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Abstract—In recent years, some strategies (e.g., server consolida-
tion by means of virtualisation techniques) helped the managers
of large Information Technology (IT) infrastructures to limit,
when possible, the use of hardware resources in order to provide
reliable services and to reduce the Total Cost of Ownership
(TCO) of such infrastructures. Moreover, with the advent of
Cloud computing, a resource usage rationalisation can be pursued
also for the users applications, if this is compatible with the
Quality of Service (QoS) which must be guaranteed. In this
perspective, modern datacenters are “elastic”, i.e., able to shrink
or enlarge the number of local physical or virtual resources
from private/public Clouds. Moreover, many of large computing
environments are integrated in distributed computing environ-
ment as the grid and cloud infrastructures. In this document, we
report some advances in the realisation of a utility, we named
Adaptive Scheduling Controller (ASC) which, interacting with the
datacenter resource manager, allows an effective and efficient
usage of resources, also by means of users jobs classification.
Here, we focus both on some data mining algorithms which
allows to classify the users activity and on the mathematical
formalisation of the functional used by ASC to find the most
suitable configuration for the datacenter’s resource manager. The
presented case study concerns the SCoPE infrastructure, which
has a twofold role: local computing resources provider for the
University of Naples Federico II and remote resources provider
for both the Italian Grid Infrastructure (IGI) and the European
Grid Infrastructure (EGI) Federated Cloud.

Keywords–Adaptive scheduling and resources management;
Virtualisation and Cloud computing; large scale and distributed
systems; data analysis.

I. INTRODUCTION

The TCO of large scale computing systems, with an
emphasis on systems built to support a wide range of users
and different applications includes, among others, the ini-
tial hardware cost (for computing nodes, storage systems,
racks, facilities, etc.), the personnel/system administrator costs
(salaries for software and hardware maintenance requiring
specialised know-how), business premises, and energy costs
(which includes the additional power requirements for cooling
and power delivery inefficiencies) [1].

The aim of a good system manager is the TCO minimi-
sation, that can be performed also by means of the resources
rationalisation (e.g., through the reduction of the number of

active resources on the basis of the effective jobs request,
the use of virtual resources by means of cloud computing
paradigms, and so on). All said, however, without neglecting
users satisfaction. Users of a large general purpose system
can have conflicting demands (i.e., short versus long jobs,
sequential versus parallel applications, etc.). For this reason
the achievement of all user satisfaction is a hard task for any
system manager.

In our previous works (e.g., in [2]), we described some
issues related to the design and the implementation of a control
system (ASC) which, using an “adaptive” approach in job
scheduling policy, allows a balanced, effective and efficient
use of computational resources. In particular, ASC, on the
basis of a jobs classification, is asked to dynamically identify,
given historical data, the most “suitable” configuration of the
resource manager/scheduling systems for the current jobs work
flow.

With the advent of new recent distributed paradigms, e.g.,
Cloud computing, modern datacenters are being more “elastic”
(according to the U.S. National Institute of Standards and
Technology (NIST) characterisation of Cloud computing based
infrastructures) [3]), i.e., able to shrink or enlarge on demand
the number of active resources, by recruiting both local phys-
ical (and virtual) resources and remote resources from public
Clouds. Moreover, many of large computing environments are
integrated in distributed computing environment as the grid and
cloud infrastructures. All these above described issues increase
the dynamic nature of the current computing environments.

In this paper, we provide a description of the advancements
in the mathematical formalisation and implementation of ASC
for modern datacenters and we report the work made toward
a complete jobs classification by means of data mining tech-
niques.

In Section II, we provide some details on the related works
in the field of adaptive scheduling, focusing on all the key
differences between the approaches existing in literature and
ours; in Section III, we report a short description of the
ASC system, with a focus on its mathematical formalisation;
in Section IV, we describe the case study of the SCoPE
computing infrastructure at University of Naples Federico II
reporting some results related to the use of Data Mining
techniques for job classification in a “production context”.
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The SCoPE infrastructure has a twofold role: local computing
resources provider for the University of Naples Federico II
and remote resources provider for both the IGI [4] and the
EGI Federated Cloud [5].

