
JION: A JavaSpaces Implementation
for Opportunistic Networks

Abdulkader Benchi, Pascale Launay, Frédéric Guidec
IRISA, Université de Bretagne-Sud

Vannes, France
{abdulkader.benchi, pascale.launay, frederic.guidec}@univ-ubs.fr

Abstract—Disconnected mobile ad hoc networks (or D-
MANETs) are partially or intermittently connected wireless
networks, in which continuous end-to-end connectivity between
mobile nodes is not guaranteed. The ability to self-form and
self-manage brings great opportunities for D-MANETs, but
developing distributed applications capable of running in such
networks remains a major challenge. A middleware system is
thus needed between network level and application level in
order to ease application development, and help developers take
advantage of D-MANETs’ unique features. In this paper, we
introduce JION (JavaSpaces Implementation for Opportunistic
Networks), a coordination middleware specifically designed for
D-MANETs, and with which pre-existing or new JavaSpaces-
based applications can be easily deployed in such networks.

Index Terms—peer-to-peer computing; opportunistic network-
ing; D-MANETs; coordination middleware; JavaSpaces.

I. INTRODUCTION

A mobile ad hoc network (or MANET) is a dynamic wire-
less network that requires no fixed infrastructure. It is generally
formed on-the-fly by a collection of wireless nodes without the
aid of any centralized administration. Each mobile host can
communicate with its neighbors using direct pair-wise wireless
links. Communications in MANETs have been enhanced over
the years thanks to multi-hop forwarding protocols, such as
OLSR, AODV, DYMO, DSR, etc. [1].

Yet most of these protocols rely on the assumption that the
whole MANET remains continuously connected, i.e., between
any pair of hosts in the MANET, there actually exists at least
one temporaneous end-to-end path. Unfortunately, this as-
sumption does not hold in real conditions; many real MANETs
are, under the most favorable conditions, only partially or
intermittently connected.

The sparsely or irregular distribution of a MANET’s hosts
can, for example, induce link disruptions in the whole
MANET. These disruptions may in turn split the whole
MANET into a collection of distinct, continuously changing,
disconnected “islands” (connected components) as shown in
Figure 1. This kind of MANET is called a Disconnected
MANET (D-MANET). The “store, carry and forward” ap-
proach is the foundation of Delay/Disruption Tolerant Net-
working (DTN) [2]. In a D-MANET, it can help bridge the
gap between non-connected parts of the network; the mobility
of hosts makes it possible for messages to propagate network-
wide by using mobile hosts as carriers (or data mules) that
can move between network islands. As shown in Figure 1,

Island 1

Island 3

Island 2

Island 5Island 4

Figure 1. Example of a disconnected mobile ad hoc network

connectivity disruptions between islands 1 and 2 can for
example be tolerated thanks to users moving (deliberately or
by chance) between these islands. The device of a user moving
from island 1 to island 2 acts as a data mule for messages
addressed to hosts located in island 2. Considering that many
carriers may be involved successively for the transmission of
a single message, this approach provides message delivery at
the price of additional transmission delays. Figure 1 shows
that the transmission of a message from island 1 to island 4
can for example involve two message carriers: first a carrier
moving from island 1 to island 2, and then another carrier –or
the same one– moving from island 2 to island 4.

In the DTN community, some approaches make the as-
sumption that communications between the hosts can be
predicted accurately, and routing strategies can be thus de-
vised based on contact predictions. But, in most real D-
MANETs, communications are not planned in advance and
can hardly be predicted, especially if the physical carriers are
for example human beings carrying laptops or smartphones.
The term opportunistic networking is often used to denote
such disruption tolerant networks where the contacts must
be exploited opportunistically [3]. In such wise, each contact
represents an opportunity for two hosts to exchange messages.
Consequently, communication protocols for D-MANETs usu-
ally provide no more than best-effort delivery. Consider again
the example shown in Figure 1, and assume a message is
addressed by a host in island 2 to a host in island 3. If no
human carrier ever visits island 3, then there is no chance that
the message ever gets delivered in this island.

