number [6]. Any change on an
interface leads to a new interface version [6]. This includes
syntactical changes in any message, changes within the mes-
sage sequence flow, i.e., all changes of the dynamic behavior,
and changes of the semantic behavior. Even the obviously
simple cases of adding either a field to an existing message
or introducing a new message to an interface represents a
semantical change of the interface. This requires compatibility
of the receiving application with the new interface specification
version. Otherwise, severe problems may arise, if, e.g., a
client executes syntactical message checks based on a specific
interface version.

B. Big bang migration pattern
The simplest approach of an interface migration is big

bang, where all applications are shutdown, redeployed and
restarted at the same time, resulting in

1 + c (1)

migration steps, where c denotes the number of participating
clients. In case of a fallback, the server and all clients must
be redeployed again.

C. Client first migration pattern
Within this pattern, the migration path is dominated by

the clients. Each client will be successively migrated onto a
new version that can handle both interface versions in parallel,
as shown in Figure 5. In steps 1 and 2, the clients are
changed to support additionally the new interface specification
version. In step 3, the server is merged to the new interface
implementation. Steps 4 and 5 are necessary to remove the
support of the previous interface specification version from
the clients.

After finishing all client migrations, the server will be
upgraded to support the new interface version. Afterwards, all
clients will be updated a second time in order to remove the
support of the old interface version. During steps one to four
of this migration path, the server will receive messages with a
wrong interface version that must be ignored by the server.

The client first migration pattern will result in

1 + 2 ∗ c (2)

deployments, where c denotes the number of clients connected
to the server. An advantage of this migration path is that

Figure 5. Steps of the client first migration pattern. The new interface
version is denoted red.

clients can be upgraded independently from each other, i.e.,
no temporal coupling of the individual client migrations exist.

The price for this migration behavior is the necessary
number of deployments : each client must be deployed two
times, while the server is deployed only once. Furthermore, in
case of a failure, the operational safe position of step 2 must
be reached again. This is done by falling back with the server
supporting the old interface version only and all clients whose
support of the old interface version has been removed so far,
requiring

1 + c+ (3)

steps, where c+ denotes the number of clients migrated after
the server migration.

D. Server first migration pattern
In contrast to the client first migration approach, the

migration path can be reversed resulting in a server migration
first followed by client migrations, see Figure 6. At step 1,
the server provides support for two interface specification
versions. In steps 2 and 3, both clients are merged successively.
Finally, support of the previous interface specification version
is removed from the server implementation, resulting in

2 + c (4)

deployments. Again c denotes the number of participating
clients. The advantage of this pattern is, that the number of
deployments is

(1 + 2 ∗ c)− (2 + c) = c− 1 (5)

less than with the client first migration pattern. Note that during
steps one to three of the migration path both clients A and B
will receive invalid messages, which must be ignored, due to
the concurrent interface version support of the server.

If a failure on the interface occurs within the migration
path, all clients upgraded so far must fall back onto the
previous interface version using c+ rollout steps, where, again,
c+ denotes the number of clients migrated after the server
migration. Thus, the operational safe position of step 1 is
reached again.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

Figure 6. Steps of the server first migration pattern.

E. Comparison
The main differences between the migration patterns are

the number of rollout and fallback steps and the required
support of multiple interface versions within the applications.
Beside the advantages of a lacking necessity to support multi-
ple interface versions and a minimal number of rollout steps,
the big bang pattern bears a high risk during fallback situations
where multiple applications must fallback in parallel. There-
fore, this pattern is only recommended if the number of clients
is very small and a simultaneous fallback is organizational
manageable.

Considering the other strategies, both migration patterns
reduce the risk involved with a possible fallback compared to
big bang at the cost of some additional rollout steps. Since
the server first migration pattern requieres less rollout and
fallback steps than the client first migration pattern, it is the
recommended rollout strategy.

V. SUMMARY

Due to the growing distribution of business functionality,
interfaces have became very important for the behavior of
an application landscape. Badly designed interfaces have a
critical impact on the functional and operational behavior. To
overcome these problems, this paper presented a structured and
holistic approach of handling interfaces during design, build
and runtime as follows.

Interfaces serve as contracts between applications. Thus
it is inevitable to define the artifacts message description,
dynamic description, semantic description, infrastructure de-
scription and quantity description to properly describe an
interface with respect to the different aspects. In order to
construct an interface, different design approaches have been
presented and compared to each other. It turns out that the
business process based design approach is most likely leading
to the best result with respect to robustness, performance and
understandability. Finally, different migration patterns have
been presented introducing a new interface version into pro-
duction environment. Due to the minimal number of required
fallback steps in case of a severe error and one additional
rollout step compared to the big bang pattern the server
first migration pattern is recommended, at least for larger
application landscapes.

ACKNOWLEDGMENT

The authors would like to thank their colleague Christian
Wolf for valuable comments.

REFERENCES
[1] M. Henning, “API Design Matters,” ACM Queue Magazine, vol. 5,

2007.
[2] J. Bloch, “How to Design a Good API and Why it Matters,” 2006, URL:

http://landawn.com/How to Design a Good API and Why it Matters.pdf
[accessed: 2016-06-08].

[3] R. J. Wieringa, Design Methods for Reactive Systems. Morgan
Kaufmann Publishers, 2003, ISBN: 1-55860-755-2.

[4] M. Nygard, Release It!: Design and Deploy Production-Ready Software.
O’Reilly, Apr. 2007, ISBN: 978-0978739218.

[5] U. Friedrichsen, “Patterns of Resilience,” 2016, URL:
http://de.slideshare.net/ufried/patterns-of-resilience [accessed: 2016-06-
06].

[6] B. Bonati, F. Furrer, and S. Murer, Managed Evolution. Springer
Verlag, 2011, ISBN: 978-3-642-01632-5.

[7] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Speci-
fication,” The Internet Society, Specification, 1998.

[8] “Blink Protocol,” 2012, URL: http://blinkprotocol.org/ [accessed: 2016-
06-06].

[9] “Financial Information eXchange,” 2016, URL:
https://en.wikipedia.org/wiki/Financial Information eXchange
[accessed: 2016-06-06].

[10] “FAST protocol,” 2016, URL: https://en.wikipedia.org/wiki/FAST protocol
[accessed: 2016-06-06].

[11] “Service-oriented architecture,” 2016, URL:
https://en.wikipedia.org/wiki/Service-oriented architecture [accessed:
2016-06-08].

[12] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” dissertation, University of California, Irvine,
2000.

[13] H. Kerner, Rechnernetze nach ISO-OSI, CCITT. H. Kerner, 1989,
ISBN: 3-900934-10-X.

[14] “Client-server model,” 2016, URL: https://en.wikipedia.org/wiki/Client-
server model [accessed: 2016-03-03].

[15] G. Hohpe and B. Woolf, Enterprise Integration Patterns. Addison-
Wesley, 2012, ISBN: 978-0-133-06510-7.

[16] E. Evans, Domain Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004, ISBN: 0-321-12521-5.

[17] R. Westphal, “Radikale Objektorientierung - Teil 1: Messaging als
Programmiermodell,” OBJEKTspektrum, vol. 1/2015, 2015, pp. 63–69.

[18] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001,
ISBN: 978-0-201-70225-5.

[19] B. Oestereich, Objektorientierte Softwareentwicklung: Analyse und
Design mit der UML 2.0. Oldenbourg, 2004, ISBN: 978-3486272666.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-497-8

FASSI 2016 : The Second International Conference on Fundamentals and Advances in Software Systems Integration

