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Abstract—Recent advances in mobile services have led to
ever-increasing demands for high performance mobile database
due to its data-centric characteristics. However, NAND flash
memory, which is the main storage medium of mobile device
has drawbacks in write operation because of its erase-before-
write characteristics. In an attempt to overcome the draw-
backs of the NAND flash memory, we propose a new mobile
database management system (MDBMS), called P-SQLITE. It
is enhanced with the find-grained data management techniques
for using phage change random access memory (PRAM) as a
caching layer between main memory and NAND flash memory.
P-SQLITE continuously monitors the write patterns to identify
hot chunk which is fine-grained file access unit and migrates
the hot chunks from NAND flash memory to the PRAM. The
experimental results show that the P-SQLITE improves the
write performance by 47% than the previous MDBMS.
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I. INTRODUCTION

In current mobile devices, NAND flash memory has led
the mobile device market as a main storage system due
to its portability, large capacity, and performance of read
operation. Even though it has outstanding features for mobile
environment, it has two serious limitations. One of the prob-
lem is read and write asymmetry where the write operation
is almost 10 times slower than the read operation. If the
application running on the mobile device is write-intensive,
the performance of NAND flash memory is degraded itself.
Also, garbage collection overhead is another drawback of
it. Because NAND flash memory cannot execute in-place
update which updates previously saved data in the same
physical location of its cell, it invalidates the original data in
a previous location and stores updated data in a new location.
When the occupation of invalidated data in NAND flash
memory is increased in some degree, garbage collection is
performed to reclaim the invalidated data. Since the garbage
collection causes additional write and erase operations, per-
formance degradation occurs.

In order to overcome these drawbacks, non-volatile ran-
dom access memories (NVRAM) such as phase change
RAM (PRAM) [1], ferroelectric RAM (FRAM) [2], and
magnetoresistive RAM (MRAM) [3] are widely employed
as a candidate for the storage system of the mobile device
to replace NAND flash memory. Among these memories,

PRAM is the closest to being on the market. One of
the attractive points of PRAM compared to NAND flash
memory is its speed of write operation. Additionally, it has
in-place update characteristics where NAND flash memory
doesn’t offer. However, PRAM has a capacity problem due
to the limitation of the current technology. To overcome
this problem, hybrid approach, which is the combination of
NAND flash memory and PRAM is studied currently in the
storage area [4], [5]. From this, it is possible to achieve the
benefits of NAND flash memory (large capacity, fast read
speed) and PRAM (fast write speed, in-place update).

Concurrently, mobile database management system
(MDBMS) has been developed as a software data man-
agement system of the mobile device. Especially, SQLite
[6] is widely used as a database to manage the data of
mobile applications in the Android [7] platform which is the
famous mobile Operating System (OS) released by Google.
The performance of SQLite is bounded by that of storage
because it stores the whole database in the host file system as
a single file [8]. It means that the execution time of mobile
application is closely related to the degradation of NAND
flash memory performance due to the write performance.

In this paper, we propose a new mobile database man-
agement system, called P-SQLITE to enhance the write
performance of MDBMS by applying hybrid architecture
composed of NAND flash memory and PRAM. P-SQLITE
detects the fine-grained hotness (write count) of MDBMS
chunks which are fine-grained file access units and transfers
them to PRAM. Also, it contains chunk migration consid-
ering the limited capacity of PRAM so that more recent
written chunks are placed in the PRAM.

The remaining part of this paper is organized as follows.
Section II introduces the previous work to enhance MDBMS
with various methods. In Section III, overall architecture of
P-SQLITE which is our proposed MDBMS are explained.
Detailed descriptions of its modules and functionalities are
discussed in Section IV. Evaluation for them are summarized
in Section V while the conclusion and future work are given
in Section VI.
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Figure 1: Overall Architecture of P-SQLITE compared with Previous MDBMS Architecture

II. RELATED WORK

There are several researches to leverage the write per-
formance of the file system equipped with NAND flash
memory. As a recent study of software support, Yanfei
Lv et al. [9] proposed operation-aware buffer management
in the flash-based system to reduce the cost of read/write
performance of NAND flash memory. They suggest Flash-
based Operation-aware buffer Replacement (FOR) algorithm
which considers both asymmetry of read/write speed and op-
eration wise statistics to achieve high performance. However,
it fails to support consistency of the dirty data in the buffer
in case of unexpected power failure which brings the loss
of valuable and necessary user data in the mobile devices.

