
Multiple Trajectory Search for the Resource-Constrained Project Scheduling
Problem

Lin-Yu Tseng
Department of Computer Science and Communication

Engineering
Providence University

Taichung, Taiwan
lytseng@pu.edu.tw

Kuan-Cheng Lin
Department of Computer Science and Engineering

National Chung Hsing University
Taichung, Taiwan

kclin@cs.nchu.edu.tw

Abstract—The resource-constrained project scheduling
problem is one of the most important scheduling problems and
has attracted much attention of researchers. In this study, we
proposed a new metaheuristic called the multiple trajectory
search for solving this problem. The multiple trajectory search
algorithm was previously proposed by us to solve the real-
parameter optimization problems, both single-objective and
multi-objective. And its performance was good as revealed by
the ranking in the competitions held in 2008 and 2009 IEEE
Congress on Evolutionary Computation. In this study, we
arranged the multiple trajectory search algorithm to solve a
combinatorial problem – the resource-constrained project
scheduling problem. The experimental results show that the
proposed method is competitive with other state-of-the-art
methods, especially for the problem sets with 30 and 60
activities.

Keywords- resource-constrained project scheduling problem;
multiple trajectory search; peak crossover; forward-backward
improvement

I. INTRODUCTION

The resource-constrained project scheduling problem
(RCPSP) is an important scheduling problem and many
researchers have devoted much effort solving it. Being an
NP-hard problem, Alcaraz and Maroto [1] mentioned that
the optimal solution could only be achieved by exact
solution procedure in small projects, usually with number of
activities less than 60 and with the project not highly
resource-constrained. Therefore, heuristic and metaheuristic
methods were designed to solve large and highly resource-
constrained projects.

Some algorithms are exact and are based on the branch-
and-bound strategy. Demeulemeester and Herroelen [2]
developed a depth-first branching scheme with dominance
criteria and the bounding rules. Brucker, Knust, Schoo and
Thiele [3] presented a branch-and-bound algorithm whose
branching scheme applied a set of conjunctions and
disjunctions to pairs of activities.

Some algorithms are heuristic. They are briefly
described in the following. Möhring, Schulz, Stork and Uetz
[4] proposed a heuristic based on the Lagrangian relaxation
and minimum cut computations. The heuristic methods
based on priority rules can be divided into two classes:

single-pass methods and multi-pass methods. The following
studies presented single-pass methods: Boctor [5], Kolisch
[6], Valls, Perez and Quintanilla [7], Ulusoy and Özdamar
[8], and Özdamar and Ulusoy [9]. Multi-pass methods were
presented in Ulusoy and Özdamar [8] and Boctor [5]. The
forward-backward methods were proposed in Li and Willis
[10] and Özdamar and Ulusoy [9].

Some metaheuristic algorithms were also proposed for
RCPSP. They include the genetic algorithm, the simulated
annealing, the tabu search, the ant colony optimization, the
path relinking, and hybrid algorithms. The following studies
incorporated genetic algorithms: Lee and Kim [11],
Özdamar [12], Mori and Tseng [13], Alcaraz and Maroto [1],
and Hartmann [14][15]. Some simulated annealing
algorithms were proposed by Boctor [16], Lee and Kim [11],
Cho and Kim [17], and Bouleimen and Lecocq [18].
Methods based on tabu search were presented in Valls,
Quintanilla and Ballestin [19] and Artigues, Michelon and
Reusser [20]. Merkle, Middendorf and Schmeck [21]
presented an ant colony optimization by using the
summation of the values in the pheromone set for this
problem. Valls, Ballestin and Quintanilla [22] presented a
simple technique named justification that can be applied in
many methods to improve the quality of solution without
generally requiring more computing time. They also
designed a peak crossover operator within a hybrid genetic
algorithm with justification [23].

The investigation of Hartmann and Kolisch [24] and its
updated version conducted an elaborate study on state-of-
the-art heuristic and metaheuristic methods. They presented
performance comparisons among heuristic and
metaheuristic methods in their study by applying these
methods to different standard instance sets, namely J30, J60
and J120, generated by ProGen in the PSPLIB [25]. As
shown by the latest experimental evaluation, metaheuristic
methods outperformed heuristic methods.

In this study, we arranged the multiple trajectory search
(MTS) algorithm that was previously proposed for
continuous optimization to solve the RCPSP. The results
obtained are comparable with the results obtained by other
state-of-the-art methods.

The remainder of the paper is organized as follows. In
Section II, the definition of the RCPSP is described. In
Section III, the proposed MTS for the RCPSP is elaborated.

74Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Section IV gives experimental results and Section V
concludes the paper.

II. DEFINITION OF THE PROBLEM

The single-mode RCPSP considers each activity in the
project having an operation mode only. All resources
available in the project are renewable. The objective is to
find a schedule of operation start times for activities, subject
to the precedence constraints and resource constraints, such
that the makespan of the project is minimized. The notations
are defined as follows. The set of activities in the project is
denoted by {0, 1, …, n, n+1}, where 0 and n+1 are dummy
activities and all other activities are non-dummy. The
operation start time of activity j is denoted by Sj. The
duration of activity j is denoted by dj. The set of resources in
the project is denoted by {1, 2, …, K}. The capacity of
resource k available in each time period during the process of
the project is denoted by Rk. The quantity of resource
demand of activity j to resource k is denoted by rjk. ij
denotes that activity i is a predecessor of activity j. Pj denotes
the set of all predecessors of activity j.

The project can be represented as an activity-on-node
network by the precedence relations. Fig. 1 shows an
example of a project of this problem. There is only one
resource with capacity 5 in this example. dj /rjk above each
node denotes the duration of activity and the demand of
activity j to resource k. The dummy activities which have
zero duration and no any resource demand are the single
source and sink in the network.

In this study, solutions are represented in the form of a
precedence-feasible activity list. When an activity list is
given, the serial schedule generation scheme is applied to
produce a schedule. We consider both of forward scheduling
and backward scheduling. A forward schedule is a mapping,
by this mapping, activity 0 to activity n+1 are mapped to a
set of operation start times which are set to be as early as
possible while satisfying the resource constraints. A
backward schedule is also a mapping, by this mapping,
activity n+1 to activity 0 are mapped to a set of operation
start times which are set to be as late as possible while
satisfying the resource constraints.

III. MULTIPLE TRAJECTORY SEARCH FOR RCPSP

The MTS was previously proposed by us to solve the
single-objective real-value optimization problem [26] and the
multi-objective real-value optimization problem [27]. In this
section, the proposed MTS for the RCPSP is elaborated. The
MTS consists of two phases. In the first phase, a set of seeds
are found, and in the second phase, a region search method is
applied to do the search beginning with each seed. A genetic
local search algorithm is used both in the first phase and in
the region search. We first introduce the MTS.

A. Multiple Trajectory Search

The MTS algorithm is described in the following.
Step1. Randomly generate the initial population and

apply the genetic local search algorithm to find
N good solutions.

Step2. Using these N good solutions as the initial
population, apply the genetic local search
algorithm again to find m seeds.

Step3. For each of these m seeds, apply the region search

algorithm to it.

Step4. When the maximum number of evaluations is

reached, output the best found solution.

Because most studies on the RCPSP used the maximum
number of evaluations as the termination condition, this
study also adopted it as the termination condition in order to
compare the results with those of others methods. The first
phase of the MTS consists of Step1 and Step2. One-tenth of
the maximum number of evaluations is used in Step1 to
globally find good solutions. Another one-tenth of the
maximum number of evaluations is used in Step2 to find m
seeds. Step3 and Step4 are the second phase. In the second
phase, we apply the region search algorithm to each seed
until the maximum number of evaluations is reached. In the
following subsections, we introduce the region search
algorithm and the genetic local search algorithm.

B. Region Search Algorithm

The region search begins with a seed. It first generates k
solutions from the seed by randomly picking p activities and
re-inserting them into the activity list. These k solutions
form the initial population of the genetic local search
algorithm. Then, it applies the genetic local search
algorithm to search for better solutions. If the best solution
found by the genetic local search algorithm is better than the
original seed, the best solution found replaces the original
seed, and the region search begins again with the new seed.
If the best solution found is not better than the original seed,
the value of p is set to 0.8* p. The value of 0.8 is determined
based on empirical experiences. The region search
terminates when the value of p reaches one-third of the
original value of p.

C. Genetic Local Search Algorithm

In the genetic local search algorithm, we use a modified
version of the peak crossover operator proposed by Valls,
Ballestin and Quintanilla [23]. Also, based on the FBI
(forward-backward improvement) [10], we proposed the
FBI-WP (forward-backward improvement with perturbation)
as the local search scheme. We now describe the genetic
local search algorithm in the following.

Step1. The following Step2 to Step4 are executed

#_of_generation times.

Step2. Randomly pair all chromosomes in the parent
population, then apply modified peak crossover
operator to each pair of parents. All child
chromosomes are put in the child population.

75Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Step3. Apply FBI-WP to each chromosome in the child
population.

Step4. Apply 2-tournament selection to the parent

population and the child population to produce
the population for the next generation.