The dynamic nature of D-MANETs creates many challenges
for application developers. As a general rule, no host can be
considered as stable and accessible enough to play the role

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

of a server for all the other hosts. Consequently, applications
developers should generally use a peer-to-peer model rather
than a client-server one. Developers, while writing their appli-
cations, should additionally take into consideration occasional
transmission failures and long transmission delays.

All these reasons result in an increasing need for a mid-
dleware system that, while coping with D-MANETs issues,
provides the developers with a set of APIs that eases the
development of distributed applications over D-MANETs.
Moreover, any middleware system for D-MANETs must have
an asynchronous nature in order to fit with the long transmis-
sion delays observed in such networks.

In the remainder of this paper, we present JION (JavaSpaces
Implementation for Opportunistic Networks), a coordination
middleware system we designed and implemented specifically
for D-MANETs. JION is actually an implementation of the
JavaSpaces specification [4], so any pre-existing distributed
application basing on the JavaSpaces API can be executed in
a D-MANET using JION, with no further development.

This paper is structured in the following way: the JavaS-
paces specification is described briefly in Section II. Section III
presents the JION’s architecture along with details about its
implementation. Evaluation results are shown in Section IV.
Section V discusses related work. Section VI concludes this
paper and describes our plans for future work.

II. JAVASPACES BACKGROUND

The JavaSpaces technology, implemented by JION, is a
Java specification of the concept of tuple space, which was
originally introduced in the Linda programming language [5].
In this section, we provide a brief introduction to the tuple
space as introduced in Linda. The JavaSpaces technology is
presented as well.

A. Tuple space

The tuple space concept has its root in the Linda parallel
programming language developed at Yale University [5]. A
tuple space is a shared data space acting as an associative
memory used by several processes for communication and/or
coordination requirements. A Linda application is viewed as
a collection of processes cooperating via the flow of data
structures, called “tuples”, into and out of a tuple space. Each
tuple is a record of typed fields containing the information
to be communicated. The coordination primitives provided by
Linda allow processes to insert a tuple into the tuple space
(out) or retrieve tuples from the tuple space, either removing
those tuples (in) or preserving the tuples in the space (read).
For retrieving operations, the tuples are selected using a simple
pattern matching from a given set of parameters.

B. JavaSpaces

The JavaSpaces technology is a Java specification of the
tuple space concept, implemented inside the JINI architec-
ture. It defines a set of application programming interfaces
(APIs) that extend the simple core of Linda primitives. The
JavaSpaces version of Linda tuples, called ”entries”, are Java

objects that contain public fields that act as Linda’s typed
fields. JavaSpaces provides read, take and write operations in
order to implement Linda’s read, in, and out operations respec-
tively. Additionally, it provides a notify operation that allows
processes to perform a lookup operation in an asynchronous
manner. This operation notifies the processes by sending a
special object called event containing information, to which
the processes react. The matching in read, take and notify
operations are performed using a special kind of entry, called
a template, that characterizes the kind of entries the process
wants to look for. The selected entries are those whose types
and fields match the template. JavaSpaces also provides light
versions of read and take operations, with which processes
do not need to wait for the answer. These operations, called
readIfExist and takeIfExist, can be useful when a process
requires an answer without blocking. As JavaSpaces’ entries
are passive data, processes cannot perform operations on tuples
directly. In order to modify an entry, a process must explicitly
remove, update and reinsert it into the space. It is worth
taking into consideration that till now there is no standard
JINI security model to be used by JavaSpaces users.

III. JAVASPACES IMPLEMENTATION FOR OPPORTUNISTIC
NETWORKS (JION)

The JavaSpaces technology was primarily designed to
provide persistent object exchange areas (spaces), through
which processes coordinate actions and exchange data. Most
of the JavaSpaces implementations are server-based systems
where centralized servers are used to manage such spaces.
As explained in Section I, a server-based system is hardly
compatible with the characteristics of D-MANETs, as no host
in a D-MANET can act as a reliable server for all the other
hosts. A server-less JavaSpaces implementation must then be
developed in order to provide JavaSpaces services for D-
MANETs.

JION, or JavaSpaces Implementation for Opportunistic Net-
works, is a JavaSpaces implementation that was designed
along that line. Its architecture is composed of two basic
modules: the communication middleware system, and the
JavaSpaces services system.

