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Abstract—Modern engineering design optimization often re-
places laboratory experiments with computer simulations, re-
sulting in what is commonly termed as expensive black-box
optimization problems. In such problems, there will often exist
candidate solutions which ‘crash’ the simulation and can thus
lead to search stagnation and to a poor final result. Existing
approaches to handle such solutions include discarding them alto-
gether or assigning them a penalized fitness, but such approaches
have significant demerits. Accordingly, this paper explores the
fusion of a classifier into the optimization search to predict
which solutions are expected to crash the simulation, and uses
a modified objective function to bias the search towards valid
ones, namely, which are expectednot to crash the simulator.
The further improve its performance, the proposed algorithm
also continuously selects during the search an optimal type of
classifier out of a family of candidates. To ensure the progress of
the optimization search, it also employs a trust-region approach.
Performance analysis using a representative real-world shape
design optimization test case shows the efficacy of the proposed
algorithm.

Keywords-expensive optimization problems, computational in-
telligence

I. I NTRODUCTION

In the modern design process, engineers often replace labo-
ratory experiments withcomputer simulations. This transforms
the design process into an optimization problem having three
distinct characteristics [20]:

• The simulation acts as the objective function, assigning
candidate designs their corresponding objective values.
However, the simulation is often a legacy or a commer-
cial code available only as an executable, and so there
is no analytic expression for this “objective function”.
Accordingly, it is referred to as ablack-box function, and
requires using gradient-free optimizers.

• Each simulation run iscomputationally expensive, that
is, having a lengthy execution time, and this severely
restricts the number of evaluations allowed during the
optimization search.

and

• Often, both the underlying physics being modelled, and
the numerical simulation, may result in a complicated,
multimodal objective landscape, which makes it difficult
to locate an optimum.

A promising optimization strategy for such expensive black-
box problems is to couple a computational intelligence (CI)
optimizer, which is gradient-free and handles complicated
landscapes well, withmodels, namely, mathematical approx-
imations of the true expensive objective function, but which
are significantly cheaper to evaluate. During the optimization,
the model replaces the expensive function (simulation), and
economically provides the CI optimizer with approximate
objective values.

While this approach works well, in practise another dif-
ficulty arises, as often some candidate solutions will cause
the simulation to fail. We refer to such vectors assimulator-
infeasible(SI), while those for which the simulation completes
successfully and provides the objective value aresimulator-
feasible(SF). SI vectors have two main implications for the
optimization problem: a) as they do not have an objective
value assigned to them, since the simulation has crashed, the
objective function becomes discontinuous, which increases the
optimization difficulty, and b) they can consume a large portion
of the limited number of calls to the expensive simulation
without providing new information to the optimizer, thus
potentially leading to search stagnation and a poor final result.
Numerous papers, for example [1, 15, 16], have mentioned the
difficulties SI vectors introduce, and so it is important effec-
tively to handle them. Common strategies include discarding
them altogether, or incorporating them into the model with
a penalized fitness. However, both of these strategies have
significant demerits, for example, they discard information
which can be beneficial to the search, or they result in a model
with a severely deformed landscape.

Accordingly, to effectively handle such SI vectors in
model-assisted optimization, this paper explores the fusion of
a classifier into the optimization search, and offers two main
contributions. First, a classifier is used to predicts if a new
vector is SI or not, and the proposed algorithm then combines
this prediction with the model’s prediction to bias the search
to vectors predicted to be SF via a dedicated modified
objective function. Second, to further enhance performance,
the proposed algorithm continuously selects during the search
an optimal classifier type from a family of candidates. To
ensure convergence to an optimum of the true expensive
function, the proposed algorithm also employs a trust-region
(TR) approach. Performance analysis using an engineering
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design application of airfoil shape optimization shows the
efficacy of the proposed algorithm. The remainder of this
paper is as follows: Section II describes existing approaches
and open challenges in handling SI vectors, Section III
describes the proposed algorithm and Section IV gives a
detailed performance analysis. Lastly, Section V summarizes
this paper.

