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Abstract—Today’s digital computers are based on three
cornerstones: von Neumann architecture, Boolean algebra, and
transistor as the basic element. With a history of approximately
70 years, this concept has demonstrated to be a success for
algorithmic computing. However, at present, its disadvantages
can be seen in real-time cognitive computing. This contribution
presents the concept in which cognitive computing acts as a
support for algorithmic computing, and the cognitive part is
based on non-von Neumann architecture, Zadeh fuzzy logic, and
resistive switch as the basic element.
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I. INTRODUCTION

Computers, as we know them, are based on three
cornerstones: von Neumann architecture, Boolean logic, and
transistor as a switching element. All these aspects limit
computer performance to energy consumption ratio compared
to the human brain. The man is not so fast in algorithmic
thinking using exact terms, but he can think intuitively with
the fuzzy meaning of words. Boolean values for True and
False are implemented as analog values, while the brain uses
spike trains. Von Neumann computer architecture has
liberated programs from hardware processing circuits and
stored them as data to the memory, but this transfer from the
memory into the processing unit takes some time. On the other
hand, the neural network in the brain is naturally a massive
parallel structure, where processing and memory are both
located in the same place. Since 1947, the transistor has been a
principal component in computing implementation. The
volatility of the transistor leads to enormous energy
consumption when compared to the human brain. Non-volatile
elements and spike-like computing give some promise to
achieve brain efficiency in the future. However, the future
does not mean replacing old architectures with new ones. It is
about the coexistence of the algorithmic computing with the
cognitive computing. These general trends are mirrored in
recent experiments with a Central Processing Unit (CPU)
support by hardware accelerators, and, in this paper, we
present several examples in this regard.

Since 2008, when the HP Lab realised a memristor [1],
nanotechnology has offered new ways to overcome traditional
computer limits. Energy savings and higher densities can be
obtained and memristor crossbar can unify the memory and
the processing unit together.

Elementary circuits with resistive switches can give results
for Min, Max, Avg functions in the voltage domain [2]. This
idea has a significant impact on the fuzzy computer
architecture. Comparing memristor-based computing with

Figure 1. von Neumann architecture accelerated by
non-von Neumann architecture

quantum or bio-cellular computing, the memristor technology
is more mature, and several approaches (metal-oxide,
ferromagnetic, grapheme-oxide) can be compared. The
memristor crossbar, unlike synapse emulation and stateful
Boolean implication, can provide the full range of the Zadeh
logic functions in voltage input-output space. Fuzzy
computing maintains continuity with classical computing
where humans write programmes following the given logic
requirements (implications). This is the basic approach used in
fuzzy logic programming and Fuzzy Prolog-like programming
languages [3], or specialised languages based on Haskell [18]
e.g., Bluespec SystemVerilog [19].

The rest of the paper is structured as follows.
Section II gives the motivation for supporting algorithmic

computing in von Neumann architecture by cognitive
computing.

Section III supports the idea of memristive and fuzzy logic
based cognitive computing [2], [10] with an experimental
proof of concept by implementing elementary Zadeh fuzzy
logic functions [17].

Section IV extends the proof of concept also to minterms
(and analogically maxterms) in the fuzzy logic approximation
by finite normal forms.

This short paper presents the progress in the memristive
implementation of fuzzy cognitive computing.
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II. ALGORITHMIC COMPUTING ACCELERATED BY COGNITIVE

COMPUTING

Problem-solving is as old as life itself, and nature has
created, by evolution, structures like the brain to do that. At
the time prior to Homo sapiens, problems were less complex,
but solutions had to be found in real time to save human life.
Homo sapiens solved more complex problems that could be
decomposed to a sequence of well-defined steps, but the
process was not time critical. Among the first examples of
such problem-solving would be dividing spoils in a group,
growing crops and building houses. The sequence of steps that
solves a problem in finite time is nowadays called an
algorithm. Mainly, a history of mathematics gives an abundant
supply of algorithms in numeric operations, geometry,
algebra, and computer science (even for evolution). To
conclude, the algorithmic solution of problems, from our
perspective, is a result of human culture. Although algorithms
have been implemented in the past by specific instruments
(e.g., abacus, straightedge and compass, Antikythera
mechanism), Turing found a universal algorithmic machine
that von Neumann implemented as a digital computer. While
the brain has the ability to solve problems through the
topology of the neuronal network, this ability in the von
Neumann computer is ascribed to the program (data). Until
recently, it seemed that the von Neumann computer could
solve all problems solvable by the brain. Today, we can see
bottlenecks in the von Neumann architecture (transfer of data
between the memory and CPU) and the advantages of
programming by topology (naturally massive parallelism). As
Amdahl’s law [20] pointed out, even a small part of a program
serially executed can suppress the advantage of the parallel
connection of CPUs. Therefore, naturally massive parallel
computation is needed for time-critical applications. As
mentioned before, nature has found such a structure through
evolution in which the circuit topology gives the program. We
call it cognitive computing in this paper. This approach was
applied in the ENIAC and analog computers, but it was
forgotten due to the low flexibility of programming compared
to the program stored as data. Even if today there is a large
demand for massively parallel computing, we do not think that
cognitive computing will replace algorithmic computing.
From our perspective, algorithmic computing has the same
importance as cognitive computing, but they have different
missions. They have to be combined: algorithmic computing
with von Neumann architecture should be supported by
cognitive computing executed by non-von Neumann
architecture (see Fig. 1). This is not a new approach, and
CPUs supported by accelerators (e.g., Intel Xeon Phi
coprocessor) contain a well-known architecture.

