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Abstract—The resource-constrained project scheduling 
problem is one of the most important scheduling problems and 
has attracted much attention of researchers. In this study, we 
proposed a new metaheuristic called the multiple trajectory 
search for solving this problem. The multiple trajectory search 
algorithm was previously proposed by us to solve the real-
parameter optimization problems, both single-objective and 
multi-objective. And its performance was good as revealed by 
the ranking in the competitions held in 2008 and 2009 IEEE 
Congress on Evolutionary Computation. In this study, we 
arranged the multiple trajectory search algorithm to solve a 
combinatorial problem – the resource-constrained project 
scheduling problem. The experimental results show that the 
proposed method is competitive with other state-of-the-art 
methods, especially for the problem sets with 30 and 60 
activities. 
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I.  INTRODUCTION 

The resource-constrained project scheduling problem 
(RCPSP) is an important scheduling problem and many 
researchers have devoted much effort solving it. Being an 
NP-hard problem, Alcaraz and Maroto [1] mentioned that 
the optimal solution could only be achieved by exact 
solution procedure in small projects, usually with number of 
activities less than 60 and with the project not highly 
resource-constrained. Therefore, heuristic and metaheuristic 
methods were designed to solve large and highly resource-
constrained projects. 

Some algorithms are exact and are based on the branch-
and-bound strategy. Demeulemeester and Herroelen [2] 
developed a depth-first branching scheme with dominance 
criteria and the bounding rules. Brucker, Knust, Schoo and 
Thiele [3] presented a branch-and-bound algorithm whose 
branching scheme applied a set of conjunctions and 
disjunctions to pairs of activities. 

Some algorithms are heuristic. They are briefly 
described in the following. Möhring, Schulz, Stork and Uetz 
[4] proposed a heuristic based on the Lagrangian relaxation 
and minimum cut computations. The heuristic methods 
based on priority rules can be divided into two classes: 

single-pass methods and multi-pass methods. The following 
studies presented single-pass methods: Boctor [5], Kolisch 
[6], Valls, Perez and Quintanilla [7], Ulusoy and Özdamar 
[8], and Özdamar and Ulusoy [9]. Multi-pass methods were 
presented in Ulusoy and Özdamar [8] and Boctor [5]. The 
forward-backward methods were proposed in Li and Willis 
[10] and Özdamar and Ulusoy [9].  

Some metaheuristic algorithms were also proposed for 
RCPSP. They include the genetic algorithm, the simulated 
annealing, the tabu search, the ant colony optimization, the 
path relinking, and hybrid algorithms. The following studies 
incorporated genetic algorithms: Lee and Kim [11], 
Özdamar [12], Mori and Tseng [13], Alcaraz and Maroto [1], 
and Hartmann [14][15]. Some simulated annealing 
algorithms were proposed by Boctor [16], Lee and Kim [11], 
Cho and Kim [17], and Bouleimen and Lecocq [18]. 
Methods based on tabu search were presented in Valls, 
Quintanilla and Ballestin [19] and Artigues, Michelon and 
Reusser [20]. Merkle, Middendorf and Schmeck [21] 
presented an ant colony optimization by using the 
summation of the values in the pheromone set for this 
problem. Valls, Ballestin and Quintanilla [22] presented a 
simple technique named justification that can be applied in 
many methods to improve the quality of solution without 
generally requiring more computing time. They also 
designed a peak crossover operator within a hybrid genetic 
algorithm with justification [23]. 

The investigation of Hartmann and Kolisch [24] and its 
updated version conducted an elaborate study on state-of-
the-art heuristic and metaheuristic methods. They presented 
performance comparisons among heuristic and 
metaheuristic methods in their study by applying these 
methods to different standard instance sets, namely J30, J60 
and J120, generated by ProGen in the PSPLIB [25]. As 
shown by the latest experimental evaluation, metaheuristic 
methods outperformed heuristic methods.  

In this study, we arranged the multiple trajectory search 
(MTS) algorithm that was previously proposed for 
continuous optimization to solve the RCPSP. The results 
obtained are comparable with the results obtained by other 
state-of-the-art methods. 