II. EXISTING APPROACHES ANDCHALLENGES

As mentioned in Section I, SI vectors are a common in
simulation-driven optimization problems, and numerous stud-
ies mention their existence and the difficulties they introduce,
for example [1, 5, 12, 15, 16].

As such vectors are both common in real-world applications,
and pose the risk of hampering the optimization search,
several approaches have been proposed to handle them. In
reference [17], the authors used an evolutionary algorithm
(EA) as the optimizer and proposed using a classifier to screen
vectors before evaluating them. Those predicted to be SI were
assigned a ‘death penalty’, that is, a fictitious and highly
penalized objective value, to quickly eliminate them from the
population. The study did not consider models, and the EA
evaluated the expensive function directly. In a related approach
described in reference [5], severely penalized SI] vectorsand
incorporated them into the model in order to bias the search
away from them. Alternatively, in reference [1] the authors
proposed to completely discard SI vectors from the training
set of the model.

However, within the domain of model-assisted optimization
such approaches suffer from several shortcomings: a) assign-
ing SI vectors a fictitious penalized objective value and then
incorporating them into the training set can result in a model
with a severely deformed landscape, while b) excluding SI
vectors altogether discards information which may be ben-
eficial to the optimization search. As an example, Figure 1
compares two Kriging models of the Rosenbrock function:
(a) shows a model trained using 30 vectors which were all
SF, while (b) shows the resultant model when the sample was
augmented with 20 SI vectors which were assigned a penalized
fitness, taken as the worst objective value from the baseline
sample. The resultant model has a landscape which is severely
deformed and contains many false optima, making it difficult
to locate an optimum of the true objective function.

Such issues have motivated alternative approaches to handle
SI vectors in model-assisted optimization. For example, in
reference [19] the authors proposed a dual model approach,
where one model interpolated the objective function and
the other interpolated the penalty value between SF and SI
vectors. Other studies have explored the use of classifiers
for constrained non-linear programming (not focusing on SI
vectors), for example reference [6]. Further exploring the
use of classifiers, reference [21] presented preliminary results
with a classifier-assisted algorithm for handling SI vectors.
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Fig. 1. Kriging models of the Rosenbrock function trained using: (a) a
baseline sample of 30 vectors all SF, and (b) the baseline sample augmented
with 20 SI vectors which were assigned the worst objective value from the
baseline sample.

III. PROPOSEDALGORITHM

To address the issues introduced by SI vectors, as discussed
in Section I and Section II, this paper proposes a model-
assisted CI algorithm which incorporates a classifier into the
search. To further improve the search efficacy, the algorithm
continuously selects during the search an optimal type of
classifier, out of a prescribed family of candidates. To ensure
convergence to an optimum of the true expensive function,
the algorithm also employs a TR approach. The following
sections describe the model, the candidate classifiers, the
classifier selection stage, and lastly, the overall workflowof
the algorithm.

A. Modelling

As mentioned, the proposed algorithm uses a model to
approximate the true expensive objective function. The algo-
rithm does not impose any restrictions on the model type,
and in this study the well-established Kriging model was used
[11]. This model takes a statistical approach to interpolation
by combining two components: a ‘drift’ function, which is a
global coarse approximation to the true expensive function,
and a local correction based on the correlation between the
interpolation points. Given a set of evaluated vectors,xi ∈R

d ,
i = 1. . .n , the Kriging model is trained such that it exactly
interpolates the observed values, that is,m(xi) = f (xi) , where
m(x) and f (x) are the model and true objective function, re-
spectively. Using a constant drift function, as in reference [11],
gives the Kriging model

m(x) = β +κ(x) , (1)

with the drift functionβ and local correctionκ(x) . The latter
is defined by a stationary Gaussian process with mean zero
and covariance