While the von Neumann architecture is a well-established
concept for algorithmic computing that has been improving
over the past sixty years, it is still an open question as to
which concept and which inorganic technology is the best for
non-von Neumann architecture. Game applications showed
graphics bottlenecks, and Graphical Processing Units (GPU)
have been developed to overcome this. But the potential of a
GPU is much broader, and GPUs are used as accelerators for

CPUs. Dell added NVIDIA GPU coprocessors and Tesla K80
to accelerate Intel Xeon CPUs in PowerEdge servers [4]; SGI
has done the same in SGI Rackable Servers [5]. If general
purpose GPU (GPGPU) has its roots in graphics processing,
the Field-Programmable Gate Array (FPGA) has its roots in
the Digital Signal Processor (DSP). As the name FPGA
indicates, programming means creating digital circuit topology
within a set of gates that performs the goal of the program. All
gates work in a naturally massively parallel way and can
provide cognitive computing in real time. The main goal of the
von Neumann part of this hybrid architecture is to
configure/reconfigure FPGA digital circuit topology to
perform cognitive computing. Microsoft has studied FPGAs as
accelerators under the project Catapult since 2010 [6], and the
last results in “Configurable Cloud” architecture were
published [7]. The acquisitions of Altera by Intel or Xilinx by
IBM have shown movement in the same direction [8]. IBM
has also developed a different kind of accelerator. They
introduced TrueNorth as an accelerator [9] in which pulses are
switched over the crossbar. Pulses run over the crossbar in
parallel, which allows building a naturally massive parallel
system from crossbars.

This paper presents the concept of a coprocessor built on
fuzzy logical circuits implemented by the memristive
structure. As an idea, it was published at this conference in
2012 [10]. According to Fig. 1, it can be redrawn as presented
in Fig. 2.

Figure 2. von Neumann architecture accelerated by
memristive based cognitive computation

This paper presents an experimental proof of this concept
on the level of the elementary fuzzy logic functions: minimum
(Min) and maximum (Max).

III. IMPLEMENTATION OF FUZZY LOGIC BY THE MEMRISTIVE

CIRCUIT

Hardware implementation of Min, Max functions is not
new and fuzzy logic circuits based on Complementary Metal–
Oxide–Semiconductor (CMOS), Field-Effect Transistor (FET)
or FPGA implementations have been used before. However,
there are two principal advantages of memristor-based
implementations:
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1. Energy supplies the circuit only over inputs, and no extra
source of energy is needed to be compared with the
transistor based implementations mentioned above.

2. The memristive implementation also introduces a memory
function to these elementary functions. This property
needs further research.

Fig. 3 shows an example of the implementation of
Y = Max(0, X) function using electrochemical metallization
memory (ECM) resistive switches NEURO-BIT BT10001B14
[11]. To interpret this figure with respect to fuzzy logic, the
input X after normalisation from <-1.5V, 1.5V> interval into
<-1, 1> interval represents the difference X = a - b in
y = Max(a, b); a, b∈ <0, 1> function. The accuracy of the
mathematical function implementation depends mainly on the
switching threshold (approximately 0.2V for the measured
resistive switches), and measurement repeatability.

Figure 3. The input/output characteristic of the Max circuit
implemented by ECM memristors NEURO-BIT BT10001B14

On the one hand, non-volatility is useful, but on the other
hand, the preservation of the switch state causes a
memorylessness in the input – output relationship in the Max
circuit. More precisely, fuzzy logic circuits have to be
assumed as state automata. Everything mentioned above
regarding the implementation of Max functions is also valid
for Min functions.

However, Min, Max functions allow only the building of a
monotone fuzzy logic system [12]. In general, inverters are
needed, but they cannot be implemented as a passive element
by resistive switches. Here, we present an architecture using
the property of the de Morgan´s law that a dual logic function
with inverted inputs results in an inverted function. This dual
system approach allows for simpler implementation because
inverters are located only in the first stage of the Min/Max
based circuit, and can be implemented by active elements.

IV. IMPLEMENTATION OF THE FUZZY LOGIC FUNCTION IN A

NORMAL FORM

Our experience with memristive-based implementation of
fuzzy logic functions shows [13] that in deep memristive
networks, there pairs of states with no direct transition
between them may occur. This is caused mainly by switching
thresholds, and this phenomenon should be studied in the
future. For the moment, flat memristive networks can be

instrumental in fuzzy logic implementation. This flat topology
means a structure corresponding to the normal form within the
classical Boolean logic (BL) algebra. But disjunctive or
conjunctive finite normal forms are universal approximation
formulas for any BL-algebra [14].

Figure 4. The input/output characteristic of the 3-input Min circuit
implemented by ECM memristors NEURO-BIT BT10001B14

Max and Min functions implement disjunctions and
conjunctions in the Zadeh fuzzy logic with more inputs. It is
assumed again that input variables and their negations are
available as inputs.

Fig. 4 shows an example of the implementation of the
function

Y = Min(0, X1, X2).

As the independent input is taken M1 = X1, �1 ∈ <-1, 1>, the
second input is set into

�2 = 1 − 0.7(1 + �1),

and the third one is a zero reference input. The impact of the
switching threshold is visible here even more so than in
Figure 2.

V. CONCLUSION AND THE FUTURE SCOPE

The paper sets forth the idea of how cognitive massively
parallel computing based on the Zadeh fuzzy logic can be
implemented using memristive circuits. These results support
an idea of cognitive computing based on fuzzy logic
accelerators implemented via memristive circuits.

Looking at Fig. 3 and Fig. 4, we can see the importance of
the non-deterministic behaviour of memristors and the
influence of the switching threshold. The impact of these
properties on the accuracy of fuzzy memristive computing
needs further research. Another extension of the field of
research would be the large area of non-fuzzy memristive
computing [15], and applications of memristive circuits [16].
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