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Abstract—In this paper, we present a framework to explore
the role of motion capture and neural information processing in
a coordinated execution of movements in the sporting context.
We discuss the perception-cognition-action coupling from a
motor function consideration. For this, we present a generic
experimental design for brain source connectivity estimation.
We show the visualisation of the brain connectivity using a
sample Electroencephalography (EEG) data-set. We propose to
extrapolate the application of similar design to study sporting
movements such as cricket batting. We present the case for
the use of portable and mobile EEG sensors to study such
a low latency decision-making task. Finally, we describe a
preliminary framework on how to use and validate the efficacy
of neurofeedback in coaching skilled human movement. Taking a
multi-modal approach, we included motion capture data to study
the skilled movement. From this, we present the wrist movement
variation in a shadow batting task by a novice batsman.

Keywords—Interceptive; Movement; Neural; Neurofeedback;
Motion-capture.

I. INTRODUCTION

Humans could perform complex movements, e.g., in sports,
dance, and other skilled activities. Although the actions man-
ifest in physical dynamics, specific internal mental models
precede most of these movements. The human brain together
with the peripheral Central Nervous Systems (CNS) dictates
the quality of motion. The quality, in turn, depends on training
and feedback, especially in the case of skilful execution of
movement patterns, e.g., in a sporting context.

Brain-Computer Interfaces (BCI) are systems where the sig-
nals from the brain are used to control a computation platform
directly. This paper presents the theoretical background and
validation of the computational model that explores the role
of neural circuitry in interceptive action execution as a BCI
feedback system. We also present a video analytics method
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for studying the pattern of movement involved in a defensive
cricket shot - the so-called forward defence.

Fundamental models of skilled actions in the human move-
ments are well known [1]. To get a full picture of skilled
movement execution and the sensory dynamics of the hu-
man agent, both internal and external influences should be
considered. The internal models refer to the neural processes
that govern the CNS in preparation and execution of the
concerned movement patterns, while the external processes are
the physical manifestation by the subject performing the same
movement tasks.

In cricket, a batsman has to move the bat to the right place
at the right time to intercept a fast moving ball; the mental
models influence the outcome. Indeed, motor control follows
an internal forward model [2]. In the case of such an inter-
ceptive movement, the batsman, the bat, and a travelling ball
form a closed loop feedback-feedforward system. Feedback
from internal and external agents helps the subject to evaluate
the past performance, while the internal feedforward models
help anticipate the unknown variables before task execution.

Feedback plays a critical role in human motor activities [3].
For example, an improper feedback would induce inefficien-
cies in the movement mechanisms, and that would cause
the motor activity to suffer. Self-adjusting instructions in an
automatic system are equivalent to influencing the part of the
brain that generates a particular motor behaviour. Hence, find-
ing the source localisation as described in existing literature,
could help the training process to achieve the desired mental
state [4] [5]. This research takes a multimodal approach. The
sub-sections below provide a brief introduction on various
modalities.
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A. The Neurofeedback Approach

Neurofeedback refers to the method of identifying the brain
regions that get triggered during a functional task execution
and then to use the information to provide feedback to the
subject via visual or auditory cues. For this, different sen-
sor data are collected, e.g., Electroencephalography (EEG),
Magnetoencephalography (MEG), and functional Magnetic
Resonance Imaging (fMRI), etc. In the real world sporting
context, a portable EEG device is ideal. We present connec-
tivity analysis on a sample dataset. EEG allows to carry out
high temporal resolution studies, which implies that we can
see what happens in the brain when the subject performs a
task in near real-time.

B. The Motion Capture Approach

The spatial and temporal components of the movement (po-
sition, velocity, and acceleration) carry biomechanics signature
of action and can be used to compare the quality of movement
variation in a single subject or across subjects [6]. Active
marker systems, such as the Optotrak [7], allow to place
markers on the subject and to observe individual parts of the
movement. We present a preliminary movement analysis from
Optotrak Motion Capture System (MOCAP).