II. RELATED WORK

An adaptive solution to the scheduling problem, in the
sense used by Casavant and Kuhl [6], is able to change dy-
namically algorithms and parameters that define the scheduling
policy, according to the previous and current behaviour of
the system in response to previous decisions taken by the
scheduling system itself.

The most common property to search for a scheduler (or
resource management subsystem) is dynamicity. In a dynamic
scenario, the scheduler takes into account the current state
of affairs as it perceives them in the system. This is done
during the normal operation of the system under a dynamic
and unpredictable load. In an adaptive system, the scheduling
policy itself reflects changes in its environment (the running
system).

A preliminary approach in jobs scheduling, such as those
described by Serazzi and Calzarossa [7], exists in modelling
adaptive control systems able to maximise a given performance
criterion, such as system throughput. However, in the last
years the heterogeneity of applications using general purpose
computational grows together with the complexity of resource
requirements. Maximising system throughput shouldn’t longer
be the only requirement for a scheduling scheme. The quality
of service perceived by the user offers an instructive example
where the solution of the problem is achieved in a “accept-
able” time [8]. Recent approaches in jobs scheduling take
into account both efficiency and fairness for homogeneous
workloads [9], but the open challenge is to achieve the same
goal for not homogeneous workloads.
If we have in mind what Feitelson says in [10]:

In reality, the metrics attempt to formalise the real
goal of a scheduler:
• Satisfy the users,
• Maximise the profit.

more sophisticated and finer-grained resource coordination
mechanisms are required.

If we consider the problem of user communities hetero-
geneity and dynamicity using a large scale computational
resource, an “adaptive” approach to the job scheduling seems
to be a promising way for getting the right trade-off among
different, and often conflicting, classes of applications demands
sharing the same set of resources. Moreover, the overall set of
resources, generally included in a modern “elastic” datacenter,
is dynamic and heterogeneous itself (because of the chance to
include different resources from Clouds).

Here, we propose a pragmatic approach to solve this kind
of problem. The approach is led by the fact that we consider
the overall set of users organised in communities each of
them having almost homogeneous requirements. The above
conditions induce a classification of the users (or equivalently
of the jobs) into different classes: the terms “users” and “jobs”
are intended to represent the same entities.

The idea to organise jobs into groups to improve the
solution of scheduling problem on complex computing sys-
tems, from High-Performance Computing (HPC) system to

the distributed infrastructures, is not new [11][12][13]. The
principal aim of all those works is to present and to discuss
the task distribution problem onto HPC and distributed systems
to improve performance and load balancing of the applications.

Our approach is based, instead, on the idea of organising
jobs in groups or clusters “naturally” deriving from the nature
of our audience. The aims are mainly 1) to achieve the
efficiency of the entire system rather than the performance
of a single application and 2) to reduce the computational
complexity for the optimisation problem solution required to
find the most “suitable” configuration of the system.

To get an automatic classification of jobs we use Data
Mining procedures, i.e., “data clustering”. The term “data
clustering” refers to the process of the Data Mining techniques
aimed to divide into natural groups the instances represented
by data [14].

There are different ways to represent results of clustering.
The groups to be identified may be exclusive (so that any
instance belongs to only one group) or may be overlapping
(so that an instance may fall into several groups). Besides,
they may be probabilistic, whereby an instance belongs to each
group with a certain probability. They may be hierarchical,
such that there would be a crude division of instances into
groups at the top level, and each of these groups is refined
further-perhaps all the way down to individual instances. In this
work, we consider algorithms building clusters in numerical
domains, partitioning instances into disjoint clusters.

According to the approach described by Estivill-Castro
[15], in order to define the “data clustering” problem we have
to:

• express assumptions on the model describing the na-
ture of the data (e.g., a probabilistic model),

• formulate the mathematical model for the problem
(e.g., an optimisation problem)

• choose the solving algorithm for the problem (e.g., the
k-means algorithm [14])

So, as starting point and “proof of concept” for the
validation of our approach, we considered algorithms based on
the classic clustering algorithm k-means. Such algorithm can
usefully be used to iteratively compute an approximation to the
solution of the minimisation problem of a functional, based
on an Euclidean norm, depending on data with multivariate
normal distribution [15].