PFFS2 [10] suggested PRAM as a metadata storage to
reduce garbage collection overhead and write operations of
NAND flash memory in the file system layer. Metadata
is the data which indicates the fundamental information
data of the file. In this research, they use virtual metadata
storage which enables the migration when there is excess of
metadata in PRAM. However, it is not appropriate to apply
this method to improve the write performance of MDBMS
since it handles a database as a single file.

Also, there were some efforts to leverage write perfor-
mance on MDBMS. Y. park et al. [11] studied the effect of
rollback journal files of MDBMS. Rollback journal files are
back-up files to prevent unexpected loss of power during
the modification. They decrease the write latency of the
journal files and the number of garbage collections in NAND
flash memory by storing them into the PRAM. Even if they
increase the performance of MDBMS, it cannot handle the
excess of the journal files due to various mobile databases
since they assume the sufficient size of PRAM.

By analyzing the relationship between previous works and
MDBMS, some important criteria should be guaranteed to
improve its performance. First of all, gap between the hybrid
storage architecture and current MDBMS have to be solved.
Because current MDBMS is mismatched with the hybrid
storage architecture in respect of data storing, this bottleneck
should be solved to increase the write performance. Finally,
the limited capacity of PRAM should be considered. Without

the practical restriction of PRAM size, it is hard to assure
improvement of write performance where PRAM is full.

III. P-SQLITE OVERVIEW

In this section, the overall design of P-SQLITE and
its process sequence are described. It contains P-SQLITE
module to leverage the write performance of the storage.
Even when it needs additional operations compared to
previous MDBMS to achieve fine-grained management of
data, we improve the write performance of MDBMS through
P-SQLITE.

Figure 1 shows the overall architecture of P-SQLITE
compared with previous MDBMS architecture. In the case of
previous MDBMS, data is firstly inserted as structured query
language (SQL). After that, the SQL analyzer parses and
figures out the SQL. Then, the data with the SQL is stored
in the form of a node or nodes of B-tree and stored in a file
through the storage interface. However, previous MDBMS
doesn’t use the database chunk as a unit of data management
where it is a node of B-tree and fundamental structure of
MDBMS. Thus, this architecture considers neither the write
frequency of each chunk of the file nor hybrid storage system
to enhance the write performance.

On the other hand, P-SQLITE enables fine-grained hot-
cold separation and migration of chunks on the hybrid
architecture composed of PRAM and NAND flash memory.
To do this, it contains new modules in the storage interface.
The P-SQLITE module is composed of three main parts
which are section table, hot chunk decision module, and
chunk migration module. Section table records the write
count of each chunk periodically. Based on this informa-
tion, hot chunk decision module decides whether chunk is
allocated in PRAM or not. The module puts marks for
selected chunks on section table, not placing them at that
moment. When actual writing is requested for the marked
chunks again,the chunk actually is stored in NVRAM at that
moment. This lazy policy reduces unnecessary migration of
a chunk from NAND flash memory to NVRAM. Lastly,
chunk migration module migrates relatively colder chunks
from PRAM to NAND flash memory to cover the limited
capacity of PRAM.
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TABLE I. STRUCTURE OF SECTION TABLE

Chunk# State Device WriteCount EWMA
0 USED PRAM 5 4.93
1 CHANGE NAND 2 3.18
2 USED NAND 4 2.09
3 USED NAND 1 0.67
4 UNUSED - - -
... ... ... ... ...

IV. MAIN MODULES OF P-SQLITE

In this section, main modules of P-SQLITE are presented.
P-SQLITE consists of three components which are a section
table, hot chunk decision module, and chunk migration
module. We provide the detailed design and implementations
of each component in following sub-sections.

A. Section Table

Section table is designed to handle the data with fine-
grained chunk unit rather than file unit which are relatively
coarse-grained. To manage the data with chunk unit, write
count and location of each chunk should be recorded.
Table I shows the structure of the section table. It has
four indexes which are state, device location, write count
in current transaction period and exponentially weighted
moving average (EWMA) [12] for each chunk. The state
column represents whether this chunk is used (USED), not
used yet (UNUSED), or ready to change location into other
devices (CHANGE). In this case, we added CHANGE state
to apply the lazy policy which is explained in previous
section. Secondly, the device column indicates whether each
chunk is allocated in PRAM or NAND flash memory. The
write count and EWMA columns are used to decide how
corresponding chunks are frequently and recently written.
Detail explanation for above two indexes are introduced
in the next section. While implementing section table, it
occupies two bytes in memory space per chunk which has
size of two kilobytes. Since the space for section table is
only a thousandth portion of original data, its overhead is
negligible.