The remainder of the paper is organized as follows. In 
Section II, the definition of the RCPSP is described. In 
Section III, the proposed MTS for the RCPSP is elaborated. 
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Section IV gives experimental results and Section V 
concludes the paper. 

II. DEFINITION OF THE PROBLEM 

The single-mode RCPSP considers each activity in the 
project having an operation mode only. All resources 
available in the project are renewable. The objective is to 
find a schedule of operation start times for activities, subject 
to the precedence constraints and resource constraints, such 
that the makespan of the project is minimized. The notations 
are defined as follows. The set of activities in the project is 
denoted by {0, 1, …, n, n+1}, where 0 and n+1 are dummy 
activities and all other activities are non-dummy. The 
operation start time of activity j is denoted by Sj. The 
duration of activity j is denoted by dj. The set of resources in 
the project is denoted by {1, 2, …, K}. The capacity of 
resource k available in each time period during the process of 
the project is denoted by Rk. The quantity of resource 
demand of activity j to resource k is denoted by rjk. ij 
denotes that activity i is a predecessor of activity j. Pj denotes 
the set of all predecessors of activity j.  

The project can be represented as an activity-on-node 
network by the precedence relations. Fig. 1 shows an 
example of a project of this problem. There is only one 
resource with capacity 5 in this example. dj /rjk above each 
node denotes the duration of activity and the demand of 
activity j to resource k. The dummy activities which have 
zero duration and no any resource demand are the single 
source and sink in the network. 

In this study, solutions are represented in the form of a 
precedence-feasible activity list. When an activity list is 
given, the serial schedule generation scheme is applied to 
produce a schedule. We consider both of forward scheduling 
and backward scheduling. A forward schedule is a mapping, 
by this mapping, activity 0 to activity n+1 are mapped to a 
set of operation start times which are set to be as early as 
possible while satisfying the resource constraints. A 
backward schedule is also a mapping, by this mapping, 
activity n+1 to activity 0 are mapped to a set of operation 
start times which are set to be as late as possible while 
satisfying the resource constraints. 

III. MULTIPLE TRAJECTORY SEARCH FOR RCPSP 

The MTS was previously proposed by us to solve the 
single-objective real-value optimization problem [26] and the 
multi-objective real-value optimization problem [27]. In this 
section, the proposed MTS for the RCPSP is elaborated. The 
MTS consists of two phases. In the first phase, a set of seeds 
are found, and in the second phase, a region search method is 
applied to do the search beginning with each seed. A genetic 
local search algorithm is used both in the first phase and in 
the region search. We first introduce the MTS. 

A. Multiple Trajectory Search  

The MTS algorithm is described in the following. 
Step1. Randomly generate the initial population and 

apply the genetic local search algorithm to find 
N good solutions. 

 

Step2. Using these N good solutions as the initial 
population, apply the genetic local search 
algorithm again to find m seeds. 

 
Step3.  For each of these m seeds, apply the region search 

algorithm to it. 
 
Step4. When the maximum number of evaluations is 

reached, output the best found solution.  
 

Because most studies on the RCPSP used the maximum 
number of evaluations as the termination condition, this 
study also adopted it as the termination condition in order to 
compare the results with those of others methods. The first 
phase of the MTS consists of Step1 and Step2. One-tenth of 
the maximum number of evaluations is used in Step1 to 
globally find good solutions. Another one-tenth of the 
maximum number of evaluations is used in Step2 to find m 
seeds. Step3 and Step4 are the second phase. In the second 
phase, we apply the region search algorithm to each seed 
until the maximum number of evaluations is reached. In the 
following subsections, we introduce the region search 
algorithm and the genetic local search algorithm. 

B. Region Search Algorithm 

The region search begins with a seed. It first generates k 
solutions from the seed by randomly picking p activities and 
re-inserting them into the activity list. These k solutions 
form the initial population of the genetic local search 
algorithm. Then, it applies the genetic local search 
algorithm to search for better solutions. If the best solution 
found by the genetic local search algorithm is better than the 
original seed, the best solution found replaces the original 
seed, and the region search begins again with the new seed. 
If the best solution found is not better than the original seed, 
the value of p is set to 0.8* p. The value of 0.8 is determined 
based on empirical experiences. The region search 
terminates when the value of p reaches one-third of the 
original value of p. 