Cov[κ(x)κ(y)] = σ2
R(θ ,x,y) , (2)

whereR is a user-prescribed correlation function. A common
choice for the correlation is the Gaussian function [11], which
is defined as

R(θ ,x,y) = Πd
i=1exp

(

−θ (xi −yi)
2) , (3)
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and combining it with the constant drift function transforms
the model from Equation (1) into the following form

m(x) = β̂ + r(x)TR−1(f −1β̂ ) . (4)

Here, β̂ is the estimated drift coefficient,R is the symmetric
matrix of correlations between all interpolation vectors,f is the
vector of objective values, and1 is a vector with all elements
equal to 1.rT is the correlation vector between a new vector
x and the sample vectors, namely,

rT = [R(θ ,x , x1), . . . ,R(θ ,x , xn)] . (5)

The estimated drift coefficient̂β and variancêσ2 are obtained
from

β̂ =
(

1TR−11
)−1

1TR−1f , (6a)

σ̂2 =
1
n

[

(f −1β̂ )TR−1(f −1β̂ )
]

. (6b)

Fully defining the model requires the correlation parameter
θ , which is commonly taken as the maximizer of the model
likelihood. In practise, maximizing the model likelihood is per-
formed by minimizing the negative logarithm of the likelihood,
which is given by

L =−
(

nlog(σ̂2)+ log(|R|)
)

. (7)

B. Candidate Classifiers

Given a set of input vectors with correspondinglabels, that
is, indices assigning them to a group, the goal of a classifieris
to map a new input vector into one of the existing groups based
on some similarity between the new and existing vectors [23].
Mathematically, given a set of vectorsxi ∈R

d , i = 1. . .n , with
corresponding class labels, for example,F(xi) ∈ I= {−1,1} ,
a classifierc(x) is the mapping

c(x) : Rd → I . (8)

The proposed algorithm puts no restriction on the number
or the type of candidates classifiers, and in this study we used
three well-established classifier variants [23]:

• nearest neighbour(NN): The classifier assigns the new
vector the class of the nearest training vector, designated
xNN , where the latter is determined by a distance measure
such as thel2 norm, namely,

c(x) = F(xNN) :

d(x,xNN) = min
i=1...n

d
(

x,xi
)

.
(9)

An extension of the approach, termedk nearest neigh-
bours (k-NN) assigns the class most frequent among thek
nearest neighbours. In this study the classifier usedk= 3 .

• linear discriminant analysis(LDA): In a two-class prob-
lem, where the class labels areF(xi)∈ I= {−1,+1} , the
classifier attempts to model the conditional probability
density functions of a vector belonging to each class,
where the latter functions are assumed to be normally dis-
tributed. The classifier considers the separation between
classes as the ratio of: a) the variance between classes,
and b) the variance within the classes , and obtains a

vector w which maximizes this ratio. The vectorw is
orthogonal to the hyperplane separating the two classes.
A new vector,x , is classified based on its projection with
respect to the separating hyperplane, that is,

c(x) = sign(w ·x) . (10)

• support vector machine (SVM): The classifier projects
the data into a high-dimensional space where it can be
more easily separated into disjoint classes. In a two-
class problem, withF(xi) ∈ I = {−1,+1} , an SVM
classifier tries to find the best classification function for
the training data. For a linearly separable training set, a
linear classification function is the separating hyperplane
passing through the middle of the two classes. Once this
hyperplane has been fixed, new vectors are classified
based on their relative position to this hyperplane, that is,
whether they are "above" or "below" it. Since there are
many possible separating hyperplanes, an SVM classifier
adds the condition that the hyperplane should maximize
the distance between the hyperplane and the nearest
vectors to it from each class. This is accomplished by
maximizing the Lagrangian

LP =
1
2
‖w‖−

n

∑
i=1

αiF(xi)(w ·xi +b)+
n

∑
i=1

αi , (11)

where n is the number of samples (training vectors),
F(xi) is the class of theith training vector, andαi > 0 ,
i = 1. . .n , are the Lagrange multipliers, such that the
derivatives ofLP with respect toαi are zero. The vector
w and scalarb define the hyperplane.

