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Abstract—Modern engineering design optimization often re- A promising optimization strategy for such expensive black
places laboratory experiments with computer simulations, re- pox problems is to couple a computational intelligence (ClI)
sulting in what is commonly termed as expensive black-box qtimizer, which is gradient-free and handles complicated
optimization problems. In such problems, there will often exist . .
candidate solutions which ‘crash’ the simulation and can thus !andgcapes well, Wlthmodelslname.ly, r.nathema.tlcal apprO).(-
lead to search stagnation and to a poor final result. Existing imations of the true expensive objective function, but wahic
approaches to handle such solutions include discarding them alto- are significantly cheaper to evaluate. During the optinizat
gether or assigning them a penalized fitness, but such approachesthe model replaces the expensive function (simulationdi an

have significant demerits. Accordingly, this paper explores the oconomically provides the CI optimizer with approximate
fusion of a classifier into the optimization search to predict S
objective values.

which solutions are expected to crash the simulation, and uses - - . . )
a modified objective function to bias the search towards valid ~ While this approach works well, in practise another dif-
ones, namely, which are expectediot to crash the simulator. ficulty arises, as often some candidate solutions will cause
The further improve its performance, the proposed algorithm the simulation to fail. We refer to such vectors sigulator-
also continuously selects during the search an optimal type of jyfaa5iple(SI), while those for which the simulation completes
classifier out of a family of candidates. To ensure the progress of . - .
the optimization search, it also employs a trust-region approach. sucgessfully and provides the ObJeCt“_’e _valu_e a_maulator—
Performance analysis using a representative real-world shape feasible(SF). Sl vectors have two main implications for the
design optimization test case shows the efficacy of the proposedoptimization problem: a) as they do not have an objective
algorithm. value assigned to them, since the simulation has crashed, th
objective function becomes discontinuous, which incredise

Keywords-expensive optimization problems, computational in- optimization difficulty, and b) they can consume a largeiport
telligence of the limited number of calls to the expensive simulation
without providing new information to the optimizer, thus
potentially leading to search stagnation and a poor finailtes

In the modern design process, engineers often replace labloimerous papers, for example [1, 15, 16], have mentioned the
ratory experiments witikomputer simulationsThis transforms difficulties Sl vectors introduce, and so it is importanteeff
the design process into an optimization problem havingethréively to handle them. Common strategies include discardin
distinct characteristics [20]: them altogether, or incorporating them into the model with

. The simulation acts as the objective function, assignirfy Penalized fitness. However, both of these strategies have
candidate designs their corresponding objective valusignificant demerits, for example, they discard informatio
However, the simulation is often a legacy or a commeWhich can be beneficial to the search, or they result in a model
cial code available only as an executable, and so the¥éh a severely deformed landscape.
is no analytic expression for this “objective function”, Accordingly, to effectively handle such SI vectors in
Accordingly, it is referred to as hlack-box functionand Model-assisted optimization, this paper explores theofusf
requires using gradient-free optimizers. a classifier into the optimization search, and offers twormai

. Each simulation run iscomputationally expensiyehat contributions. First, a classifier is used to predicts if ane
is, having a lengthy execution time, and this severe ctor is Sl or not, and the proposed algorithm then combines

restricts the number of evaluations allowed during th@is prediction with the model’s prediction to bias the star
optimization search. to vectors predicted to be SF via a dedicated modified

objective function. Second, to further enhance perforraanc

the proposed algorithm continuously selects during theckea

« Often, both the underlying physics being modelled, armh optimal classifier type from a family of candidates. To
the numerical simulation, may result in a complicated&gnsure convergence to an optimum of the true expensive
multimodal objective landscape, which makes it difficultunction, the proposed algorithm also employs a trustemregi
to locate an optimum. (TR) approach. Performance analysis using an engineering