B. Hot Chunk Decision Module

The hot chunk decision process consists of new write
count expectation based on write count history and total
performance gain calculation based on write count expec-
tation. First of all, defining the transaction period is needed
to implement this decision module.

1) Transaction Period: Decision of period is important
since it affects the reflection degree of recent tendency. To
reflect recent tendency of write count, P-SQLITE updates
write count of each chunk in every period. Since the database
executes write operation in a transaction unit, we set the
period as several execution of write transactions. We call
this number of transactions as transaction period. If the
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transaction period is too short, high prediction miss is
expected since number of sample data is too small. Further-
more, a short transaction period incurs frequent write count
prediction process which causes performance overhead. On
the other hand, performance is degraded by unnecessary
migration because most of chunks are considered as recent
data if the transaction period is too long.

To verify the effect of transaction period and determine an
appropriate value, we conduct experiment with six databases
which are associated with web browser, message and phone
book application with 1000 write transactions. Also, simple
prediction policy which considers chunk as hot if write count
of that chunk is over half of transaction count in a period are
adopted to calculate migration penalty. As shown in Figure
2, there is relationship between transaction period and write
performance as we mentioned. From the experimental result,
we set the five transactions as a transaction period which
gives the shortest write time.

2) Write Count Expectation: P-SQLITE predicts the
write count in the future based on the previous write count
of each chunk. Thus, prediction failure results in designating
cold chunks as hot chunks and vice versa. In order to
reduce an error rate in history based write count expecta-
tion, accurate expectation method is needed. Therefore, we
evaluated various history-based prediction methods such as
moving average (MA), weighted moving average (WMA),
and exponentially weighted moving average (EWMA) with
several periods.

To find out the best method which give least error, we
did experiment with the three different methods and various
periods. For this experiment, same applications which are
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mentioned in the previous section are adopted. As shown in
Figure 3, EWMA with two periods gives least error value
which is 9% on average and 15% at most for the various
applications. Therefore, we selected this EWMA method to
find out the expectation value of a next transaction period.

n∗t+1 = αnt + (1− α)n∗t
(α = 2/N + 1)

,where
n∗
t+1: EWMA of next period,
nt: write count of current period,
n∗
t : EWMA of current period,
N : transaction period size.

(1)

The EWMA of next period is calculated by (1). P-
SQLITE calculates the new EWMA for next period using
current write count and EWMA values. The newly calculated
EWMA value at the end of a transaction period is stored in
the EWMA column for next calculation again.

3) Gain Calculation for Hot Chunk Decision: To select
the set of the hot chunks which will bring the highest per-
formance gain based on the calculated EWMA, P-SQLITE
calculates the effective performance gain of each chunk.
This calculation mainly consists of two parts: reordering
the Section Table by new EWMA value of next period
and calculating the gain by each row. Firstly, Reordering
section table arranges the table in descending order to
facilitate hot chunks selection. Then, P-SQLITE consider
both performance gain by allocating the chunks in PRAM
and performance loss by chunk migration from PRAM to
NAND flash memory due to the PRAM capacity limitation.

As the first step of hot chunk decision, recorded section
table is sorted by calculated EWMA value in descending
order except for unused chunks as shown in Figure 4. In
the figure, τ represents the number of hot chunks which are
selected from the top of the table. P-SQLITE regard τ as
the meaningful threshold of hot chunks.

TotalGain(τ)
= GainPRAM (τ)− LossMigration(τ)

, where
GainPRAM (τ): performance gain by alloting

chunks in PRAM,
LossMigration(τ): performance loss by chunk

migration from PRAM to NAND.