C. Classifier Selection

As mentioned, during the optimization search the proposed
algorithm continuously selects an optimal classifier out ofa
family of candidates. To accomplish this in a mathematically
rigorous way, the proposed algorithm leverages on statistical
model-selection theory and selects a classifier using anaccu-
racy estimator. Specifically, the accuracy of each candidate
classifier is estimated, and the classifier chosen is the one
having the best estimated accuracy. The procedure, termed
cross-validation (CV), proceeds as follows. A cache, which
contains vectors evaluated with the expensive function, is
split into a training setand a testing set, in a 80–20 ratio.
A candidate classifier is trained using the former set and its
prediction is tested on the latter set, where the classification
error is

e=
l

∑
i=1

(

ĉ(xi) 6= F(xi)
)

, (12)

whereĉ is the prediction of the trained classifier,xi , i = 1. . . l ,
are the CV testing vectors, andF(xi) is the true and known
class of the latter vectors, where in this studyF(xi) = 1 was
used for a SF vector, andF(xi) =−1 for a SI one. These class
labels were used as they are common in literature, for example
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[23]. As mentioned in Section III-B, in this study, the proposed
algorithm selects between three well-established classifiers,
namely k-NN, LDA, and SVM. The algorithm selects the
classifier type having the smallest prediction error, as defined
in Equation (12), and then uses all the cached vectors, namely,
both SF and SI, to train a new classifier with the selected
type, which serves as the classifier during the TR trial step,
as explained in the following section.

D. Workflow

The algorithm begins by sampling a set of vectors which
will serve as the initial training sample. The vectors are
generated using the Latin hypercube design (LHD) method
for experiments design [14], as it provides a space-filling
sample which improves the accuracy of the model. Briefly,
for a sample ofk vectors the range of each variable is split
into k equal intervals, and one point is sampled at random
in each interval. Next, a sample point is selected at random
(without replacement) for each variable, and these samplesare
combined to give a vector. This procedure is repeated fork
times to generate the complete sample. After generating the
sample, the vectors are evaluated with the expensive function
and are then cached.

The main optimization loop then begins, where the algo-
rithm first trains a Kriging model using all the SF in the
cache. It then uses the procedure described in Section III-C
to select a classifier type, and then trains a classifier usingall
the cached vectors, namely, both SF and SI, as these are two
vector classes.

Next, the proposed algorithm performs an optimization
search, and to ensure convergence to an optimum of the true
expensive function it follows the trust-region (TR) approach.
Specifically, the TR is the region where the model is assumed
to be accurate, and defined as

T = {x : ‖x−xb‖2 6 ∆} , (13)

wherexb is the best vector found so far, and is taken as the TR
centre, and∆ is the TR radius. The proposed algorithm seeks
the optimum of the model in the TR, and as the optimizer it
uses the real-coded EA from reference [2]. Since evaluating
the model is computationally cheap, the EA uses a large
population and many generations to improve its search, and
Table I gives the complete EA parameter settings. During
this optimization trial-step the EA does not use the model
predictions directly, but instead it obtains the fitness values
from the followingmodified objective function, defined as

m̄(x) =

{

m(x) if c(x) is SF

p if c(x) is SI
(14)

wherem(x) is the model prediction, andp is a penalized fitness
taken to be the worst function value from the initial Latin
hypercube (LH) sample. As such, the EA receives the model
prediction if the classifier predicts a vector is SF, but receives
the penalized fitness otherwise. In this setup, the information
about SI vectors is preserved in the classifier, but they arenot

incorporated into the model with a penalized fitness and hence
do not deform its landscape.