I. INTRODUCTION

and
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design application of airfoil shape optimization shows the , > /
efficacy of the proposed algorithm. The remainder of thisic®
paper is as follows: Section Il describes existing appreach ’

and open challenges in handling SI vectors, Section IlI1
describes the proposed algorithm and Section IV gives al
detailed performance analysis. Lastly, Section V sumreariz

this paper. o
-10

10

10_10 10-10
Il. EXISTING APPROACHES ANDCHALLENGES (@) ()

As mentioned in Section I, S| vectors are a common irig- 1 Kriging models of the Rosenbrock function _trainedngsi(a) a
simulation-riven optimization problems, and nuMerouISt. (ahosemie o 0 Yecos 2 S nd () e baseine semmnertes
ies mention their existence and the difficulties they intlc&  baseline sample.
for example [1, 5, 12, 15, 16].

As such vectors are both common in real-world applications,
and pose the risk of hampering the optimization search,
several approaches have been proposed to handle them. [fo address the issues introduced by Sl vectors, as discussed
reference [17], the authors used an evolutionary algorithim Section | and Section Il, this paper proposes a model-
(EA) as the optimizer and proposed using a classifier to acrezssisted Cl algorithm which incorporates a classifier it t
vectors before evaluating them. Those predicted to be S¢ weearch. To further improve the search efficacy, the algorith
assigned a ‘death penalty’, that is, a fictitious and highlgontinuously selects during the search an optimal type of
penalized objective value, to quickly eliminate them frame t classifier, out of a prescribed family of candidates. To emsu
population. The study did not consider models, and the Efonvergence to an optimum of the true expensive function,
evaluated the expensive function directly. In a related@ggh the algorithm also employs a TR approach. The following
described in reference [5], severely penalized SI] vecames Sections describe the model, the candidate classifiers, the
incorporated them into the model in order to bias the searclassifier selection stage, and lastly, the overall workftafw
away from them. Alternatively, in reference [1] the authorthe algorithm.
proposed to completely discard Sl vectors from the training
set of the m0(_jel_. . _ A Modelling

However, within the domain of model-assisted optimization
such approaches suffer from several shortcomings: a)rassi
ing Sl vectors a fictitious penalized objective value andchth
incorporating them into the training set can result in a nhod
with a severely deformed landscape, while b) excluding
vectors altogether discards information which may be be

eficial to the optimization search. As an example, Figure combining two components: a ‘drift’ function, which is a

compares two Kriging models of the Rosenbrock functio® obal coarse approximation to the true expensive function

(a) shows a model trained using 30 vectors which were éﬁpd a local correction based on the correlation between the

SF, while (b) shows the resultant model when the sample v\}_Qgerpolatlon poinis. Given a set of evaluated vectsys, RY,

augmented with 20 Sl vectors which were assigned a penaliﬂe:d 1...n, the Kriging model is trained such that it exactly

fitness, taken as the worst objective value from the baseliW%ermet?S the obtsherved(;/alluesa ihamsﬁ.) :t.f(x}% vvtr_lere
sample. The resultant model has a landscape which is s¢veFB X) tanl 8().are € mto fd"’?fr;f rus objective ;Jnc lon, re-
deformed and contains many false optima, making it difficuP ¢ '¥§ y'K sing a codnsl ant drift function, as in refeeficl],
to locate an optimum of the true objective function. gives the Kriging mode
Such issues have motivated alternative approaches toenandl m(x) = B+ K(X), Q)
S| vectors in model-assisted optimization. For example, With the drift functionf and local correctior (X) . The latter
reference [19] the authors proposed a dual model approach;, .. : : .
where one model interpolated the objective function ang deflned_ by a stationary Gaussian process with mean zero
the other interpolated the penalty value between SF and aé\d covariance
vectors. Other studies have explored the use of classifiers CoMk (X)K(y)] = 02%(8,%,Y), 2
for constrained non-linear programming (not focusing on Sl . . : :
; whereZ is a user-prescribed correlation function. A common
vectors), for example reference [6]. Further exploring then . o . . .
use of classifiers, reference [21] presented preliminasylte choice for the correlation is the Gaussian function [11]jaluh
. e -1 P b sy is defined as
with a classifier-assisted algorithm for handling Sl vestor