In the next section, we provide a mathematical formali-
sation for ASC based on the hypothesis that a heterogeneous
work flow can be partitioned into homogeneous classes of jobs.
The way we used to do this partitioning is described in Section
IV.

III. ASC: ARCHITECTURE AND OPERATING MODEL

A. Architecture description
We call “adaptive” a system able to “reconfigure” itself

on the basis of changing in user typology. Such a mecha-
nism, analysing system behaviour by some key-statistics (e.g
depending on queue waiting time, jobs throughput, resource
usage, and so on), dynamically defines a new set of scheduler
key-parameters values. The scheduler’s new configuration has
to meet both user satisfaction and efficiency/productivity in
computational resource usage.
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Figure 1. An “adaptive” approach in job scheduling policy by an external controller

From now on, C is the set of the resource manager
configurations (each of them is identified by a set of value
for key-parameters), J is the vector representing the work
flow (partitioned into m classes of homogeneous jobs), and
S contains the values of the considered metrics.

Looking at Figure 1, the ASC engine is organised into
four core software modules, each one with a specific role in
the operative model:

• the Work flow Classifier is asked to perform a job
classification into m classes of homogeneous jobs
starting from the set of n heterogeneous jobs;

• the Historical Database has the role to save for each
meaningful classified work flow J , the set C of
values for key-parameters, obtained from the Statistics
Optimiser that optimise the considered key-statistics
S;

• the Statistics Optimiser provides the new set of values
for C;

• the Decision engine, implements a new asset (the C
configuration) for the datacenter by choosing physical
or virtual resources from local or public Clouds also
on the basis of other criteria (e.g., resource power
consumption and geographical location).

The algorithm in Figure 2 describes the interaction among
ASC core modules; particularly, Jcurrent refers to the new
work flow, while Jprevious is the last classified work flow;
HDB refers to the Historical Database.

B. Statistics Optimiser modelling

In our first ASC formalisation (see [2]), we obtained:

C =

m∑
j=1

αj(J) · Fj(S) (1)

1: ...
2: loop
3: Jcurrent=WorkflowClassifier()
4: if Jcurrent 6= Jprevious then
5: if Jcurrent exists in HDB then
6: load C from HDB
7: else
8: C=StatisticsOptimiser(J ,S)
9: load C

10: Save {C, J, S} into HDB
11: end if
12: end if
13: C=DecisionEngine(C)
14: apply(C)
15: Sleep (some time)
16: end loop
17: ...

Figure 2. ASC engine algorithm

The symbol (·) denotes a suitable operator, each function Fj

computes optimal parameters values for job type j while αj

expresses the weight to be considered for job type j.
For each job class j = 1, ...,m, we consider the following

classic key-statistics (the first is representative of the whole
computing system efficiency, while the second and third ones
express user satisfaction):

System effectiveness ratio E(j) =
∑n

i=1 piti
PT ;

System Make span M
(j)
k = maxi=1,...,n (ti + qi);

Queue waiting time average Q(j) =
∑n

i=1 qi
n

where P is the total number of available processors, n is the
total number of jobs for the work flow, Q is the total queue
time for all the jobs of the work flow, T is the wall clock run
time for all jobs completion, pi, ti and qi are respectively the
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number of processors requested, the execution time and the
queue time for the job i.
Since:

M
(j)
k = ‖t+ q‖∞ ≥

∣∣‖t‖∞ − ‖q‖∞∣∣
and because of the equivalence of norms, we have:

M
(j)
k ≥

∣∣‖t‖1 − ‖q‖1∣∣ =
∣∣∣∣∣

n∑
i=1

ti −
n∑

i=1

qi

∣∣∣∣∣
Under the realistic assumption:

n∑
i=1

qi <

n∑
i=1

ti (2)

we have:
n∑

i=1

ti ≤M (j)
k + nQ(j)

so, for each job class j = 1, ...,m, we want to solve the
following:

Problem: To compute the set of the scheduler key-parameters
C

(j)
Opt such that

C
(j)
Opt = Fj

(
S
(j)
Opt

)
(3)

where S(j)
Opt =

(
E

(j)
Opt,Mk

(j)
Opt, Q

(j)
Opt

)
and E(j)

Opt,Mk
(j)
Opt, Q

(j)
Opt

are the solutions of the constrained “optimisation” problem:
max{E(j)} s.t.