Next, let us explain the modified peak crossover

operator. Let the parent chromosomes be F and M. Two
resources r1 and r2 are randomly selected as the basis for
calculating the peak. The average usage avgr and the
maximum usage maxr of the resource r are calculated, and a
threshold tr is defined as tr = avgr + (maxr - avgr)*0.5. For F
(or M), the time units where the resource usage is greater
than this threshold are taken as the peak. Suppose that the
crossover of F and M is to produce S and D, then S
preserves the peak of F and the other activities come from
M, and in a similar way, D preserves the peak of M and the
other activities come from F.

Forward-backward improvement (FBI) was proposed by
Li and Willis [10]. Basically, this scheme iteratively applies
serial forward and backward scheduling until no further
improvement in the makespan can be obtained. The activity
finish times of a forward schedule determine the activity
priorities when we produce the next backward schedule.
And the activity start times of a backward schedule
determine the activity priorities when we produce the next
forward schedule. Valls, Ballestin and Quintanilla [22]
showed that the FBI is rather effective. In this study, we add
a perturbation mechanism to the FBI. If two consecutive
applications of the FBI does not improve the solution, we
perturb (mutate) the solution before continue to apply the
FBI. In the perturbation, we re-insert randomly chosen
activities num_of_mutate times. The application of the FBI
will be terminated only when the number of no
improvement reaches a pre-specified value
(Max_No_Improve).

IV. EXPERIMENTAL RESULTS

The proposed MTS for the RCPSP was implemented in
C++ and applied to solve the standard instance sets J30, J60,
and J120 generated by the problem generator ProGen
devised by Kolisch and Sprecher [25], which were available
in PSPLIB [28]. Both J30 and J60 contain 480 instances, and
J120 contains 600 instances. Only in J30 the optimal
makespans for all instances are known. In J60 and J120 the
optimal makespans for some instances are not known and
only upper bounds (best known solutions) and lower bounds
are provided. The lower bounds are determined by the
critical path method. The performance comparison between
different methods is conducted by evaluating the same
number of schedules, namely, 1000, 5000 and 50000
schedules in order to make it a machine-independent
comparison.

The values of parameters were set by some preliminary
experiments. These values are shown in Table I. The average
deviation from the optimal makespans or the lower bounds

and the CPU time used by the MTS are shown in Table II.
Tables III to V list the performance comparison of the MTS
with other state-of-the-art methods on J30, J60 and J120
respectively. From the last three Tables, the performances of
the MTS are ranked the third on J30, the second on J60, and
the fifth on J120 when compared with other state-of-the-art
methods.

V. CONCLUSIONS AND FUTURE RESEARCH

The MTS was previously proposed for solving
continuous optimization, both single-objective and multi-
objective. The performance of the MTS was good for the
real-parameter optimization. In this study, we arranged the
MTS to solve the RCPSP, which is a combinatorial
optimization problem. The result obtained is promising,
though not excellent.

The combinatorial optimization is quite different from
the continuous optimization. How to convert the concepts
used in the continuous version of the MTS to fit the
characteristics of the combinatorial optimization is the main
issue in the future research. The other future research topics
are trying to solve other combinatorial optimization
problems by applying the MTS.

ACKNOWLEDGMENT

The authors thank National Science Council of the
Republic of China, Taiwan (Contract No. NSC98-2221-
E126-014-MY3) for partially supporting this research work.

REFERENCES
[1] J. Alcaraz and C. Maroto, “A robust genetic algorithm for

resource allocation in project scheduling,” Annals of
Operations Research, 2001. 102: pp. 83-109.

[2] E Demeulemeester and W. Herroelen, “A branch-and-bound
procedure for the multiple resource-constrained project
scheduling problem,” Management Science, 1992. 38(12): pp.
1803-1818.

[3] P. Brucker, S. Knust, A. Schoo, and O. Thiele, “A branch and
bound algorithm for the resource-constrained project
scheduling problem,” European Journal of Operational
Research, 1998. 107(2): pp. 272-288.

[4] R. Möhring, A. Schulz, F. Stork, and M. Uetz, “Solving project
scheduling problems by minimum cut computations,”
Management Science, 2003. 49(3): pp. 330-350.

[5] F.F. Boctor, “Some efficient multi-heuristic procedures for
resource-constrained project scheduling,” European Journal of
Operational Research, 1990. 49(1): p. 3-13.

[6] R. Kolisch, “Efficient priority rules for the resource-
constrained project scheduling problem”, J. Oper. Manag., vol.
14, pp. 179-192, 1996.