%(G,X,y) = rlid:lexp(_e(xi —Yi)z) ) (3)

IIl. PROPOSEDALGORITHM

As mentioned, the proposed algorithm uses a model to
pproximate the true expensive objective function. The-alg
gthm does not impose any restrictions on the model type,
d in this study the well-established Kriging model wasduse
[1]. This model takes a statistical approach to interpofat
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and combining it with the constant drift function transfam
the model from Equation (1) into the following form

m(x) = B+r(x)"RL(f—1B). @)

Here,ﬁ is the estimated drift coefficienR is the symmetric
matrix of correlations between all interpolation vectdrs, the
vector of objective values, antlis a vector with all elements

equal to 1.r7 is the correlation vector between a new vector

x and the sample vectors, namely,
rT=[2(0,x,%1),...,%(8,X,%n)]. (5)

The estimated drift coefficierﬁ and variance? are obtained
from

B=(1"R1) 1R, (6a)
/\2 }

62 == [(f “1B)TR (- 13)} . (6b)

Fully defining the model requires the correlation parameter
6, which is commonly taken as the maximizer of the model

likelihood. In practise, maximizing the model likelihoaglper-
formed by minimizing the negative logarithm of the likeldd
which is given by

¢ = — (nlog(6?
B. Candidate Classifiers

Given a set of input vectors with corresponditadpels that
is, indices assigning them to a group, the goal of a class#fier

)+log(IR])) - @)

to map a new input vector into one of the existing groups based
on some similarity between the new and existing vectors. [23]

Mathematically, given a set of vectaxse RY, i =1...n, with

vector w which maximizes this ratio. The vectar is
orthogonal to the hyperplane separating the two classes.
A new vectorx, is classified based on its projection with
respect to the separating hyperplane, that is,

c(x) = sign(w-Xx). (20)

support vector machine (SVM): The classifier projects
the data into a high-dimensional space where it can be
more easily separated into disjoint classes. In a two-
class problem, withF(x;) € I = {-1,+1}, an SVM
classifier tries to find the best classification function for
the training data. For a linearly separable training set, a
linear classification function is the separating hyperglan
passing through the middle of the two classes. Once this
hyperplane has been fixed, new vectors are classified
based on their relative position to this hyperplane, that is
whether they are "above" or "below" it. Since there are
many possible separating hyperplanes, an SVM classifier
adds the condition that the hyperplane should maximize
the distance between the hyperplane and the nearest
vectors to it from each class. This is accomplished by
maximizing the Lagrangian

n

l n

Lp = é|\w|| - ZC{iF(Xi)(W~Xi +b)+ Zai, (11)
i= =

where n is the number of samples (training vectors),

F(x;) is the class of théth training vector, andy > 0,

i =1...n, are the Lagrange multipliers, such that the

derivatives ofLp with respect toa; are zero. The vector

w and scalab define the hyperplane.

corresponding class labels, for exampgtgxi) e I={-1,1},
a classifierc(x) is the mapping

. d o .
c(x) 1R — I. (8) . classifier Selection

The proposed algorithm puts no restriction on the numberAs mentioned, during the optimization search the proposed
or the type of candidates classifiers, and in this study we usagorithm continuously selects an optimal classifier ouaof
three well-established classifier variants [23]: family of candidates. To accomplish this in a mathematycall

« nearest neighbouNN): The classifier assigns the newigorous way, the proposed algorithm leverages on steisti

vector the class of the nearest training vector, designat@@del-selection theory and selects a classifier usingamu-
XnN » Where the latter is determined by a distance measu@cy estimatar Specifically, the accuracy of each candidate
such as thé, norm, namely, classifier is estimated, and the classifier chosen is the one
] having the best estimated accuracy. The procedure, termed
c(x) = F(xn) - 9) cross-validation (CV), proceeds as follows. A cache, which
d(X, XNN) =i[nlinnd(X,Xi)- contains vectors evaluated with the expensive function, is
o split into a training setand atesting setin a 80-20 ratio.
A candidate classifier is trained using the former set and its
prediction is tested on the latter set, where the clasdificat
error is

An extension of the approach, termé&dnearest neigh-
bours k-NN) assigns the class most frequent amongkthe
nearest neighbours. In this study the classifier lsed .