A. Communication Middleware

Building any application for D-MANETs requires some
communication middleware system, with which hosts can
collaborate in a peer-to-peer manner to ensure message trans-
portation and deal with high latency and high failure rate.
JION relies on a communication middleware system called
DoDWAN (Document Dissemination in mobile Wireless Ad
hoc Networks) [6]. DoDWAN has been designed in our labo-
ratory, and it is now distributed under the terms of the GNU
General Public License1.

DoDWAN supports content-based information dissemina-
tion in D-MANETs. In content-based networking, information
flows towards interested receivers rather than towards specifi-
cally set destinations. This approach notably fits the needs of

1http://www-irisa.univ-ubs.fr/CASA/DoDWAN

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Board= “Sports”
Topic= “football”
Language= “English”

(a)

Board= “Sports”
Topic= “.*ball”
Language= “English | French | German”

(b)

Figure 2. A message descriptor and a message selector

applications and services dedicated to information sharing or
event distribution. It can also be used for destination-driven
message forwarding, though, considering that destination-
driven forwarding is simply a particular case of content-driven
forwarding where the only significant parameter for message
processing is the identifier of the destination host (or user).

Messages in DoDWAN are composed of two parts: a
descriptor and a payload. The payload is simply perceived
as a byte array. The descriptor is a collection of attributes
expressed as (name, value) tuples, as illustrated in Figure 2a.
These attributes can be defined freely by the developers of
application services built on top of DoDWAN.

DoDWAN implements a selective version of the epidemic
routing model proposed in [7]. It provides application services
with a publish/subscribe API. When a message is published
on a host, it is simply put in the local cache maintained on
this host. Afterwards, each radio contact with another host is
an opportunity for the DoDWAN system to transfer a copy of
the message to that host whenever it is interested.

In order to receive messages, an application service must
subscribe with DoDWAN and provide a selection pattern that
characterizes the kind of messages it would like to receive. A
selection pattern is expressed just like a message descriptor,
except that the value field of each attribute contains a regular
expression, as shown in Figure 2b. The selection patterns spec-
ified by all local application services running on the same host
define this host’s interest profile. DoDWAN uses this profile
to determine which messages should be exchanged whenever
a radio contact is established between two hosts. Details about
this interaction scheme and about how it performs in real
conditions can be found in [6].

As a general rule, a mobile host that defines a specific
interest profile is expected to serve as a mobile carrier for
all messages that match this profile. Yet, a host can also
be configured so as to serve as an altruistic carrier for
messages that present no interest to the application services
it runs locally. This behavior is optional, though, and it must
be enabled explicitly by setting DoDWAN’s configuration
parameters accordingly.

Mobile hosts running DoDWAN only interact by exchang-
ing control and data messages encapsulated in UDP datagrams,
which can themselves be transported either in IPv4 or IPv6
packets. Large messages are segmented so that each fragment
can fit in a single UDP datagram. Fragments of a large
message can propagate independently in the network and be
reassembled only on destination hosts.

B. JION Implementation
According to the JavaSpaces specification, processes co-

ordinate by exchanging entries through the space using a
simple set of operations. Entries and operations represent the
basic JavaSpaces’ elements. This section describes the JION’s
architecture and its entry module, along with the supported
operations.

1) JION’s architecture: As mentioned in Section III, JION
is a server-less JavaSpaces implementation, as it is intended to
be used in D-MANETs where server centralization is imprac-
tical. Each host maintains a local space, in which JION stores
the entries produced locally (that is, entries produced by write
operations, which have been invoked by local processes). If
entries were propagated all over the D-MANET and managed
in a collaborative manner, this could result in orphan entries;
as stated in [8], it is impossible to obtain a consensus between
hosts in a distributed disconnected environment. Consequently,
D-MANET’s hosts could not agree to remove any entry from
the space, for example when a process wants to take it.
Imagine that an entry has been propagated over the hosts in the
islands shown in Figure 1, and a process in island 1 takes this
entry. If no user ever visits island 5 for example, the copies of
this entry in this island will become orphan entries. In JION,
the write operations are only processed locally, while matching
and fetching operations (read, take and notify) are processed
by querying hosts over the network for the entries they own.