[7] V. Valls, M.A. Perez, and M.S. Quintanilla, “Heuristic
performance in large resource-constrained projects”,
Technical Report, Department of Statistics and Operations
Research, Universitat de Valencia, Valencia, Spain, 1992.

[8] G. Ulusoy and L. Ozdamar, “A constraint-based perspective
in resource constrained project scheduling,” International
Journal of Production Research, 1994. 32(3): pp. 693-705.

[9] L. Ozdamar and G. Ulusoy, “A note on an iterative forward
backward scheduling technique with reference to a procedure
by Li and Willis,” European Journal of Operational Research,
1996. 89(2): pp. 400-407.

76Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

[10] K.Y. Li and R.J. Willis, “An iterative scheduling technique
for resource-constrained project scheduling,” European
Journal of Operational Research, 1992. 56(3): pp. 370-379.

[11] J.K. Lee and Y.D. Kim, “Search heuristics for resource
constrained project scheduling,” Journal of the Operational
Research Society, 1996. 47(5): pp. 678-689.

[12] L. Ozdamar , “A genetic algorithm approach to a general
category project scheduling problem,” Ieee Transactions on
Systems Man and Cybernetics Part C - Applications and
Reviews, 1999. 29(1): pp. 44-59.

[13] M. Mori and C.C. Tseng, “A genetic algorithm for multi-
mode resource constrained project scheduling problem,”
European Journal of Operational Research, 1997. 100(1): pp.
134-141.

[14] S. Hartmann, “A competitive genetic algorithm for resource-
constrained project scheduling,” Naval Research Logistics,
1998. 45(7): pp. 733-750.

[15] S. Hartmann, “A self-adapting genetic algorithm for project
scheduling under resource constraints,” Naval Research
Logistics, 2002. 49(5): pp. 433-448.

[16] F.F. Boctor, “Heuristics for scheduling projects with resource
restrictions and several resource-duration modes,”
International Journal of Production Research, 1993. 31(11):
pp. 2547-2558.

[17] J.H. Cho and Y.D. Kim, “A simulated annealing algorithm for
resource constrained project scheduling problems,” Journal of
the Operational Research Society, 1997. 48(7): pp. 736-744.

[18] K. Bouleimen. and H. Lecocq, “A new efficient simulated
annealing algorithm for the resource-constrained project
scheduling problem and its multiple mode version,” European
Journal of Operational Research, 2003. 149(2): pp. 268-281.

[19] V. Valls , S. Quintanilla, and F. Ballestin, “Resource-
constrained project scheduling: A critical activity reordering
heuristic,” European Journal of Operational Research, 2003.
149(2): pp. 282-301.

[20] C. Artigues , P. Michelon, and S. Reusser, “Insertion
techniques for static and dynamic resource-constrained
project scheduling,” European Journal of Operational
Research, 2003. 149(2): pp. 249-267.

[21] D. Merkle , M. Middendorf, and H. Schmeck, “Ant colony
optimization for resource-constrained project scheduling,”
IEEE Transactions on Evolutionary Computation, 2002. 6(4):
pp. 333-346.

[22] V. Valls, F. Ballestin, and S. Quintanilla, “Justification and
RCPSP: A technique that pays,” European Journal of
Operational Research, 2005. 165(2): pp. 375-386.

[23] V. Valls , F. Ballestin, and S. Quintanilla, “A hybrid genetic
algorithm for the resource-constrained project scheduling
problem.,” European Journal of Operational Research, 2008.
185(2): pp. 495-508.

[24] S. Hartmann and R. Kolisch, “Experimental evaluation of
state-of-the-art heuristics for the resource-constrained project
scheduling problem,” European Journal of Operational
Research, 2000. 127(2): pp. 394-407.

[25] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling
problem library,” European Journal of Operational Research,
1997. 96(1): pp. 205-216.

[26] L. Y. Tseng and C. Chen, “Multiple Trajectory Search for
Large Scale Global Optimization,” Proceedings of the 2008
IEEE Congress on Evolutionary Computation, June 2-6, 2008,
Hong Kong.

[27] Lin-Yu Tseng and Chun Chen, “Multiple Trajectory Search
for Unconstrained/Constrained Multi-Objective
Optimization,” Proceedings of the 2009 IEEE Congress on
Evolutionary Computation, May 18-21, Trondheim, Norway.

[28] PROJECT SCHEDULING PROBLEM LIBRARY - PSPLIB,
http://129.187.106.231/psplib/

[29] M. Ranjbar and F. Kianfar, “A Hybrid Scatter Search for the
RCPSP,” Scientia Iranica Transaction E-Industrial
Engineering, 2009. 16(1): pp. 11-18.