« linear discriminant analysi@_DA): In a two-class prob-
lem, where the class labels &¢x;) € 1={-1,+1}, the
classifier attempts to model the conditional probability
density functions of a vector belonging to each classherecis the prediction of the trained classifigr, i=1...1,
where the latter functions are assumed to be normally dexe the CV testing vectors, arfe(x;) is the true and known
tributed. The classifier considers the separation betweelass of the latter vectors, where in this studgx;) = 1 was
classes as the ratio of: a) the variance between classesd for a SF vector, arfl(x;) = —1 for a Sl one. These class
and b) the variance within the classes , and obtainslabels were used as they are common in literature, for exampl

e—Z (xi) #F(xi)), (12)
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[23]. As mentioned in Section 11I-B, in this study, the pr@eo incorporated into the model with a penalized fithess anddenc
algorithm selects between three well-established classjfi do not deform its landscape.

namely k-NN, LDA, and SVM. The algorithm selects the The optimum found by the EA, designated s is then
classifier type having the smallest prediction error, asnéefi evaluated with the true expensive function at a cost of one
in Equation (12), and then uses all the cached vectors, yamélinction evaluation, which provided (x*). Following the
both SF and SI, to train a new classifier with the selectethssical TR framework [3], the algorithm manages the model
type, which serves as the classifier during the TR trial stegmd TR based on the outcome of the trial step, as follows:

as explained in the following section. « A successful trial stepThe trial step located a new
D. Workflow optimum which is be_tter than thg current best, that is,
f(x*) < f(xp) . Following the classical TR approach, the
The algorithm begins by sampling a set of vectors which  npew optimum is taken as the new the TR centre, and the
will serve as the initial training sample. The vectors are TR s enlarged by doubling its radius.
generated using the Latin hypercube design (LHD) method, An unsuccessful trial stefhe trial step did not locate a
for experiments design [14], as it provides a space-filling new optimum, that isf (x*) > f(xp). This can happen
sample which improves the accuracy of the model. Briefly, gjnce either the TR is too large, or since there are not
for a sample ofk vectors the range of each variable is split enough vectors in the TR, resulting in a model which
into k equal intervals, and one point is sampled at random s too inaccurate. Accordingly, to gauge the accuracy of
in each interval. Next, a sample point is selected at random the model, the proposed algorithm checks the number of
(without replacement) for each variable, and these sanapées  yectors inside the TR. This number is then compared to
combined to give a vector. This procedure is repeatedkfor the dimension of the objective function)( as it is an
times to generate the complete sample. After generating the jndicator to the number of function evaluations required
sample, the vectors are evaluated with the expensive imcti o estimate the gradient by finite-differences and hence
and are then cached. is indicative of the number of function evaluation needed
The main optimization loop then begins, where the algo- o find a new optimum. To manage the accuracy of the
rithm first trains a Krlglng model USing all the SF in the mode|, the fo”owing Steps are performed:
cache. It then uses the procedure described in Section III-C _ ¢ yare are less thad SE vectors inside the TR: The

to select a classifier type, and then trains a classifier ualing unsuccessful step may be since the model or classifier
the cached vectors, namely, both SF and SI, as these are two are inaccurate in the TR. As such, the algorithm

vector classes. . L adds a new pointxg) inside the TR to improve their
Next, the proposed algorithm performs an optimization local accuracy. The procedure for adding the point is

search, and to ensure convergence to an optimum of the true explained below.