2) Entries and Templates: According to the JavaSpaces
specification, an entry is an object reference characterized by
its “fields”. In the JavaSpaces terminology, entry fields refer
only to the public fields of the entry objects. In fact, entry
fields are meant to act as a set of attributes characterizing
an entry, and are used to perform matching operations while
retrieving entries from the space.

As mentioned before, a DoDWAN message has two parts:
a descriptor and a payload. Since DoDWAN’s descriptor is
also meant to characterize the content of the message, JION
maps the entry’s fields to the DoDWAN’s descriptor, as their
content is needed by JION to do match operations. The rest
of the entry (that is, non-public fields) is simply carried in the
message as its payload, and considered as a simple byte array.

Templates are special entry objects whose fields’ values
are used in match operation. This notion of a template in
JavaSpaces is mapped to that of DoDWAN’s selection pattern,
which is used by JION’s pattern matching operation.

3) Operations: According to the JavaSpaces specification,
access to entries must be done through a set of basic oper-
ations, which are: write, read, take and notify. Below is a
description of the way JION supports these operations.

write: this operation stores a new entry into the host’s local
space for a specific period of time, called a lease. A lease
represents the lifetime of the associated entry. As mentioned
above, each entry is only stored on the local host and is not
replicated over the D-MANET. Therefore, it is up to each
host to monitor its local space and manage its own entries, and
especially ensure that out-of-date entries are not used anymore.

read: this operation requests the JION service to locate an
entry that matches the template provided as a parameter. When
a process on a host performs a read operation, the host’s local

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

space is queried first in order to find a matching entry. If
no matching entry is found, JION disseminates the specified
template over the D-MANET. Each host, when it receives this
template, queries its local space to find a matching entry and
forward a copy of this entry back to the requesting process.
It is then up to the requesting process to choose one entry as
an answer to its read request. Operation readIfExists is also
supported by JION. This version queries only the local space to
find an entry that matches the specified template. The request
is not disseminated over the D-MANET.

take: this operation basically performs the same function
as read, except that it removes the matching entry from the
space. JION first searches the local space. If no match is
found, it queries all the hosts over the D-MANET in order
to discover which hosts (if any) have a matching entry. Upon
receiving the proposals, JION selects one host, from which
the entry should be taken. JION then asks the chosen host to
permanently remove the matching entry from its local space
and hand it back to the requesting process. The entire operation
may take more time than the read operation since it needs four
messages while only two messages are required in the read
operation. JION also supports a takeIfExists operation, which
performs exactly like the corresponding readIfExists, except
that a matching entry is only requested from the local space.

notify: this operation notifies a process when entries that
match a given template are written into a space. When a
notify operation is performed by a process, JION disseminates
the given template all over the hosts in the D-MANET. The
hosts register the notify request in the hope that a matching
entry will be written before the request’s lifetime expires.
Consequently, when a matching entry is written in a host, the
host forwards an event object containing information about
this entry and its location to the requesting process.

4) Transactions: According to the JavaSpaces specification,
it is possible to group multiple operations (participants) into
a bundle that acts as a single atomic operation. This is done
using the optional concept of transaction. Either all operations
within the transaction will be performed or none will. In fully-
connected stable networks, a transaction is controlled by a
specific manager (server), which should always be reachable
by all the participants. If a participant is momentarily dis-
connected, the whole transaction is aborted. Considering that
hosts in D-MANETs can neither rely on a reliable server nor
reach a consensus, it is not possible to ensure transactions as
defined by JavaSpaces. For this reason, JION does not support
the concept of transaction and each operation is considered as
a singleton operation.