T =
∑n

i=1 ti ≤ (Mk
(j) + nQ(j))∑n

i=1 qi <
∑n

i=1 ti

(4)

♦

We highlight that the problem (4) includes also the two limit
cases:
best case: qi = 0 ∀i, i.e., Q(j) = 0 (there are no jobs in system
queues)

M
(j)
k = maxi=1,...,n (ti + qi) = maxi=1,...,n ti

E(j) =
∑n

i=1 tipi

P maxi=1,...,n ti
≤

∑n
i=1 tmaxpi

Ptmax
≈ 1

(5)

In the ideal case, there aren’t new jobs in queue and all the
processors in the system are allocated for jobs:

P =

n∑
i=1

pi (6)

so the system reaches the maximum efficiency (E = 1).
worst case: qi →∞ ∀i. This case is not possible because of
the (2). Thus, being at most: qi → ti ∀i we have:

M
(j)
k = maxi=1,...,n (ti + qi)→ maxi=1,...,n (2ti)

E(j) →
∑n

i=1 tipi

P maxi=1,...,n (2ti)
≤

∑n
i=1 tmaxpi

P2tmax
≈ 1

2

(7)

so even if the (6) is verified, system efficiency E results under
the 50%.

Both in (5) and in (7), tmax is the maximum wall clock
time allowed on the queues.

The scheduler key-parameters value affects the queue time
for different job types and therefore the values of the metrics
considered above. On the basis of some information provided
from the system:

• the fixed maximum execution time tmax for each job i
submitted to a certain queue of the scheduling system;

• the total amount of requested processors P ;
• the user request of processors for each job i

we can estimate the metrics E, Q and Mk only if a probability
distribution function for the queue time values qi is known for
all the jobs in the work flow.

Presently, we are working to define a stochastic model to
forecast queue times also thanks to the already classified work
flows.

IV. A CASE STUDY FOR THE ASC WORK FLOW
CLASSIFIER

In this section, we report some experiences related to the
use of data mining techniques to automate the work flow
partitioning into homogeneous job classes as described in
Section III. We use computational resources at the University
of Naples Federico II, acquired in the context of PON Sistema
Cooperativo Per Elaborazioni scientifiche multidisciplinari
(S.Co.P.E.) Italian National project [16].

SCoPE resources are made available to national and inter-
national relevant distributed infrastructures (IGI and EGI) and,
thus, used not only by the local users.

Due to the user communities heterogeneity, computational
resources are used both for “traditional” GRID jobs and for
HPC applications. From a heuristic analysis, we observe that
SCoPE jobs are applications mostly sequential or with a low
degree of parallelism (DOP) with a short duration. Just a
subset, however large enough of SCoPE jobs, has a medium-
high DOP and a more long duration.

The computational resources (about 2000 cores) are ac-
cessed by submitting jobs to the Resource Management System
(based on Maui-Torque systems).

To automate the definition of the jobs classification J, we
consider a set of clustering algorithms implemented by the
Waikato Environment for Knowledge Analysis (WEKA) pack-
age [17]. WEKA is a well-known suite of machine learning
software which supports several typical data mining processes,
particularly data preprocessing, clustering, classification, re-
gression, visualisation, and feature selection.

ARFF format is used by WEKA to represent data sets that
consist of independent, unordered instances. Each instance is
characterised by its values on a fixed, predefined set of features
or attributes.