expensive function it follows the trust-region (TR) apprba — If there are more tham SF vectors in the TR: The

Specifically, the TR is the region where the model is assumed model and classifier are considered to be sufficiently

to be accurate, and defined as accurate in the TR. In this case, and following the clas-
T ={x:||x—Xp|2 <A} (13) sical TR framework, the TR is contracted by halving
’ its radius.

wherexy, is the best vector found so far, and is taken as the T&mpared to the classical TR framework, the above steps also
centre, and\ is the TR radius. The proposed algorithm seekgonitor the number of interior vectors in the TR, since they
the optimum of the model in the TR, and as the optimizer #etermine the local model accuracy. Monitoring the number
uses the real-coded EA from reference [2]. Since evaluatiggthese vectors ensures the TR is not contracted too quickly
the model is computationally cheap, the EA uses a largghen the search stagnates due to poor accuracy of the model
population and many generations to improve its search, agdihe classifier [3].

Table | gives the complete EA parameter settings. During another change from the classical framework is the addition
this optimization trial-step the EA does not use the modgf 5 new vector X;) to improve the local model accuracy. To

predictions directly, but instead it obtains the fitnessueal accomplish this, the new vector should be far from existing
from the following modified objective functiondefined as  gnes, so it improves the model in an region sparse with

_ m(x) if c(x) is SF
m(x) = () ) ( ), (14)
p if ¢(x) is Sl TABLE |
EA PARAMETERS
wherem(x) is the model prediction, andis a penalized fithess population size 100
taken to be the worst function value from the initial Latin gelﬂefétiOﬂS 1t00h 4o universal selection (SUS). 0.7
. selection stochastic universal selection .
hype_rc_ube_ (LH) sampl_e. As SL_Jch, the EA receives the model i ation intermediate — 0.7
prediction if the classifier predicts a vector is SF, but nexs mutatiort Breeder Genetic Algorithm (BGA) mutatiom,= 0.1
the penalized fitness otherwise. In this setup, the infdonat elitism 10%
about Sl vectors is preserved in the classifier, but theynate ! Based on [2]
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sampled points [13]. Mathematically, finding such a point IV. PERFORMANCEANALYSIS

translates to the following max-min optimization problem, oy its evaluation, the proposed algorithm was applied to

Xn : maxmin {||x — xi||2} (15) an engineering application of airfoil shape optimizatidine
XeTXeT problem is pertinent to this study as it is both represerdati
wherex;, i=1...r, are the existing interior TR points [9]. To of real-world expensive black-box optimization problerasd
simplify the solution of Equation (15), the proposed alfori  contains Sl vectors, as explained below.
generates a LH sample in the TR and chooses the sample pointhe setup of the problem is as follows. During flight an
with the largest minimum distance. aircraft generatelift, namely, the beneficial aerodynamic force
Lastly, if the TR has been contracted farconsecutive \yhich keeps it airborne, and alstiag that is, an aerodynamic
iterations, which suggests convergence to a local optimugfiction force which obstructs the aircraft's movement caud-
the algorithm adds a point outside the TR to improve thfgly, the optimization goal is to find an airfoil shape which
accuracy of model globally, which assists in locating newaximizes the ratio of the lift to drag at some prescribedflig
optima. The point is generated using the same procedigghditions, namely, the flight altitude, the flight speed #re
described above for the new interior point, namely, but angle of attack (AOA) which is the angle between the airfoil
now considering the entire search space instead of just ¥ifrd and the aircraft velocity. Figure 2(a) shows the ptasi
TR. Based on numerical experiments, we identified 2 as quantities involved.
a suitable setting. To complete the description, Algorithm T ensure structural integrity, the minimum airfoil thiekss
gives the pseudocode of the proposed algorithm. (t) between 0.2 to 0.8 of the airfoil chord must be equal to or
larger than a critical valug = 0.1 . Also, in practise the design
requirements for airfoils are specified in terms of the non-
dimensional lift and drag coefficients, andcq, respectively,

