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Abstract—According to whether the internal Hamiltonians are 
strong regular and/or the control Hamiltonians are full 
connected, the quantum systems can be considered as ideal 
closed quantum systems or the quantum systems in degenerate 
cases. In this paper, we propose a unique formation of quantum 
Lyapunov-based control method, which is suitable for both 
ideal closed quantum systems and the systems in degenerate 
cases. This Lyapunov-based control method of closed quantum 
systems with unique formation is realized by means of 
introducing implicit Lyapunov functions into the control laws, 
which make the control system become strong regular and full 
connection. The proposed Lyapunov-based control theory can 
transfer from arbitrary initial states to arbitrary final states in 
the way of asymptotic stability. The paper gives the complete 
design procedure of control laws. At last, a numerical 
experiment of the state transfer between two mixed states in 
degenerate cases is given to demonstrate the effectiveness of the 
Lyapunov-based control theory proposed.  
 

Keywords- ideal closed quantum systems; quantum systems in 
degenerate cases; implicit Lyapunov-based control method.  

 

I. INTRODUCTION 

From  the perspective of system control, a quantum 
system can be considered as a closed or an open quantum 
system. The closed quantum system is an isolated system or 
without interaction with the environment. The majority of 
actual quantum systems are open quantum systems. However, 
the closed quantum systems have their own characteristics, 
namely, they are simpler to be analyzed and studied, and the 
research results of closed quantum systems are the 
foundations of open quantum systems. The role of a closed 
system in quantum systems is similar to that of the system 
which is a linear, definite and time-invariant in macroscopic 
systems. Even so, the control task of state transfer in closed 
quantum systems is quite difficult because there are 
eigenstates, superposition states and mixed states, in which 
only the eigenstate corresponds to the classical state in 

macroscopic systems, while other two states do not exist in 
the macroscopic world.  

The solutions of the control problems obtained by means 
of the system control theory are generally the control laws in 
an N dimensional quantum system, which can be easily 
applied to the high dimensional quantum systems without 
increasing control cost and design difficulty. Therefore, the 
closed quantum system control theory has a guiding 
significance for the realization of the actual experiments, 
especially for complex quantum systems. In the last 30 years, 
the control theory of quantum systems has developed rapidly. 
Many quantum control methods have been developed, such as 
coherent control [1]-[3], Bang-bang control and geometrical 
control [4][5], dynamical decoupling control [6]-[8], sliding 
mode control [9][14], robust control [10], optimal control 
[11]-[14], Lyapunov-based control [15]-[18], feedback 
control [19]-[21]. Among all the quantum control theories, 
optimal quantum control is the most widely used in quantum 
system control. Like the optimal quantum control method, 
the Lyapunov-based quantum control is also a very powerful 
control method. By means of the Lyapunov stability theorem, 
this control method designs an asymptotically stable 
controller by making the first time derivative of the Lyapunov 
function constructed not great than zero. Unlike the way it is 
being used in the macroscopic engineering field, in which the 
controller is only required to be designed as a stable one, the 
Lyapunov-based control method used in quantum fields 
should be designed as a convergent one in order to guarantee 
the control system to reach the target state with 100% 
probability. This is because the variable controlled in 
quantum systems is usually the density matrix, which is a 
probability. A general model of an N dimensional closed 
quantum system can be descried by the Liouville equation: 

0 1( ) [ ( ), ( )]r
k kki t H H u t t   , in which ( )t  is the 

density matrix; 0H  is the internal Hamiltonian; ( )ku t  are 

external control fields; kH  are the control Hamiltonians. The 

eigenvalue (or spectrum) of the internal Hamiltonian 
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0 1 2( , ,..., )NH diag     of the system, in which , 1,2,...,j j N   

indicate the energy levels of the system, while 
jl j l     

are the transitions (Bohr) frequencies between the energy 
levels of the system. We define a non-degenerate quantum 
system if all the energy levels of a quantum system are not the 
same and a quantum system without degenerate transition, 
which means all Bohr frequencies are not the same. A 
quantum system is called full connection if 
( ) 0, { 1,2,..., }k jkH j l N     for {1,2,..., }k N    holds.  