The optimum found by the EA, designated asx⋆ , is then
evaluated with the true expensive function at a cost of one
function evaluation, which providesf (x⋆) . Following the
classical TR framework [3], the algorithm manages the model
and TR based on the outcome of the trial step, as follows:

• A successful trial step: The trial step located a new
optimum which is better than the current best, that is,
f (x⋆)< f (xb) . Following the classical TR approach, the
new optimum is taken as the new the TR centre, and the
TR is enlarged by doubling its radius.

• An unsuccessful trial step: The trial step did not locate a
new optimum, that is,f (x⋆) > f (xb) . This can happen
since either the TR is too large, or since there are not
enough vectors in the TR, resulting in a model which
is too inaccurate. Accordingly, to gauge the accuracy of
the model, the proposed algorithm checks the number of
vectors inside the TR. This number is then compared to
the dimension of the objective function (d), as it is an
indicator to the number of function evaluations required
to estimate the gradient by finite-differences and hence
is indicative of the number of function evaluation needed
to find a new optimum. To manage the accuracy of the
model, the following steps are performed:

– If there are less thand SF vectors inside the TR: The
unsuccessful step may be since the model or classifier
are inaccurate in the TR. As such, the algorithm
adds a new point (xn) inside the TR to improve their
local accuracy. The procedure for adding the point is
explained below.

– If there are more thand SF vectors in the TR: The
model and classifier are considered to be sufficiently
accurate in the TR. In this case, and following the clas-
sical TR framework, the TR is contracted by halving
its radius.

Compared to the classical TR framework, the above steps also
monitor the number of interior vectors in the TR, since they
determine the local model accuracy. Monitoring the number
of these vectors ensures the TR is not contracted too quickly
when the search stagnates due to poor accuracy of the model
or the classifier [3].

Another change from the classical framework is the addition
of a new vector (xn) to improve the local model accuracy. To
accomplish this, the new vector should be far from existing
ones, so it improves the model in an region sparse with

TABLE I
EA PARAMETERS

population size 100
generations 100
selection stochastic universal selection (SUS),p= 0.7
recombination intermediate,p= 0.7
mutation1 Breeder Genetic Algorithm (BGA) mutation,p= 0.1
elitism 10%

1 Based on [2]
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sampled points [13]. Mathematically, finding such a point
translates to the following max-min optimization problem,

xn : max
x∈T

min
xi∈T

{‖x−xi‖2} (15)

wherexi , i = 1. . . r , are the existing interior TR points [9]. To
simplify the solution of Equation (15), the proposed algorithm
generates a LH sample in the TR and chooses the sample point
with the largest minimum distance.

Lastly, if the TR has been contracted forq consecutive
iterations, which suggests convergence to a local optimum,
the algorithm adds a point outside the TR to improve the
accuracy of model globally, which assists in locating new
optima. The point is generated using the same procedure
described above for the new interior point, namely,xn , but
now considering the entire search space instead of just the
TR. Based on numerical experiments, we identifiedq= 2 as
a suitable setting. To complete the description, Algorithm1
gives the pseudocode of the proposed algorithm.

Algorithm 1: Proposed Optimization Algorithm with
Adaptive Model and Classifier

generate an initial LHD sample;
evaluate and cache the sample vectors;
repeat

train a new Kriging model using all SF vectors in the
cache;
/* classifier selection */
for candidate classifier ={ k-NN, LDA, SVM} do

use CV to find the classification error (12);

select the classifier with the lowest error and train a
new classifier using all the vectors in the cache;
/* TR trial step */
set the best vector in the cache as the TR centre;
search for the model optimum using an EA and the
modified objective function (14);
evaluate the predicted optimum with the expensive
objective function;
/* manage the model and TR */
if the new optimum is better than the TR centrethen

increase the TR radius
else if the new optimum is not better than the TR
centreandthere are insufficient vectors in the TRthen

add a new vector in the TR to improve the model
and classifier;

else if the new optimum is not better than the TR
centreandthere are sufficient vectors in the TRthen

decrease the TR radius;

/* check search stagnation */
if there have beenq consecutive TR contractionsthen

add a new vector outside the TR to improve the
accuracy of the model globally;

cache all new vectors evaluated;
until optimization budget exhausted;

IV. PERFORMANCEANALYSIS

For its evaluation, the proposed algorithm was applied to
an engineering application of airfoil shape optimization.The
problem is pertinent to this study as it is both representative
of real-world expensive black-box optimization problems,and
contains SI vectors, as explained below.