Algorithm 1: Proposed Optimization Algorithm with
Adaptive Model and Classifier

defined as
generate an initial LHD sample; L
evaluate and cache the sample vectors; G =125 (16a)
re 2P
peat D

train a new Kriging model using all SF vectors in the Ci= 1Tz (16Db)

cache; 3PV?S

I+ classifier selection */ whereL andD are the lift and drag forces, respectivety,s

for candidate classifier tk-NN, LDA, SVM} do the air densityV is aircraft speed, an8is a reference area,
| use CV to find the classification error (12); such as the wing area. Accordingly, maximizing the lift and
select the classifier with the lowest error and train a minimizing the drag is formulated as a minimization problem

new classifier using all the vectors in the cache; using the following objective function
/I~ TR trial step */ o
set the best vector in the cache as the TR centre; f= o +p, (17a)
search for the model optimum using an EA and the

modified objective function (14); wherec; and cq were defined above, ang is a penalty for
evaluate the predicted optimum with the expensive airfoils which violate the thickness constraint, and is e
objective function; as
/* manage the nodel and TR */ t* | g
if the new optimum is better than the TR centinen — =] ift<t*

L increase the TR radius p=q 1 [C _ (17D)
else if the new optimum is not better than the TR 0 otherwise

centreandthere are insufficient vectors in the TiRen Airfoils were represented with the Hicks-Henne parameter-
L add a new vector in the TR to improve the model.

o ization [8], which uses a baseline airfoil and adds the basis
and classifier; functions
else if the new optimum is not better than the TR ) _log0s) 1\ 74
bi(x) = |sin )

.. . log(i/(h
centreandthere are sufficient vectors in the TRen TIx oot/ (18)

d the TR radius;
L ecrease the radius, withi=1...h, whereh is user-prescribed, to smoothly modify

/+ check search stagnation ~* the baseline shape [22]. The lower and upper curves of a
if there have beeq consecutive TR contractiortben candidate airfoil are then given by
L add a new vector outside the TR to improve the

accuracy of the model globally;

cache all new vectors evaluated;
until optimization budget exhausted

h
Y=Y+ _Zai bi(x), (19)

wherey, is the baseline upper/lower curve, which was taken as
the NACA0012 symmetric airfoil, and; € [—0.01,0.01] are
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the coefficients (design variables) to be found. In thisgtue
usedh = 10 functions for the upper and lower curve, respec-
tively, or a total of 20 coefficients, namely, design varéh|
per airfoil. To obtain the lift and drag of candidate airfgil
we used XFoil-a computational fluid dynamics simulation
for analysis of subsonic airfoils [4]. Each airfoil evalicat
required up to 30 seconds on a desktop computer. Figure 2(a)
gives the layout of the Hicks-Henne parametrization.

As mentioned above, the airfoil optimization problem is a
pertinent test case since it contains Sl vectors. The eeal
of these vectors depends on two major factors: the AW
the operating conditions, namely, the altitude and vejodio
illustrate the effect of the AOA, 30 different airfoils were
evaluated at identical flight conditions, except for the AOA
which was increased from°Oto 40°, and the number of
failed evaluations, namely, Sl vectors, was recorded ah eac
AOA. Figure 2(b) shows the obtained results, which indicate
a consistent trend where a higher AOA resulted in more
failed evaluations, namely, more Sl vectors. Accordinghg,
have selected the settings AGA20°,3(°, and 40 for the
optimization tests. With respect to the altitude and vayoci
we have experimented with different operating conditiams]
have chosen a speed dfa = 0.775, namely, 0.775 of the
speed of sound, and an altitude of 32 kift.