Based on the Lyapunov stability theorem, the analytical 
expressions of control laws can be designed by means of the 
construction of a suitable Lyapunov function ( )V  , and 

under the condition of  ( ) 0V   . The Lyapunov function is 

not unique. A general form of Lyapunov function is 
( ) ( )V tr P  , in which P is a positive definite Hermitian 

operator to be determined, which is one part of control laws 
design. P can be regarded as an imaginary mechanical value 
of the system. In mathematics, ( ) ( )V tr P   is a trace 

calculation. In physics, ( )V   is an expectation value of 

Hermitian operator P. By calculating the first order 
derivatives of ( )V   for the time, one can obtain 

=10( )=- tr([ , ], )- tr([ , ] )r
k k kV i P H P i P H u  . Because the first term in 

the right side of ( )V   is independent of the control laws this 

term can be eliminated by 0[ , ]=0P H , which also provides a 

condition of designing P. When 0H  is non-degenerate, P is a 

diagonal matrix. The control laws can be obtained by letting 
( ) 0V   , and the expressions of control laws are 

([ , ] ), 1,2,...k k ku i tr P H k r   , in which k  is used to regulate 

the amplitude of the control laws. According to the LaSalle 
invariant set principle, the control system can be guaranteed 
that any trajectory converges to a maximum invariant set.  

Now that the control laws is obtained by ( ) 0V   , 

besides the target state, generally there are many other states 
which can also make ( ) 0V   , all of which are the state 

points of the Lyapunov function ( )V  . The number of these 

state points is even un-numerical in the cases when the target 
state is a supposition state or mixed state. In order to make the 
control system converge to the desired target state, one must 
add the constraint conditions to narrow the invariant set. For 
the different kinds of the target state, the conditions the 
system needs to meet are different. Generally speaking, the 
convergence conditions of a quantum system by using the 
Lyapunov control method based on the average value of an 
imaginary mechanical quantity P are three points, which are 
the requirements of internal Hamiltonian, control 
Hamiltonians, and target state, respectively. These three 
conditions are:  
i)  The internal Hamiltonian is strongly regular, i.e., the 

transition energies between two different levels are clearly 
identified;  

ii)  The control Hamiltonians are full connected, i.e., any two 
levels are directly coupled [18];  

iii) The target state must be diagonal, which makes 

0[ , ] 0f H   hold.  

Fig. 1 is an example that satisfies the conditions i) and ii). 
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Figure 1. Quantum system that satisfies the conditions i) and ii). 

 
The system which satisfies above mentioned conditions i) 

and ii) is called ideal quantum system. Under the conditions i) 
and ii), condition iii) is the condition of the state transfer of 
closed quantum systems from arbitrary initial state to an 
arbitrary diagonal target state, which can be an eigenstate, 
supposition state, or mixed state.  

However, many quantum systems in practice do not satisfy 
the conditions i) or/and ii). For example, 

0

0.3 0 0

0 0.6 0

0 0 0.9

H

 
   
  

 

 
or/and  
 

1

0 1 1

1 0 0

1 0 0

H

 
   
  

. 

 
Fig. 2 shows that the V-type and  - type quantum 

systems we often encounter in practice do not satisfy 
conditions i) and ii). Because the convergence conditions 
obtained are so extremely rigorous, the designed control laws 
have little practical application value. 
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Figure 2.  (a) V-type; (b)  -type quantum systems. 
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In order to obtain Lyapunov-based quantum control 
methods which have practical application value, one needs to 
solve the problems which appear in the quantum systems in 
degenerate cases, so as to establish the Lyapunov quantum 
control theory. Up to now, many researches have been done. 
Zhao et al. utilized an implicit Lyapunov control to solve the 
problem of convergence for the single control Hamiltonian 
systems governed by the Schrödinger equation [22]. We once 
investigated the implicit Lyapunov control method of 
multi-control Hamiltonian systems governed by the 
Schrödinger equation based on the state distance and state 
error, both of which are only suitable for the control of the 
pure states [23]. We also studied the implicit Lyapunov 
quantum control method based on the imaginary mechanical 
quantity for pure states and mixed states, in which the stricter 
convergence proof was given [24].     