Since we are interested on a jobs classification based on the
duration and on the DOP of each job, we chose to represent
each job with the two following attributes:

ntasks the number of concurrent tasks of the job
tte the job Total Time of Execution

The clustering processes are performed, by the three fol-
lowing algorithms and related WEKA command lines, on data
related to the last 2 years (over 3 millions jobs):
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Job duration
short medium long

Job tasks
few

medium
many

Figure 3. Jobs “ideal classification”

SKMeans: provides clustering
with the k-means algorithm [14].

weka.clusterers.SimpleKMeans -N 9
-A "weka.core.EuclideanDistance
-R first-last" -I 500 -S 10

XMean: provides k-means extended by an
“Improve-Structure part” and automatically
determines the number of clusters [18].

weka.clusterers.XMeans -I 1 -M 1000 -J 1000
-L 2 -H 9 -B 1.0 -C 0.5
-D "weka.core.EuclideanDistance
-R first-last" -S 10

Festivity: provides the “farthest first traversal al-
gorithm”, which works as a fast simple approxi-
mate “clusterer” modeled after simple k-means [19].

weka.clusterers.FarthestFirst -N 9 -S 1

For all the algorithms, we chose that the maximum pos-
sible number of clusters is Nclustermax = 9 (see the red
highlighted parameters in the command lines above) on the
basis of the “ideal classification” represented in Figure 3.

The aim of the tests described above was to identify the
most effective clustering algorithm in terms of:

1) computational cost
2) compliance to the results of our heuristic jobs classi-

fication

All the algorithms build at least four classes, where the
most numerous one collects sequential jobs (or with low DOP
jobs) consistently with our heuristic classification.

Anyway, the SKMeans based algorithm seems to be the
most useful choice because, from our point of view, it responds
better to the point 2 above: it builds more different classes,
each of them with a significative number of elements (see Table
I). The SKMeans based algorithm is, in terms of computational
cost, more expensive than other ones but its cost can be
considered acceptable compared to the frequency of scheduler
reconfiguration (taking into account the mean duration of the
jobs, we can assume a period of few days).

Figures 4 and 5 show, respectively, the real work flow char-
acterisation and the results of the clustering process performed
by WEKA on data related to the work flow execute on SCoPE
resources during the month of March 2014. The clustering
processes are performed by the SKMeans based algorithm
which we choose as the “optimal” one for our purpose. During
the considered month, different type of work flows and jobs
are present on SCoPE infrastructure. A similar behaviour is

(a)

(b)

Figure 4. March 2014: real job work flow representation by two different
views: the jobs distribution both respect to the number of tasks and to the

execution time (a); the trend of the jobs number as a function of the month
days (b).

Figure 5. March 2014: clustering processes results on SCoPE jobs
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TABLE I. CLUSTERING PROCESSES RESULTS ON ALL SCOPE JOBS

SKMeans (Execution times: 786.33 secs)

Clusters # of Elements % of Elements
0 5804 0
1 11117 0
2 265923 7
3 52620 1
4 337429 9
5 417363 11
6 83707 2
7 2472225 68

XMeans (Execution times: 87.16 secs)

Clusters # of Elements % of Elements
0 11333 0
1 142700 4
2 10937 0
3 3481218 95

FarthestFirst (Execution times: 12.75 secs)

Clusters # of Elements % of Elements
0 3639639 100
1 3 0
2 30 0
3 106 0
4 192 0
5 97 0
6 12 0
7 4916 0
8 1193 0

present on other months of the year, confirming the need for
adaptive approach to the scheduling problem.

V. CONCLUSION AND FUTURE WORK

In this document, we described the progresses made to
devise ASC, which aims to gain a balanced, efficient and
effective use of computing resources by heterogeneous users
communities. Here, we gave details about ASC mathematical
formalisation focusing on the chance to have a computable
estimation for the involved key-statistics; moreover the use of
data mining techniques allowed us to build a job clustering
into homogeneous classes, starting from real heterogeneous
jobs work flows.

Presently, we are working on:
• the dynamic work flow classification starting from job

clustering results here obtained;
• the mathematical model with the aim to define, for

different sets of key-parameters and already classified
work flows, the probability distribution function for
queue times.

• the realisation of a historical database of scheduler
configurations, known work flows and related key-
statistics values;

• the deployment of some features to enable ASC to
take into account other parameters, e.g., computing
nodes availability/dependability and metrics related to
environmentally conscious computing services [20].
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