For a comprehensive evaluation, the proposed algorithm
was also benchmarked against the following two represeatat
model-assisted EAs:

« Model-assisted EA with periodic samplifgA-PS) [18]:
The algorithm begins by generating an initial LH sample

and training a Kriging model. A real-coded EA then rungi

AOAT """l
VEIOCity =% mmmmmnnass =

0.2

. { baseline airfoil: NACAO012
1
0

X
2 .8 1
-0.1
-0.2 +

basis functions

N
o
T
!

% of failed evaluations
N
o
T
|

o

| | |

0 20 40

angle of attack (AOA), degrees
(b)

Aspects of the airfoil optimization problem. (a) shathie physical

for 10 generations while evaluating only the model, angliantities and Hicks-Henne airfoil parametrization sefopshows the effect
next, the top 10 elites in the population are evaluated wigiithe AOA on the prevalence of Si vectors.

the true expensive function and are incorporated into the
model. The goal of this procedure is to safeguard the
accuracy of the model by periodically updating it with
the evaluated elites. This optimization loop repeats until
the optimization budget is exhausted. In the benchmarks,
the EA was identical to the one in the proposed algorithm,
and Sl vectors were assigned a fictitious penalty taken to
be the mean objective value in the initial LH sample.

« Expected-Improvement with a model-assisted CMA-ES
(EI-CMA-ES) [1]: The algorithm begins by generating
an initial sample of points and trains an initial Kriging
model. The main loop then begins, where at each gener-
ation the algorithm trains a local Kriging model around
the current elite using both the recently evaluated vectors
and the cached vectors which are nearest to the elite. The
algorithm excludes Sl vectors from the model training
set. A covariance matrix adaptation evolutionary strategy
(CMA-ES) algorithm then searches for an optimum of

where m(x) is the Kriging model predictionp is a
prescribed coefficient, and(x) is the estimate of the
Kriging model prediction error, which is zero at sampled
points since there the true objective value is known.
The search is repeated far=0,1,2, and 4 to obtain
four solutions corresponding to different search profiles,
namely, ranging from a local searcp £ 0) to a more
explorative oned = 4). All non-duplicate solutions found
are evaluated with the true expensive function and are
cached. In case no new solutions were evaluated, for
example, because they already exist in the cache, the
algorithm generates a new solution by perturbing the
current elite. Following reference [1], the algorithm used
a training set of 100 vectors (50 most recently evaluated
ones and 50 nearest-neighbours) and the CMA-ES used
the default values in the source code [7].

the model in a bounded region defined by the latter two V& have aiso used a variant of the proposed algorithm
sets of solutions, namely, the recently evaluated ones affit @ fixed classifier type, namely, onlg-NN, to gauge
the nearest neighbours, and in the spirit of the Expecte@-e contribution of the classifier selection step. The vdria
Improvement framework [10], uses the merit function 1S designated KK (Krigingk-NN).

In all tests the optimization budget was 200 evaluations of
the true objective function, that is, simulation runs, ahd t

f) =m(x) — p (), (20)
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TABLE I

size of the initial sample was 20. To support a valid statisti STATISTICS FOR OBJECTIVE VALUE