IV. EVALUATION

A D-MANET is a wireless network whose topology is
continuously changing, and where radio contacts between
mobile hosts do not necessarily follow any predictable pattern.
Therefore, protocols and systems designed for D-MANETs are
usually evaluated using network simulators. The originality of
our work lies in the fact that JION has been fully implemented
in Java and is now distributed under the terms of the GNU

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s

)

0

500

1 000

1 500

2 000

Entry size (kB)
0 500 1 000 1 500 2 000 2 500

Read operation
Take operation

Netcat

Figure 3. Response time observed between two netbooks

General Public License2.
JION has seen extensive testing to examine how well it per-

forms in D-MANETs. While conducting these tests we strived
to evaluate how easy it is for an application developer to
implement a distributed application using JION. Furthermore,
we have evaluated the efficiency of JION in a real D-MANET.

A. Developing distributed applications with JION

JION implements Sun Microsystems’ JavaSpaces Technol-
ogy specification, provided as a part of the Java Jini Tech-
nology [4]. Since JION implements a well-known middleware
specification, developers do not need to learn a new program-
ming language, or get familiar with an exotic programming
model or API. A developer can simply focus on writing a
standard JavaSpaces application, and JION will take care of its
execution in a D-MANET. Indeed, any pre-existing JavaSpaces
application can be deployed using JION, without any change
in its source code.

Developers should however be aware of the specific con-
straints posed by D-MANETs, where message delivery, mes-
sage ordering, and transmission delays are usually not guar-
anteed. Such constraints are not due to limitations in JION;
they are due to the very nature of D-MANETs. As explained
in Section I, opportunistic protocols and middleware systems
designed for D-MANETs can do no magic; they can support
network-wide communication in a D-MANET, using mobile
hosts as carriers that help to bridge the gap between non-
connected parts of the network. Yet, unless otherwise specified
they do not control how mobile hosts move in the network,
so they cannot guarantee that a message will ever reach (or
reach in time) any particular host in the network. A developer
working on an application for D-MANETs should therefore
assume that delivery failures and late deliveries may be more
common than in-time deliveries, and design the distributed
application or organize its deployment accordingly.

For testing and evaluation purposes, we have developed
a distributed bulletin board system (D-BBS) inspired from
the classical bulletin board system (BBS). A BBS typically
consists of a number of bulletin boards, which serve as
discussion areas relating to general themes. Each bulletin
board is generally labeled by an expressive name describing

2http://www-irisa.univ-ubs.fr/CASA/JION

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s

)

0

1 000

2 000

3 000

4 000

Entry size (kB)
0 500 1 000 1 500 2 000 2 500

1-hop neighbor
2-hop neighbor

3-hop neighbor

Figure 4. Response time between multi-hop neighbors

its contents (e.g., Sports). On each board, users can post, read
and delete messages under different topics. Since BBS typical
implementations are usually server-based, they are not well
adapted to D-MANETs, so we developed this application using
the JION middleware.

In D-BBS, posting a message on a board under a topic is
implemented by creating a tuple having the board’s and the
topic’s names as fields, and writing it into the JION’s space.
Similarly, reading/deleting a message from a specific board
under a specific topic is performed by creating a template
having the board’s and topic’s name as fields. This template
can then be passed as a parameter to JION’s read/take func-
tion. Furthermore, the developer can get benefit from JION’s
notify function in order to keep users up to date with changes
on a specific board under a specific topic using an appropriate
template.

Developing and deploying this application for a D-MANET
was a straightforward task. Using JION, the programmer
focuses on the application features without paying attention
to the specific issues of this kind of very challenging environ-
ment.

B. JION’s efficiency over D-MANETs

Before trying to observe how entries can propagate between
several islands in a disconnected network, one can first try
to measure how fast they can propagate within a single
island. Since JION is implemented on top of the DoDWAN
communication system, which itself relies on UDP transmis-
sions, our first objective was to evaluate how our multi-layer
middleware architecture performs over the underlying wireless
transmission medium.

We first used two netbooks A and B, running JION over a
Linux operating system. These netbooks were installed next to
each other in the same room, and their built-in Wi-Fi 802.11bg
chipsets were configured to operate in ad hoc mode. We
actually focused on the response time, which is here defined
as the time interval between the time netbook A writes entries
of different sizes and the time when netbook B receives them
using the read/take operations. In order to get reference values
regarding the capacity of the wireless link at application-level,
we used the basic Netcat (nc) networking utility, that can
read and write chunks of data across network connections.