The setup of the problem is as follows. During flight an
aircraft generateslift , namely, the beneficial aerodynamic force
which keeps it airborne, and alsodrag, that is, an aerodynamic
friction force which obstructs the aircraft’s movement. Accord-
ingly, the optimization goal is to find an airfoil shape which
maximizes the ratio of the lift to drag at some prescribed flight
conditions, namely, the flight altitude, the flight speed, and the
angle of attack (AOA) which is the angle between the airfoil
chord and the aircraft velocity. Figure 2(a) shows the physical
quantities involved.

To ensure structural integrity, the minimum airfoil thickness
(t) between 0.2 to 0.8 of the airfoil chord must be equal to or
larger than a critical valuet⋆ = 0.1 . Also, in practise the design
requirements for airfoils are specified in terms of the non-
dimensional lift and drag coefficients,cl andcd, respectively,
defined as

cl =
L

1
2ρV2S

(16a)

cd =
D

1
2ρV2S

(16b)

whereL andD are the lift and drag forces, respectively,ρ is
the air density,V is aircraft speed, andS is a reference area,
such as the wing area. Accordingly, maximizing the lift and
minimizing the drag is formulated as a minimization problem
using the following objective function

f =−
cl

cd
+ p, (17a)

wherecl and cd were defined above, andp is a penalty for
airfoils which violate the thickness constraint, and is defined
as

p=







t⋆

t
·

∣

∣

∣

∣

cl

cd

∣

∣

∣

∣

if t < t⋆

0 otherwise
(17b)

Airfoils were represented with the Hicks-Henne parameter-
ization [8], which uses a baseline airfoil and adds the basis
functions

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

, (18)

with i = 1. . .h , whereh is user-prescribed, to smoothly modify
the baseline shape [22]. The lower and upper curves of a
candidate airfoil are then given by

y= yb+
h

∑
i=1

αibi(x) , (19)

whereyb is the baseline upper/lower curve, which was taken as
the NACA0012 symmetric airfoil, andαi ∈ [−0.01,0.01] are
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the coefficients (design variables) to be found. In this study, we
usedh= 10 functions for the upper and lower curve, respec-
tively, or a total of 20 coefficients, namely, design variables,
per airfoil. To obtain the lift and drag of candidate airfoils,
we used XFoil–a computational fluid dynamics simulation
for analysis of subsonic airfoils [4]. Each airfoil evaluation
required up to 30 seconds on a desktop computer. Figure 2(a)
gives the layout of the Hicks-Henne parametrization.

As mentioned above, the airfoil optimization problem is a
pertinent test case since it contains SI vectors. The prevalence
of these vectors depends on two major factors: the AOAand
the operating conditions, namely, the altitude and velocity. To
illustrate the effect of the AOA, 30 different airfoils were
evaluated at identical flight conditions, except for the AOA
which was increased from 0◦ to 40◦ , and the number of
failed evaluations, namely, SI vectors, was recorded at each
AOA. Figure 2(b) shows the obtained results, which indicate
a consistent trend where a higher AOA resulted in more
failed evaluations, namely, more SI vectors. Accordingly,we
have selected the settings AOA= 20◦ ,30◦ , and 40◦ for the
optimization tests. With respect to the altitude and velocity,
we have experimented with different operating conditions,and
have chosen a speed ofMa = 0.775 , namely, 0.775 of the
speed of sound, and an altitude of 32 kft.