(2)

After that, total performance gain is calculated as equation
of τ . As shown in (2), the equation consists of two terms
which are performance gain by allotting the numbers of
chunks from the hottest order in PRAM and performance

𝑪𝑵 State Device 𝒏𝒕 𝒏𝒕
∗ 𝒏𝒕+𝟏

∗  

0 USED PRAM 5 4.96 4.99 (𝑪𝟏) 

2 USED NAND 4 3.67 3.89 (𝑪𝟐) 

1 USED NAND 2 1.22 1.74 (𝑪𝟑) 

3 USED NAND 1 0.67 0.89 (𝑪𝟒) 

… … … … … … (𝑪𝒌) 

hottest 

coldest 

τ 
Number of  

hot chunk 

𝑪𝑵   : Chunk number 

𝒏𝒕+𝟏
∗  : EWMA of next period 

𝒏𝒕     : Write count of current period 

𝒏𝒕
∗     : EWMA of current period 

𝑪𝒌      : Expected chunk write count by EWMA in each row 

Figure 4: Reordered Section Table according to New EWMA

loss by chunks migrated from PRAM to NAND flash mem-
ory.

Finally, the detailed formula is provided in (3). First of
all, the performance gain part is calculated by multiplication
of the benefit by using PRAM per write count of a chunk
and expected write count of the chunks set by τ . The benefit
by using PRAM per a chunk write count is defined as the
difference between write speed of PRAM and NAND flash
memory. Expected write count is acquired by EWMA value
in the table. As the number of chunk write increases, the
performance gain also increases. Secondly, the performance
loss is obtained by multiplication of the migration overhead
per chunk and the number of chunk which will be migrated
to NAND flash memory. If PRAM is full and new chunk is
allocated in PRAM, relatively colder chunks are migrated to
NAND flash memory in P-SQLITE. At this time, migration
overhead is defined as the summation of read speed of
PRAM and write speed of NAND flash memory. The more
migrated chunks P-SQLITE has, the more migration loss is
generated.

TotalGain(τ)
= (NANDWS − PRAMWS)

∑τ
i=1 Ci

−(PRAMRS +NANDWS)× ChunkMN (τ)

, where
NANDWS : Write speed of NAND,
PRAMWS : Write speed of PRAM,
Ci: Expected chunk write count by new EWMA

in each row,
PRAMRS : Read speed of PRAM,
ChunkMN : Chunks which will migrate to NAND

by τ .

(3)

C. Chunk Migration Module

If PRAM is full and new chunks are about to migrate
into PRAM, migration of relatively colder chunk need to
occur to accept a new hotter chunk as shown in Figure 5.
In this case, P-SQLITE selects least recently used (LRU)
as victim selection algorithm. To apply the strategy, finding
the recently used chunk is essential. P-SQLITE checks the
section table which has write count and EWMA in the
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Chunk# State Device Write count EWMA 

0 USED PRAM 5 4.93 

1 USED PRAM 2 3.18 

2 USED PRAM 4 2.09 
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Figure 5: Sequence of Chunk Migration

current period to find out LRU chunk in PRAM. Based on
these two values, it figures out the victim chunk in PRAM.
Small write count and EWMA value of the chunk means
that it is not recently used. P-SQLITE firstly selects the
chunk which has smaller write count and secondly compares
EWMA if there are chunks which have same write counts.

D. Overall Process Sequence of P-SQLITE

To find out hot chunks which are frequently updated in
a database file, P-SQLITE firstly record the write count
of each chunk per write transaction. Figure 6 shows the
recording and assigning process of P-SQLITE. For every
write transaction, write count of each chunk is written in
the section table. After that, hot chunk decision module
evaluates chunks which will be assigned in PRAM based on
the section table. In this moment, it inserts mark for selected
chunk in the section table, not placing them into PRAM
immediately. Those chunks are stored in PRAM only after
the actual writing command is requested for them again.
This lazy policy reduces unnecessary migration of chunks
from NAND flash memory to PRAM to prevent extravagant
usage of PRAM capacity.

At the moment of actual writing, it is hard to expect
the write performance enhancement by PRAM when it is
full and recent hotter chunks are stored in NAND flash
memory. To solve this problem, chunk migration module
moves relatively colder chunks from PRAM to NAND flash
memory.

V. EVALUATION

In this section, experimental environment and results are
explained. Firstly, the specification of hardware components,
software layers, and workload characteristics are introduced.
After that, the experimental results for the effect of P-
SQLITE compared to previous work are given.