In this paper we propose a unified formulation of Lyapunov 
control theory for closed quantum systems. The basic idea is: 
for a quantum system which does not satisfy the convergent 
conditions i), ii) or/and iii), we introduce an implicit 
Lyapunov function into the quantum control design method 
based on the imaginary mechanical quantity in Liouville 
equation, in order to make the designed control system satisfy 
three convergent conditions. The Lyapunov quantum control 
theory proposed  here can be used in both degenerate cases 
and ideal quantum systems, which can transfer the state from 
an arbitrary initial state to an arbitrary target state. The 
“arbitrary” here means eigenstate, superposition state or 
mixed state.  The proposed control method in this paper is a 
unique formation of quantum Lyapunov-based control 
method , which has important significance. 

The rest of the paper is structured as follows: Section II is 
the Lyapunov-based quantum control theory, in which 
implicit Lyapunov functions are introduced, as well as the 
procedure of control designs of  k , ( )k t , ( )kv t  and P  in 

detail. Section III is the numerical simulation, and Section IV 
is the conclusion. 

 

II. LYAPUNOV-BASED QUANTUM CONTROL THEORY 

A. Implicit Lyapunov Functions 

Consider the N-level closed quantum systems governed 
by the following quantum Liouville equation which may be in 
degeneration cases: 

 

0 1( ) [ ( ), ( )]r
k kki t H H u t t               (1) 

 
where ( )t  is the density operator; 0H  is the internal 

Hamiltonian; kH , 1,2...,k r , are control  Hamiltonian; 

and ( ), ( 1, , )ku t k r   are scalar and real total control laws.  

The way to solve the degeneration problems is to introduce 
the implicit Lyapunov functions as the control disturbances 
such that the system with additional control disturbances may 

satisfy those convergence conditions. A completely unified 
designing method of control laws is proposed here. The 
control laws are composed of three parts:  

 
 ( ) ( ) ( )k k k ku t t v t                        (2) 

 
in which ( )k t  are designed to make the system (1) satisfy 

the convergence conditions i) and ii); ( )kv t  are the control 

laws designed to transfer any initial state to the invariant set; 

k  are used to make the target state commute with the 

internal Hamiltonian 0H , i.e., 0[ , ] 0f H  , so as to make the 

control system be able to converge to the desired target state. 

The Lyapunov function is constructed as： 
 

( ) ( )V tr P                             (3) 

 
where 1 1( , , , ( ), , ( ))r rP f t t        are functional of k  

and ( )k t , ( 1,2..., )k r  and positive definite.  

Eq. (3) is called the implicit Lyapunov function based on 
the average value of an imaginary mechanical quantity. The 
function of (1) is used to design control laws (2), in which k  

will be designed in the case 0[ , ] 0f H  , which does not 

satisfy the condition iii). ( )k t  will be designed in the cases  

when condition i) or/and ii) are not satisfied.  ( )kv t  is used to 

design the control laws of transferring the state from an 
arbitrary initial state to an arbitrary target state. 

Next, we’ll give in detail the design procedures and the 
explanations of how these three parts play roles in control 
laws.  

 

B. Control Design of k  

In the procedure of designing k , first,  check whether 

the target state f  commutes with the internal Hamiltonian 

0H , and one can know what type the target state is. If the 

target state does not commute with the internal Hamiltonian, 
this results in 0[ , ] , 0f H D D   . The supposition state and 

some non-diagonal mixed state are in such cases. Then a set 
of appropriate constant values k  need to be introduced into 

the control laws. Then, 10 0
r
k k kH H H    , ( 1,2..., )k r  

will be considered to be the new internal Hamiltonian. Last, 
design k  in order to make  

 

0 0 0 1
[ , ] 0,

r
f k kk

H H H H  


            (4) 

 
hold.  

For the special case when the target state commute with the 
internal Hamiltonian 0H , that is, 0[ , ] 0f H  , one can set 
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0k  , which is the quantum system with the target state 

being eigenstates or some mixed states which commute with 

0H . After introducing and designing the constant values k , 

the target state f  will become commute with 0H   in (4). 

 

C. Control Design of ( )k t  

There are two objectives of designing ( )k t , one is to 

make 10 0 ( )r
k k kH H H t      such that 0H   is strongly 

regular. Denote eigenstate of 0H   as 1 , ,, , N     . 

The control Hamiltonian with 0H   is kH  : 

†
k kH U H U   , in which  1 , ,, , NU       . 