C. Genetic Local Search Algorithm 

In the genetic local search algorithm, we use a modified 
version of the peak crossover operator proposed by Valls, 
Ballestin and Quintanilla [23]. Also, based on the FBI 
(forward-backward improvement) [10], we proposed the 
FBI-WP (forward-backward improvement with perturbation) 
as the local search scheme. We now describe the genetic 
local search algorithm in the following. 

 
Step1. The following Step2 to Step4 are executed 

#_of_generation times. 
 

Step2.  Randomly pair all chromosomes in the parent 
population, then apply modified peak crossover 
operator to each pair of parents. All child 
chromosomes are put in the child population. 
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Step3.  Apply FBI-WP to each chromosome in the child 
population. 

 
Step4. Apply 2-tournament selection to the parent 

population and the child population to produce 
the population for the next generation. 

 
Next, let us explain the modified peak crossover 

operator. Let the parent chromosomes be F and M. Two 
resources r1 and r2 are randomly selected as the basis for 
calculating the peak. The average usage avgr and the 
maximum usage maxr of the resource r are calculated, and a 
threshold tr is defined as tr = avgr + (maxr - avgr)*0.5. For F 
(or M), the time units where the resource usage is greater 
than this threshold are taken as the peak. Suppose that the 
crossover of F and M is to produce S and D, then S 
preserves the peak of F and the other activities come from 
M, and in a similar way, D preserves the peak of M and the 
other activities come from F. 

Forward-backward improvement (FBI) was proposed by 
Li and Willis [10]. Basically, this scheme iteratively applies 
serial forward and backward scheduling until no further 
improvement in the makespan can be obtained. The activity 
finish times of a forward schedule determine the activity 
priorities when we produce the next backward schedule. 
And the activity start times of a backward schedule 
determine the activity priorities when we produce the next 
forward schedule. Valls, Ballestin and Quintanilla [22] 
showed that the FBI is rather effective. In this study, we add 
a perturbation mechanism to the FBI. If two consecutive 
applications of the FBI does not improve the solution, we 
perturb (mutate) the solution before continue to apply the 
FBI. In the perturbation, we re-insert randomly chosen 
activities num_of_mutate times. The application of the FBI 
will be terminated only when the number of no 
improvement reaches a pre-specified value 
(Max_No_Improve). 

IV. EXPERIMENTAL RESULTS 

The proposed MTS for the RCPSP was implemented in 
C++ and applied to solve the standard instance sets J30, J60, 
and J120 generated by the problem generator ProGen 
devised by Kolisch and Sprecher [25], which were available 
in PSPLIB [28]. Both J30 and J60 contain 480 instances, and 
J120 contains 600 instances. Only in J30 the optimal 
makespans for all instances are known. In J60 and J120 the 
optimal makespans for some instances are not known and 
only upper bounds (best known solutions) and lower bounds 
are provided. The lower bounds are determined by the 
critical path method. The performance comparison between 
different methods is conducted by evaluating the same 
number of schedules, namely, 1000, 5000 and 50000 
schedules in order to make it a machine-independent 
comparison. 

The values of parameters were set by some preliminary 
experiments. These values are shown in Table I. The average 
deviation from the optimal makespans or the lower bounds 

and the CPU time used by the MTS are shown in Table II. 
Tables III to V list the performance comparison of the MTS 
with other state-of-the-art methods on J30, J60 and J120 
respectively. From the last three Tables, the performances of 
the MTS are ranked the third on J30, the second on J60, and 
the fifth on J120 when compared with other state-of-the-art 
methods. 

V. CONCLUSIONS AND FUTURE RESEARCH 

The MTS was previously proposed for solving 
continuous optimization, both single-objective and multi-
objective. The performance of the MTS was good for the 
real-parameter optimization. In this study, we arranged the 
MTS to solve the RCPSP, which is a combinatorial 
optimization problem. The result obtained is promising, 
though not excellent. 