A. Experimental Setup

We developed P-SQLITE in HBE-EMPOS3 SV210
board [13] made by Hanback electronics. It has 800Mhz
ARM Conrtex-A8 CPU, 512Mbyte of DDR2 SDRAM and
256Mbyte SLC NAND flash memory. In case of software
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Figure 6: Process Sequence of P-SQLITE

base, Android 2.2 proyo [7] and Linux Kernel 2.6.32 were
used as the main operating systems in the P-SQLITE.
Our P-SQLITE is implemented based on the fundamental
MDBMS, SQLITE [6] which is basically installed in the
Android platform to manage mobile applications. We evalu-
ated P-SQLITE with databases of four practical applications
which are web browser (webview.db, webviewcache.db,
webviewIcons.db), text message (mmssms.db), phone book
(contacts2.db), and alarm (alarms.db).

We selected PRAM as an NVRAM of P-SQLITE where
it is widely discussed in the storage research area and it is
the closest RAM to being on sale. Because PRAM and its
specifications are not released yet, we used the specification
of [14]. Also, we emulated the PRAM with SDRAM by
inserting additional delays in the file system level since
the target board only contains SDRAM. Additionally, we
filled up PRAM with sufficiently large database files in
each application to consider the capacity limitation problem
of PRAM. Table II shows the parameters for NAND flash
memory and PRAM.

B. Write Performance Improvement of P-SQLITE

Firstly, we measure the read and write performance of
P-SQLITE to analyze overall performance. As shown in
the Table II, read latency of PRAM is similar to that with
NAND flash memory and PRAM has much higher write
latency than read latency. Thus, write performance is critical
factor of P-SQLITE performance. In Figure 7, the write

TABLE II. PARAMETERS FOR NAND FLASH MEMORY
AND PRAM

NAND Flash PRAM
Device capacity 256MB 8MB

Page Size 2KB -
Block Size 128KB -
Read time 100µs/page 20ns/byte(40µs/2KB)
Write time 800µs/page 100ns/byte(200µs/2KB)
Erase time 1.5ms/block -
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Flash Memory

performance of each database with four different approaches
including P-SQLITE are evaluated. We combined P-SQLITE
with previous works and estimated the write performance
of them which were referred in Section II. ”PFFS2” [10]
stores metadata in PRAM at the file system level and
”Journal” [11] places the rollback journal in PRAM at
database software level. By adopting PFFS2, it gives only
7% write enhancement compared to NAND flash memory.
Because MDBMS has only one file to handle the database,
the effect of saving metadata in PRAM is comparatively
small. Case of rollback journal file, it gives performance
enhancement by almost 50% on average compared to NAND
flash memory since it reduces the garbage collection. Finally,
the average write performance improvement by P-SQLITE
is about 47% compared to previous scheme where both
previous works are applied. Since P-SQLITE is able to
combine with previous works independently, the scheme
adopting whole three techniques has 77% write performance
improvement compared to only NAND flash memory.

C. Reduction of Write Count and Garbage Collection

We also estimated the total write count and number of
garbage collection in NAND flash memory during 5000
write transactions of phone book application. Figure 8 shows
that the P-SQLITE brings 46% write count in NAND flash
memory and 51% reduction of garbage collection compared
to NAND flash memory. It means our work concentrates the
frequent write count in PRAM efficiently where it increases

the write performance of MDBMS on the hybrid storage
system.

D. Discussion

In our P-SQLITE system, additional cost is needed where
the space overhead occurs due to the Section Table. How-
ever, additional two bytes per 2K chunk for Section Table are
negligible compared to total performance.. Also, it causes
additional overhead for migration. If write count pattern is
flat, performance overhead can become smaller.

VI. CONCLUSION

In this paper, we propose P-SQLITE which enhances the
write performance of the storage system with fine-grained
data management. It contains section table which records
the information of each chunk of the file. We also design
hot data decision module to select the chunks which will
be allocated to PRAM dynamically. Finally, P-SQLITE has
chunk migration module which migrates colder chunk from
PRAM to NAND flash memory to consider the limited size
of PRAM. Through this implementation, we improve the
write performance of the previous MDBMS in the hybrid
storage architecture by 47% on average.

For the further work, we will focus on the write endurance
problem of PRAM. Limited lifetime of PRAM is also
challenging issue and proper wear-leveling technique for the
system should be considered. We are planning to clarify
the appropriate wear-leveling policy for mobile database
management system.
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