D
e
li
v
e
ry

 r
a
ti
o

0

20

40

60

80

100

Delivery time (hour)
0 2 4 6 8 10 >10

Read operation

Take operation

Figure 5. Entry delivery in a real D-MANET

200 series of tests were conducted in this scenario. The
results of these tests are presented in Figure 3. Read and
take operations show similar performance. However, JION
shows about 20% overhead over Netcat. Considering that
JION’s communication middleware (DoDWAN) implements
a sophisticated opportunistic protocol in order to orchestrate
communications between neighbor hosts, we consider that
these results are quite reasonable.

To increase realism, another real world test was conducted
to investigate the behavior of JION when messages can
propagate over multiple hops. The tests was carried out with
four netbooks (A, B, C and D) distributed in our laboratory.
Because of the effect of concrete walls on signal attenuation,
the connectivity between these netbooks was such that netbook
B could only communicate with A and C, while netbook D
could only communicate with C. This test relied on write/read
operations: a total amount of 225 entries were written on B,
C, D, and host A was configured to read these entries. We
measured the average time required for these entries to reach
host A. The results of this test are shown in Figure 4. It can be
observed that the delay before host A gets an entry changes
with the size of the entry and the number of transmission
hops. This is because when host B serves as a relay between its
neighbors A and C, the radio channel around B is twice as busy
as when B interacts only with host A. The same observation
applies for host C when it must serve as a relay between hosts
B and D. It must also be considered that DoDWAN strives to
ensure a high delivery ratio, so entries are retransmitted again
and again if they are not received in the first place. Indeed,
during the test all entries got received by host A.

After measuring how JION can perform in a single, con-
nected island we used our D-BBS application to observe how
it can perform in a real D-MANET. A dozen of volunteers in
our laboratory were equipped with netbooks running D-BBS.
Several one-day tests were conducted by asking the volunteers
to carry their netbook whenever possible –and use D-BBS
services of course– during a few days while roaming the
laboratory building or its surroundings. To analyze the results
special attention was paid to the cumulative delivery rates of
read/take operations, as shown in Figure 5. The cumulative
delivery rates were measured in terms of time slices where
a measure of 2 hours means that the average delivery time
observed was between 0 and 2 hours; a measure of 4 hours

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

means it was between 0 and 4 hours, etc. Using the read
operation, it can be noticed that nearly 59% of the entries
were delivered in less than 2 hours. However, the majority
of hosts had to wait between 4 and 6 hours in order to get
the required entries using the take operation. This difference
was expected since operation take requires more rounds than
operation read. In general, the results show that most of the
entries got delivered to their destination(s) in less than 10
hours. Yet, about 6% of the entries could not be delivered.
This is the consequence of the unpredictable behavior of the
users, which sometimes moved away from the laboratory or
switched their netbook off unexpectedly.

V. RELATED WORK

In the last few years, several projects revisited Linda [5],
especially in the context of mobile ad hoc environments.

Both Ara [9] and LIME [10] are coordination middleware
systems implementing tuple spaces stored on hosts acting as
servers. These middleware systems target mobile ad hoc net-
works. They provide JavaSpaces services to mobile hosts that
are in the servers’ communication range. Since they rely on a
server-based model, they are hardly usable in real D-MANETs.
Limone [11] is a lightweight alternative to LIME requiring far
less overhead. Limone is based on the premise that a single
round-trip message exchange is always possible, making it
impractical over D-MANETs, for in D-MANEs unpredictable
disruptions are the norm rather than the exception. In con-
trast, CAST [12] is a server-less coordination middleware for
MANETs. Since it does not rely on any centralized service,
this middleware suits well the dynamics of wireless open
networks. CAST makes it possible to process operations even
when no end-to-end route exists between the involved hosts, by
implementing a source routing algorithm. This routing strategy
relies on the assumption that each host’s motion profile is
known. This is clearly a serious constraint, which limits the
usability of CAST over the kind of D-MANETs JION targets,
where hosts’ motions are neither planned nor predictable.
Tuple board (TB) [13] is another server-less coordination
middleware for developing collaborative applications running
in ad hoc networks of mobile computing devices. Like JION,
this middleware has been fully implemented and distributed.
It can thus be used and tested in real conditions. However,
the proposal lacks flexibility, in that it is limited to a group of
nearby connected devices: when a device leaves the network or
turns off, all the tuples posted from this device are withdrawn.
The importance that we attribute to disconnections make the
disconnection tolerance a vital requirement for any middleware
that is meant to support D-MANETs.