For a comprehensive evaluation, the proposed algorithm
was also benchmarked against the following two representative
model-assisted EAs:

• Model-assisted EA with periodic sampling(EA–PS) [18]:
The algorithm begins by generating an initial LH sample
and training a Kriging model. A real-coded EA then runs
for 10 generations while evaluating only the model, and
next, the top 10 elites in the population are evaluated with
the true expensive function and are incorporated into the
model. The goal of this procedure is to safeguard the
accuracy of the model by periodically updating it with
the evaluated elites. This optimization loop repeats until
the optimization budget is exhausted. In the benchmarks,
the EA was identical to the one in the proposed algorithm,
and SI vectors were assigned a fictitious penalty taken to
be the mean objective value in the initial LH sample.

• Expected-Improvement with a model-assisted CMA-ES
(EI–CMA-ES) [1]: The algorithm begins by generating
an initial sample of points and trains an initial Kriging
model. The main loop then begins, where at each gener-
ation the algorithm trains a local Kriging model around
the current elite using both the recently evaluated vectors,
and the cached vectors which are nearest to the elite. The
algorithm excludes SI vectors from the model training
set. A covariance matrix adaptation evolutionary strategy
(CMA-ES) algorithm then searches for an optimum of
the model in a bounded region defined by the latter two
sets of solutions, namely, the recently evaluated ones and
the nearest neighbours, and in the spirit of the Expected-
Improvement framework [10], uses the merit function

f̂ (x) = m(x)−ρζ (x) , (20)
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Fig. 2. Aspects of the airfoil optimization problem. (a) showsthe physical
quantities and Hicks-Henne airfoil parametrization setup.(b) shows the effect
of the AOA on the prevalence of SI vectors.

where m(x) is the Kriging model prediction,ρ is a
prescribed coefficient, andζ (x) is the estimate of the
Kriging model prediction error, which is zero at sampled
points since there the true objective value is known.
The search is repeated forρ = 0,1,2, and 4 to obtain
four solutions corresponding to different search profiles,
namely, ranging from a local search (ρ = 0) to a more
explorative one (ρ = 4). All non-duplicate solutions found
are evaluated with the true expensive function and are
cached. In case no new solutions were evaluated, for
example, because they already exist in the cache, the
algorithm generates a new solution by perturbing the
current elite. Following reference [1], the algorithm used
a training set of 100 vectors (50 most recently evaluated
ones and 50 nearest-neighbours) and the CMA-ES used
the default values in the source code [7].

We have also used a variant of the proposed algorithm
with a fixed classifier type, namely, onlyk-NN, to gauge
the contribution of the classifier selection step. The variant
is designated KK (Kriging–k-NN).

In all tests the optimization budget was 200 evaluations of
the true objective function, that is, simulation runs, and the

132

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-154-0



size of the initial sample was 20. To support a valid statistical
analysis, 30 trials were repeated for each algorithm–test case
combination.

Table II gives the test statistics for the three AOA cases,
as well as the significance-level (α) at which the proposed
algorithm was better than each of the other algorithms, namely,
EA–PS, EI–CMA-ES, and KK, where an empty entry indicates
no statistically-significant difference up to the 0.05 level. Sta-
tistical significance tests were done using the Mann–Whitney
nonparametric test. For each AOA case, the best mean and
median results are emphasized. From studying the test results
for each AOA setting it follows:

• AOA=20◦: The proposed algorithm obtained the best
mean score, and its performance was statistically-
significant better than the KK and EA–PS variants at the
α = 0.01 level. The EI–CMA-ES algorithm had the best
median result. followed by the proposed algorithm. With
respect to the standard deviation, the EA–PS algorithm
had the best (lowest) result, followed by the proposed
algorithm.

• AOA=30◦: The KK variant obtained the best mean,
followed by the proposed algorithm, a setup which was
also repeated for the median statistic. The proposed
algorithm was statistically-significant better than the EI–
CMA-ES algorithm at the 0.01 level. With respect to
the standard deviation, the KK algorithm had the best
result, followed by the EA–PS algorithm, followed by
the proposed algorithm.