C. Background on Motion Capture and Brainwave Data Anal-
ySis

The motion capturing system, as used in the experiment pre-
sented in this paper, uses markers on different body parts and
allows to find granular variations in different body regions un-
dergoing movement. Similarly, brainwave sensors allow cap-
turing functional correlates of different wave- bands generated
during a task execution. The firing of neural circuits gives rise
to electrical activities in the brain. The sensors (EEG) placed
on the scalp can detect and measure the electric component of
the electromagnetic waves from the electrical dipoles in these
circuits. Similarly, MEG measures the magnetic component
in the signals. To use a neurofeedback paradigm in training
movement, in is necessary to find the location of the sources
related to a particular functional activity. Source localisation
from the detected signals forms the Inverse problem. These
brainwave signals fall into different groups based on their
frequency ranges that correspond to different functional mental
states. Typical frequency ranges dominant in EEG are alpha,
beta, delta, and theta. Fig. 1 shows different groups and their
associated functional correlates.

The organisation of the rest of the paper is as follows. In
Section II we present the methodologies followed in collecting
the sample data [11]. In Section III we describe the connectiv-
ity metrics followed by the experimental design of the Motion
Capture system in Section IV. Section V concludes with a
summary of the benefits, advantages and limitations of our
approach and describes the future direction for this work.

II. EXPERIMENTAL DESIGN METHOD:
NEUROIMAGING

We present the experimental design for neuroimaging ex-
ample dataset below.
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A. Connectivity Analysis Protocol in EEG and MEG

The brain source localisation could be used to visually
display the neural network connectivity for functional task
performance [8]. The brain network connectivity analysis
using EEG and MEG for a high temporal resolution extend the
neurofeedback modality. Combining EEG and MEG will make
it possible to distinguish the mechanisms that are the event-
related from that evoked potential. Thus allowing precise
identification of the brain areas during a successful and failed
execution of the batting task described in Section IV.. Hence,
the connectivity patterns during the successful performance
of a cricket shot could be used to provide feedback in future
performance. It is possible to gamify the feedback-feedforward
loop by designing a rewarding and penalising the subject in a
scoring scale. The gamification part will be explored further
in future work. The neuroimaging is then to be combined with
MOCAP data analysis to provide feedback on, e.g., ideal hand
and wrist movement in a defensive cricket batting stroke.

B. The Sample Dataset

The MGH/HMS/MIT Athinoula A. Martinos Center for
Biomedical Imaging at Massachusetts General Hospital
(MGH), Harvard Medical School (HST), and Massachusetts
Institute of Technology(MIT) acquired and made available the
example dataset captured with the Neuromag Vectorview sys-
tem. EEG data from a 60-channel electrode cap was obtained
simultaneously with the MEG. The raw data refers to the
continuous time series, the Epochs imply the collection of
time-locked trials and averaged data over trials, e.g., storing
Left Auditory, and Right Visual in a single file is the averaged
data known as Evoked. Details of the data collection protocol
are available in the literature. The methodology follows one
subject’s brainwave recording associated with triggered finger
movement [4]. An occasional appearance of a smiley face was
the stimulus at the centre of the subject’s visual field. The
instruction to the subject was to press a key with the right
index finger as soon as possible after the face appeared. Tab.-I
lists the trigger codes [9].

TABLE I

TRIGGER CODES FOR THE SAMPLE DATA SET.
Name Code #Contents
LA 1 Response to left-ear auditory stimulus
RA 2 Response to right-ear auditory stimulus
LV 3 Response to left visual field stimulus
RV 4 Response to right visual field stimulus
Smiley | 5 Response to the smiley face
Button | 32 Response triggered by the button press

C. Brainwave Data Analysis Protocol

Cortical surface-based functional brain imaging involves
segmentation and surface reconstruction [10]. To cortical con-
straint, the EEG/MEG source, the data analysis protocol uses
the MRI of the subject. The computational algorithm covers
the following stages and analysis [9] [11]:

« Preprocessing and denoising
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Fig. 1. Comparison of EEG frequency bands and corresponding mental state activation. Please see Section C. for more details

« Source estimation

« Visualisation of sensor- and source-space data

o Time-frequency analysis

« Statistical testing

« Estimation of functional connectivity

o Applying machine learning algorithms

We validate the example relevant to the functional connec-
tivity analysis after performing the preprocessing steps.