Another objective is to make the kH   be full connected. To 

achieve these two objectives, ( )k t  can be designed as  

 

1

1 1

( ), , ,
( )= ( )=

0, , , (1 , , )
m

k
m m

F s k k k
t t

k k k k k r
 




  



 
              (5) 

 
in which F is the function of s, and satisfies (0) 0F  , 

( ) 0F s  , and '( ) 0F s  , which means ( )F s  is a monotonic 

increasing function.  
Usually, the simplest ( )F s  can be constructed as: 

( ) ( )fs V V   ,  where 0C  , and C R . Combining 

with (3) ( )k t  can be designed as 

 
( )= ( )= ( ( ) ( ))k ft t C tr P tr P                   (6) 

 

D. Control Design of ( )kv t  

The role of control laws ( )kv t  is to ensure ( ) 0V t  . 

( )kv t , 1, ,k r   are designed to ensure the first time 

derivative of Lyapunov function (3) is not greater than zero, 
from which we can obtain: 

 

 ( ) ([ , ] )k k k kv t K f itr P H                  (7) 

 
where kK are constants and 0kK  , 

1, ,k r  , †
k kH U H U   ,  1 , ,, , NU      

 
and ( ),( 1,2, , )k k ky f x k r    are monotonic increasing 

functions which are through the coordinate origin of the 
plane k kx y . 

    In fact, LaSalle invariant principle can only guarantee the 
control system to converge to the invariant set, but not 
guarantee to converge to the target state. In order to make the 
control system converge to the target state, we still need to 
deal with another problem: the number of critical states in the 

invariant set, i.e., the number of the states which satisfy 

( ) 0V t  . For a closed quantum system, only when the target 

state commutes with the internal Hamiltonian, the number of 
critical states in the invariant set is at most !N . There are 
un-numerical critical states in the invariant set when the 
target does not commute with the internal Hamiltonian. This 
problem can be solved in two ways: one is to make the 
un-numerical critical states in the invariant set become 
numerical ones by introducing a set of constant values k  
into the control laws; another is to make the target state be the 
minimum value of the Lyapunov function (3) by designing 
the imaginary mechanical quantity .  

The control laws (2) designed by (6) and (7) can only 

guarantee ( ) 0V t  . In order to ensure ( ) 0V t  , we provide 

another condition   
 

( ) ( )f otherV V                           (8) 

 
which means the value of the Lyapunov function at the target 
state is less than the values of Lyapunov function at all other 
states.  

The role of P  in (6) is to make the control system 

converge to the target state f . In order to do so, on one 

hand, we need to design P  to make the condition (8) hold, 

where other  represents any other critical states in the 

invariant set except the target state. On the other hand, the 
condition 0[ , ] 0P H     must hold, which means that P  

and 0H   have the same eigenstates 1 , ,, , N     . We 

design the eigenvalues of P  to be constant, denoted by 

1 2, , , NP P P , and design P  as 

 

, ,1

N
j j jj

P P     


                      (9) 

 
In order to make (8) hold, we design jP  as follows: If 

( ) ( ) ,1 ,f ii f jj i j N     , design i jP P ;  

if ( ) ( ) ,1 ,f ii f jj i j N     , design i jP P ; else if 

( ) ( ) ,1 ,f ii f jj i j N     , design i jP P ,  

then  ( ) ( )f otherV V   holds, where ( )f ii  is the 

(i,i)-th element of †
f fU U    ; 

1, ,( , , )NU     ; 1, ,, , N    are the eigenstates of 

10 0
r
k k kH H H    . 

For the above deduction, refer to the proof of Theorem 2 
in [24]. 

Based on LaSalle’s invariance principle, the convergence 
of the control system with above control laws designed by 

( ) ( ) ( )k k k ku t t v t     in (2), we proven the following 
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theorem:  Consider the control system (1) and the constructed 
Lyapunov function (3), under the action of control laws (2), in 
which ( )k t  is designed by (6); ( )kv t  is designed by (7); k  

is used to make (4) hold, P  is designed as (9), which can 

make the control system satisfy:  

i) , , , ,l m i j   , ( , ) ( , )l m i j , 

 , , , 1,2, ,i j l m N  , , , , ,l m l m      , where 
,l   is 

the l-th eigenvalue of 10 0 ( ( ))r
k k k kH H H t      

corresponding to the eigenstate ,l  ;  

ii) j l  , for 1, ,k r  , there exists at least a ( ) 0k jlH   , 

where ( )k jlH   is the (j,l)-th element of  

†
k kH U H U    with  1, ,, , NU     ;  

iii) 0[ , ] 0P H   ; For any ,(1 , )l j l j N   , 

( ) ( )llP P jj   holds, where ( )llP  is the (l,l)-th 

element of P , and the control system will converge 

toward the invariant set E: 
 