Furthermore, all the middleware systems mentioned above
define their own communication protocol for route discovery
and maintenance. Our work is different as JION presents a
two-layer architecture: the upper layer is concerned with tuple
space services, while the lower layer supports opportunistic
communication. As mentioned above, DoDWAN has been
chosen among a few opportunistic communication protocols
that are openly distributed to support communications on
D-MANETs. Yet, JION could theoretically be implemented

above any other communication system, such as DTN2 (a
reference implementation of protocols designed by the Delay-
Tolerant Networking Research Group (DTNRG) [14]) or Hag-
gle (a content-centric architecture for opportunistic communi-
cation among mobile devices [15]).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced JION (JavaSpaces Im-
plementation for Opportunistic Networks), a JavaSpaces im-
plementation we designed and implemented specifically for
disconnected mobile ad hoc networks (D-MANETs). Using
JION, distributed applications based on the concept of tuple
spaces (as defined in the JavaSpaces specification) can be
deployed and executed in D-MANETs. JION provides an
effective base, which eases the development of D-MANETs’
applications. It has been tested in real conditions and is
now distributed under the terms of the GNU General Public
License.

Further tests are still under way in order to verify how stable
JION is in different kinds of challenged environments. Future
work should include the assessment of JION’s portability
(most likely by implementing it over the DTN2 reference
implementation), and an investigation of security issues per-
taining to the execution of JION-based distributed applications
in D-MANETs.

REFERENCES

[1] C. Liu and J. Kaiser, “A survey of mobile ad hoc network routing
protocols,” University of Magdeburg, Tech. Rep., 2005.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in ACM Annual Conference of the Special Interest Group on Data
Communication, Aug. 2003.

[3] L. Pelusi, A. Passarella, and M. Conti, “Opportunistic networking: Data
forwarding in disconnected mobile ad hoc networks,” IEEE Communi-
cations Magazine, Nov. 2006.

[4] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces(TM) Principles,
Patterns, and Practice. Prentice Hall, Jun. 1999.

[5] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, no. 4, pp. 444–458, Apr. 1989.

[6] J. Haillot and F. Guidec, “A protocol for content-based communication
in disconnected mobile ad hoc networks,” Journal of Mobile Information
Systems, vol. 6, no. 2, pp. 123–154, 2010.

[7] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” Duke University, Tech. Rep., Apr. 2000.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[9] H. Peine and T. Stolpmann, “The Architecture of the Ara Platform for
Mobile Agents,” in Proceedings of the First International Workshop on
Mobile Agents. London, UK: Springer-Verlag, 1997, p. 50–61.

[10] A. L. Murphy, G. P. Picco, and G.-C. Roman, “Lime: A coordination
model and middleware supporting mobility of hosts and agents,” ACM
Trans. Softw. Eng. Methodol., vol. 15, pp. 279–328, July 2006.

[11] C.-L. Fok, G.-C. Roman, and G. Hackmann, “A lightweight coordi-
nation middleware for mobile computing,” Coordination Models and
Languages, pp. 135–151, 2004.

[12] G.-C. Roman, R. Handorean, and R. Sen, “Tuple space coordination
across space and time,” in COORDINATION, 2006, pp. 266–280.

[13] A. Kaminsky and C. Bondada, “Tuple board: A new distributed com-
puting paradigm for mobile ad hoc networks,” First Annual Conference
on Computing and Information Sciences, pp. 5–7, 2005.

[14] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-tolerant networking architecture,” IETF
RFC 4838, Apr. 2007.

[15] E. Nordström, P. Gunningberg, and C. Rohner, “A search-based network
architecture for mobile devices,” Department of Information Technology,
Uppsala University, Tech. Rep. 2009-003, Jan. 2009.

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