• AOA=40◦: The proposed algorithm had the best statistic,
while the EA–PS algorithm had the best median, closely
followed by the proposed algorithm. The proposed al-
gorithm was statistically-significant better than the EI–
CMA-ES algorithm at the 0.01 level. With respect to the
standard deviation, the KK algorithm had the best result,
followed by the proposed algorithm.

Overall, results show the proposed algorithm performed
well, as it obtained either the best or near-best mean statis-
tic, and consistently obtained the near-best median statistic,
showing its performance was robust across different problem
settings. Its standard deviation was intermediate betweenthe
extremal results by the other algorithms, indicating therewas
some variability in its performance, but it was still competitive
and never the worst performing algorithm with respect to this
statistic. Results also highlight the contribution of the classifier
selection stage, as in two cases (AOA= 20◦ and 40◦) the
proposed algorithm outperformed the KK variant which does
not select a classifier, and obtained results which were nearly
as good in the AOA= 30◦ case.

Lastly, to demonstrate the optimization outcomes, Figure 3
shows representative airfoils obtained by the proposed algo-
rithm at each of the three optimization cases.

V. SUMMARY

The modern engineering design process is often a
simulation-driven optimization problem. In practise, there
may exist candidate designs which ‘crash’ the simulation and

TABLE II
STATISTICS FOR OBJECTIVE VALUE

AOA P KK EA–PS EI–CMA-ES

20◦

mean -1.035e+01 -8.091e+00 -6.889e+00 -1.023e+01
SD 1.326e+00 1.697e+00 6.526e-01 2.025e+00
median -1.049e+01 -7.283e+00 -6.843e+00 -1.107e+01
min -1.302e+01 -1.138e+01 -8.837e+00 -1.192e+01
max -7.143e+00 -5.880e+00 -5.794e+00 -5.442e+00
α 0.01 0.01

30◦

mean -3.155e+00 -3.192e+00 -3.146e+00 -2.910e+00
SD 4.694e-02 3.105e-02 3.345e-02 4.761e-02
median -3.140e+00 -3.183e+00 -3.140e+00 -2.916e+00
min -3.270e+00 -3.298e+00 -3.223e+00 -3.005e+00
max -3.091e+00 -3.145e+00 -3.092e+00 -2.813e+00
α 0.01

40◦

mean -2.793e+00 -2.784e+00 -2.784e+00 -2.552e+00
SD 3.380e-02 2.230e-02 4.732e-02 4.249e-02
median -2.785e+00 -2.782e+00 -2.786e+00 -2.557e+00
min -2.875e+00 -2.827e+00 -2.869e+00 -2.637e+00
max -2.726e+00 -2.742e+00 -2.717e+00 -2.455e+00
α 0.01

P: proposed algorithm with model and classifier adaptation.
KK: proposed algorithm restricted to a Kriging model and ak-NN classifier.
EA–PS: EA with periodical sampling [18].
EI–CMA-ES: Expected Improvement framework with a CMA-ES optimizer
[1].
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Fig. 3. Representative airfoils obtained by the proposed algorithm, shown
in black. For comparison, the baseline NACA0012 airfoil is shown in gray.

thus can lead to search stagnation and to a poor final result.
To effectively handle this scenario, this paper has proposed
a model-assisted computational intelligence optimization
algorithm which introduces a classifier into the search. The
latter predicts which solutions are expected to crash the
simulation, and its prediction is incorporated with the model
prediction to bias the search towards valid solutions, thatis,
which are expected not to crash the simulator. To improve its
efficacy, the proposed algorithm continuously selects during
the search an optimal type of classifier, out of a prescribed
family of candidates. To safeguard the optimization search
in the face of model inaccuracy, the proposed algorithm
also employs a TR approach. Performance analysis using
a representative real-world application of airfoil shape
optimization showed the efficacy of the proposed algorithm.
In future work, we consider applying the proposed algorithm
to additional challenging real-world applications with SI
vectors.
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