The combinatorial optimization is quite different from 
the continuous optimization. How to convert the concepts 
used in the continuous version of the MTS to fit the 
characteristics of the combinatorial optimization is the main 
issue in the future research. The other future research topics 
are trying to solve other combinatorial optimization 
problems by applying the MTS. 
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Figure 1.  A project example for the RCPSP. 
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Table I The setting of parameter values  

 

 

 

 

 

 

 

 

 

Table II The average deviation achieved and the CPU time spent by the MTS 

 max-sch J30 J60 J120 

Avg. Dev.(%) 
1000 0.12 11.72 35.81 
5000 0.04 11.05 33.67 
50000 0.01 10.67 32.11 

Avg. CPU 
(seconds) 

1000 0.005 0.019 0.089 
5000 0.013 0.080 0.396 
50000 0.054 0.783 3.781 

 

 

Table III Performance comparison of MTS and other state-of-the-art methods on J30 

Author(s) Algorithm type 
Average deviation(%) 
1000 5000 50000 

M. Ranjbar and F. Kianfar [29] HSS, path reli. 0.10 0.03 0.00 
Kochetov and Stolyar [30] GA, TS, path reli. 0.10 0.04 0.00 
This study MTS, GLS, FBI 0.12 0.04 0.01* 
Valls et al. [23] Hybrid GA 0.27 0.06 0.02 
Alcaraz and Maroto [1] GA 0.33 0.12 – 
Valls et al. [31] DJGA 0.34 0.20 0.02 
Tormos and Lova [32] Sampling + BF/FB 0.25 0.13 0.05 
Nonobe and Ibaraki [33] Tabu Search 0.46 0.16 0.05 
Tormos and Lova [32] Sampling + BF 0.30 0.16 0.07 
Hartmann [15] Self-adapting GA 0.38 0.22 0.08 

 

Parameter Max_#_sched J30 J60 J120 
N (size of initial population) All 20 

m (# of seeds) All 3 
k (popul. size of region search) All 12 

Max_No_Improve All 3 

Number of GLS generations 
1000 10 
5000 15 
50000 45 

num_of_mutate All 15 30 60 
p (# of activities to be re-

inserted) 
All 24 30 50 
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Table IV Performance comparison of MTS and other state-of-the-art methods on J60 

Author(s) Algorithm type 
Average deviation(%) 
1000 5000 50000 

M. Ranjbar and F. Kianfar [29] HSS, path reli. 11.59 11.07 10.64 
This study MTS, GLS, FBI 11.72 11.05 10.67* 
Valls et al. [23] Hybrid GA 11.56 11.10 10.73 
Kochetov and Stolyar [30] GA, TS, path reli. 11.71 11.17 10.74 
Valls et al. [31] DJGA 12.21 11.27 10.74 
Hartmann [15] Self-adapting GA 12.21 11.7 11.21 
Hartmann [14] Activity list GA 12.68 11.89 11.23 
Tormos and Lova [32] Sampling + BF/FB 11.88 11.62 11.36 
Tormos and Lova [32] Sampling + BF 12.14 11.82 11.47 
Alcaraz and Maroto [1] GA 12.57 11.86 – 

 

 

Table V Performance comparison of MTS and other state-of-the-art methods on J120 

Author(s) Algorithm type 
Average deviation(%) 
1000 5000 50000 

Valls et al. [23] Hybrid GA 34.07 32.54 31.24 
M. Ranjbar and F. Kianfar [29] HSS, path reli. 35.08 33.24 31.49 
Valls et al. [31] DJGA 35.39 33.24 31.58 
Kochetov and Stolyar [30] GA, TS, path reli. 34.74 33.36 32.06 
This study MTS, GLS, FBI 35.81 33.67 32.11* 

Valls et al. [31] 
DJ, population based, changes 
operator 

35.18 34.02 32.81 

Hartmann [15] Self-adapting GA 37.19 35.39 33.21 
Tormos and Lova [32] Sampling + BF/FB 35.01 34.41 33.71 
Merkle et al. [21] Ant Co. Opt. – 35.43 – 
Hartmann [14] Activity list GA 39.37 36.74 34.03 
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