  †
0 0 0 0( ) ( ) 0, ( ( )),

ij
E t U t U t t R                    (10) 

 
The proof of the theorem is similar to the proof in [24], 

and we will not repeat it here. 
By designing the control laws proposed in this paper, a 

quantum system in degenerate case can become an ideal 
quantum system, which satisfies three convergent conditions 
of state transfer. In fact, the proposed control designed 
method in this paper is also suitable for the state transfer of 
ideal quantum systems, so up to now we establish a complete 
Lyapunov - based closed quantum control theory, which is 
not only suitable for quantum systems in non-degenerate, but 
also suitable for the quantum systems in degenerate cases. 

 

III. NUMERICAL SIMULATION 

In this section, we perform an experiment to design a 
specific controller to transfer a state to a superposition state 
by using the implicit Lyapunov control based on the average 
value of an imaginary mechanical quantity. 

Consider a 3-level quantum system, whose internal 
Hamiltonian is non-strong regular, and the control 
Hamiltonians are not full connected: 

 

0 1

0.3 0 0 0 1 1

0 0.6 0 , 1 0 0

0 0 0.9 1 0 0

H H

   
       
      

       (11) 

 
In the numerical simulation experiment, the initial state 

0  is a mixed state which does not commute with the 

internal Hamiltonian and the target f  is a mixed state 

which commutes with the internal Hamiltonian: 
 

 

0

0.1 0.1 0.04

0.1 0.5 0.08

0.04 0.08 0.4

0.5687,0.3562 0.075f diag





 
   
  

 ，

             (12) 

 
According to the design ideas proposed in this paper, the 

control laws are 1 1 1( ) ( ) ( )u t t v t  , in which 1( )v t  is 

designed as: 
 

 11 1 1( ) ([ , ] )v t K itr P H                    (13) 

 

in which 1K  is the gain of 1( )v t , and 1 0K  . 
The implicit function 1( )t  is designed as: 

 

1 11 1( ) ( ( ) ( ))fM tr P tr P               (14) 

 

where 1M  is the gain of 1( )t , and 1 0M  . 
According to the design method of the imaginary 

mechanical quantity in (9), design the eigenvalues of 1P  

are: 
 

1 2 3P P P  ，
1 1

3

,
1

j j
j

P P 


            (15) 

 

where 
1,j   is the eigenstates  of 0

1

( )
r

k k
k

H H t


 . 

In the simulation experiment, the simulation step is set to 
be 0.01 a.u., and control duration is 300 a.u.. The parameters 

used in experiment are: 1 0.1M  , 1 0.34K  , 1 0.01P   , 

2 2P   and 3 2.9P  . The results of numerical simulating 

experiments are shown in Fig. 3 and Fig. 4. Fig. 3 represents 
the evolution curves of density metrics, in which ii  is the 

diagonal elements of  . Fig. 4 shows the control curves of 

the 1( )t , 1( )v t  and 1( )u t . 

From Fig. 3 and Fig. 4, one can see that at the time 300 a.u., 

11 0.56811  , 22 0.35215  , 33 0.07973  , and transfer 

probability is 99.53% , which verifies the effectiveness of the 
proposed method in this paper. 
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Figure 3 Evolution curves of density metrics ii . 

 

 
 

Figure 4 Control fields of the control system. 
 

IV. CONCLUSION  

This paper proposed a complete design procedure of 
control laws for closed quantum systems in degenerate cases. 
The proposed control design method is also suitable for ideal 
quantum systems. Based on the Lyapunov-based control 
theory of quantum systems proposed in this paper, the state 
transfer task of closed quantum systems from arbitrary initial 
state to arbitrary final state can be completed, and the 
Lyapunov-based control theory of closed quantum systems 
has been established. 
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