[30] Y. Kochetov and A. Stolyar, “Evolutionary local search with
variable neighborhood search for the resource-constrained
project scheduling problem”, Proc. of the 3rd International
Workshop of Computer Science and Information
Technologies, Russia, 2003.

[31] V. Valls, F. Ballestin, and S. Quintanilla, “A population-based
approach to the resource-constrained project scheduling
problem”, Ann. Oper. Res., vol. 165, pp. 375-386, 2005.

[32] P. Tormos and A. Lova, “A competitive heuristic solution
technique for Resource-Constrained Project Scheduling,”
Annals of Operations Research, 2001. 102: pp. 65-81.

[33] K. Nonobe and T. Ibaraki, “Formulation and tabu search
algorithm for the resource constrained project scheduling
problem”, in Essays and surveys in metaheuristics, Ribeiro,
CC. and Hansen, P. (Ed.), Kluwer Academic Publishers, pp.
557-588, 2001.

Figure 1. A project example for the RCPSP.

77Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Table I The setting of parameter values

Table II The average deviation achieved and the CPU time spent by the MTS

 max-sch J30 J60 J120

Avg. Dev.(%)
1000 0.12 11.72 35.81
5000 0.04 11.05 33.67
50000 0.01 10.67 32.11

Avg. CPU
(seconds)

1000 0.005 0.019 0.089
5000 0.013 0.080 0.396
50000 0.054 0.783 3.781

Table III Performance comparison of MTS and other state-of-the-art methods on J30

Author(s) Algorithm type
Average deviation(%)
1000 5000 50000

M. Ranjbar and F. Kianfar [29] HSS, path reli. 0.10 0.03 0.00
Kochetov and Stolyar [30] GA, TS, path reli. 0.10 0.04 0.00
This study MTS, GLS, FBI 0.12 0.04 0.01*
Valls et al. [23] Hybrid GA 0.27 0.06 0.02
Alcaraz and Maroto [1] GA 0.33 0.12 –
Valls et al. [31] DJGA 0.34 0.20 0.02
Tormos and Lova [32] Sampling + BF/FB 0.25 0.13 0.05
Nonobe and Ibaraki [33] Tabu Search 0.46 0.16 0.05
Tormos and Lova [32] Sampling + BF 0.30 0.16 0.07
Hartmann [15] Self-adapting GA 0.38 0.22 0.08

Parameter Max_#_sched J30 J60 J120
N (size of initial population) All 20

m (# of seeds) All 3
k (popul. size of region search) All 12

Max_No_Improve All 3

Number of GLS generations
1000 10
5000 15
50000 45

num_of_mutate All 15 30 60
p (# of activities to be re-

inserted)
All 24 30 50

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Table IV Performance comparison of MTS and other state-of-the-art methods on J60

Author(s) Algorithm type
Average deviation(%)
1000 5000 50000

M. Ranjbar and F. Kianfar [29] HSS, path reli. 11.59 11.07 10.64
This study MTS, GLS, FBI 11.72 11.05 10.67*
Valls et al. [23] Hybrid GA 11.56 11.10 10.73
Kochetov and Stolyar [30] GA, TS, path reli. 11.71 11.17 10.74
Valls et al. [31] DJGA 12.21 11.27 10.74
Hartmann [15] Self-adapting GA 12.21 11.7 11.21
Hartmann [14] Activity list GA 12.68 11.89 11.23
Tormos and Lova [32] Sampling + BF/FB 11.88 11.62 11.36
Tormos and Lova [32] Sampling + BF 12.14 11.82 11.47
Alcaraz and Maroto [1] GA 12.57 11.86 –

Table V Performance comparison of MTS and other state-of-the-art methods on J120

Author(s) Algorithm type
Average deviation(%)
1000 5000 50000

Valls et al. [23] Hybrid GA 34.07 32.54 31.24
M. Ranjbar and F. Kianfar [29] HSS, path reli. 35.08 33.24 31.49
Valls et al. [31] DJGA 35.39 33.24 31.58
Kochetov and Stolyar [30] GA, TS, path reli. 34.74 33.36 32.06
This study MTS, GLS, FBI 35.81 33.67 32.11*

Valls et al. [31]
DJ, population based, changes
operator

35.18 34.02 32.81

Hartmann [15] Self-adapting GA 37.19 35.39 33.21
Tormos and Lova [32] Sampling + BF/FB 35.01 34.41 33.71
Merkle et al. [21] Ant Co. Opt. – 35.43 –
Hartmann [14] Activity list GA 39.37 36.74 34.03

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