analysis, 30 trials were repeated for each algorithm—iase c

combination. AOA P KK EA-PS EI-CMA-ES
Table Il gives the test statistics for the three AOA cases, mean - 1.035e+01 -8.091e+00 - 6.889e+00 -1.023e+01
as well as the significance-levetr at which the proposed ﬁ]'gdian i gigg:gg % gg;g:gg _g- gigg;gé _i-%?g:gg
algorithm was better than each of the other algorithms, hame 20 in .1 302e+01 - 1. 138e+01 -8, 837e+00 - 1. 1926+01
EA-PS, EI-CMA-ES, and KK, where an empty entry indicates max  -7.143e+00 -5. 8808“32 -S. 7948“32 - 5. 442e+00
no statistically-significant difference up to the 0.05 les&ta- T 55000 3 192 .oo T Te0 .oo > 9100700
P P . . -3. + -3. + -3. + -2. +
tistical significance tests were done using the Mann-Whitney oo Goe 02 3 105e-02 3 345002 4 78l 02
nonparametric test. For each AOA case, the best mean ang, median g ;égwgg g ;ggwgg g ;ggwgg g gégﬁgg
: : - -3. + -3. + -3. + -3. +
median results are emphasized. From studying the testsesul 1o 3 0910100 -3 1450100 -3. 0920100 - 2. 8130400
for each AOA setting it follows: a 0.01
« AOA=20°: The proposed algorithm obtained the best gﬁgan g ;gge+8g g ;ggﬁgg -i- ;ggﬁgg -i- gige+gg
. .. . e- . e- . e- . e-
mean score, and its performance was statistically- 4o Median -2.785e+00 -2.782+00 -2.786e+00 - 2. 557€+00
significant better than the KK and EA-PS variants at the ™ min 28750100 -2.827¢400 -2.869¢+00 -2.637¢+00
. max -Z. e -c. e -Z. e -Z. e
o =0.01 level. The EI-CMA-ES algorithm had the best o 0. 01

median result. followed by the proposed algorithm. With

respect to the standard deviation, the EA-PS algorithm
had the best (lowest) result, followed by the proposed
algorithm.

AOA=30": The KK variant obtained the best mean,

P: proposed algorithm with model and classifier adaptation.

KK: proposed algorithm restricted to a Kriging model an#d-BIN classifier.
EA-PS: EA with periodical sampling [18].

EI-CMA-ES: Expected Improvement framework with a CMA-ES optimizer
[1].

followed by the proposed algorithm, a setup which was
also repeated for the median statistic. The proposqgjgﬂ
algorithm was statistically-significant better than the-El 0
CMA-ES algorithm at the 0.01 level. With respect tq. o . .
the standard deviation, the KK algorithm had the bekfics, Foroeonaihe afols obaned b e proposarif, shown
result, followed by the EA-PS algorithm, followed by
the proposed algorithm.
« AOA=40°: The proposed algorithm had the best statistithus can lead to search stagnation and to a poor final result.
while the EA—PS algorithm had the best median, closelyo effectively handle this scenario, this paper has propose
followed by the proposed algorithm. The proposed ak model-assisted computational intelligence optimizatio
gorithm was statistically-significant better than the Elalgorithm which introduces a classifier into the search. The
CMA-ES algorithm at the 0.01 level. With respect to théatter predicts which solutions are expected to crash the
standard deviation, the KK algorithm had the best resulfimulation, and its prediction is incorporated with the mlod
followed by the proposed algorithm. prediction to bias the search towards valid solutions, that
Overall, results show the proposed algorithm performeuhich are expected not to crash the simulator. To improve its
well, as it obtained either the best or near-best mean stag#ficacy, the proposed algorithm continuously selectsnduri
tic, and consistently obtained the near-best median ttatisthe search an optimal type of classifier, out of a prescribed
showing its performance was robust across different probldamily of candidates. To safeguard the optimization search
settings. Its standard deviation was intermediate betvileen in the face of model inaccuracy, the proposed algorithm
extremal results by the other algorithms, indicating theess also employs a TR approach. Performance analysis using
some variability in its performance, but it was still comife¢ @ representative real-world application of airfoil shape
and never the worst performing algorithm with respect ts thpptimization showed the efficacy of the proposed algorithm.
statistic. Results also highlight the contribution of thessifier In future work, we consider applying the proposed algorithm
selection stage, as in two cases (AGA2(° and 40) the to additional challenging real-world applications with SI
proposed algorithm outperformed the KK variant which doectors.
not select a classifier, and obtained results which werdynear
as good in the AOA= 30" case.

Lastly, to demonstrate the optimization outcomes, Figure 3
shows representative airfoils obtained by the proposed- algS
rithm at each of the three optimization cases.

AOA=20° ; AOA‘=40° ;
0.0E e j
i ;

|
0.5 1

|
0.5 1 0
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