D. Preprocessing

Preprocessing eliminates the defective EEG channels to
make sure that errors due to incorrect data do not propagate
further in the pipeline. Signal Space Projection (SSP) and
Independent Component Analysis (ICA) routines suppress the
artefacts [12]. Fig. 2 shows the result of the covariance matrix
estimates.

III. CONNECTIVITY METRICS

Dynamic statistical parametric mapping (dSPM) [13] and
MNE [14], sLORETA estimates source activation from MEG
and EEG data. To study the brain region connectivity, both
model-based and data-driven approaches are applicable, re-
spectively in the time and frequency domains. Connectivity
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Fig. 2. Covariance matrix estimation on the raw data with Signal Space
Projection

analysis provides a way to perform multivariate analysis of
brain region in response to different stimuli such as auditory
and visual. Another area to study is the connectivity within
the brain and brain-CNS regions. The example of connectivity
between a seed-gradiometer close to the visual cortex and all
other gradiometers as shown in Fig. 3 uses the metric Squared
Weighted Phase Lag Index [15].

Fig. 4 shows the connectivity computed between 4 labels
across the spectrum between 5 and 40 Hz.
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Fig. 3. Connectivity map of a seed gradiometer using Squared Weighted
Phase Lag Index
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Fig. 4. Inverse Connectivity Spectrum

A. EEG BCI Motor Imagery And Real Time Feedback

In this section, we discuss some preliminary results from
a motor imagery data available at PhysioNet [16]. The data
collection is as per the experimental protocol described in [17].

The motor imagery could be decoded from this type of
dataset by separating the signal into additive components,
which have maximum differences in variance between the
windows of the multivariate signal. This method is known
as the Common Spatial Pattern (CSP). Work is underway on
this dataset to improve the classification accuracy and to use
the method in real-time data analysis similar to the imagery
protocol described above.
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Fig. 5. Labels for rescaled channels for left and right motor imagery stimulus

Event Related Potential (ERP) is decoded with xDAWN is
as shown in Fig. 5 [18], [19]. For each event type, a set of
spatial xDAWN filters is trained and applied on the signal.
Channels are concatenated and rescaled to create feature
vectors. They are fed into a Logistic Regression. The real-
time feedback mechanism with a client—server setup could be
used for feedback. The server is started so that future stimuli
for the classification task are presented via the client. This is
predicted less accurately, and an on-demand adaptation of the
stimuli is issued to improve the performance of the classifier
to compute various statistics in real-time. Currently, we are
exploring the simulated data with a plan to extend the pipeline
to include real experiments in future.

IV. EXPERIMENTAL DESIGN: MOCAP

We present the experimental design for MOCAP dataset
below.

A. Method

The aim of the study is to perform an initial test for
verification of the experiment design using the passive motion
capture system with an inter-reliability test.

B. Participant

A novice (with no experience in cricket), a right-handed
male student in the Department of Animation and Game De-
sign in Shu-Te University volunteered. We followed the health
and safety briefing, risk assessment, and obtained informed
consent as per Bath Spa University and Shu-Te University
standard protocols. The participant’s age is 24 years old, using
his preferred right hand to perform the task.

C. Apparatus

We conducted the experiment in the motion capture lab-
oratory in Hengshan Innovation Base in Shu-Te University,
Taiwan. We initially assessed four participants in a single
batch, thanks to the maximum capability of the laboratory. But
for the result presented here, we included data from only one
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participant. The rest of the data will be used for a comparative
analysis of the movement patterns among participants in future
work. OptoTrak Inc. provided the passive motion capture
system shown in Fig. 6 and Fig. 7.

Fig. 6. On body marker on subjects. Only one subject’s data is presented
here.

Fig. 7. Screenshot of the MOCAP software renderer.

The system has 20 pieces of high-speed IR camera (Product
ID: Prime 17W), each of the cameras has 70 degree of
Field of view (FOV) wide angle, offering true, edge to edge
coverage across the camera’s image sensor. It has advantages
of perfectly matching the imager’s resolution, 20 pcs of motion
capture IR camera, with an amazing 70° FOV, 1.7 MP of
resolution and a 360 FPS capture rate. Furthermore, the
following equipment and tools were employed:

e« A 60" LCD monitor was provided to play the video
showing the movement of the swing movement.

o The data analysis was performed using MATLAB and
SPSS version 13.

D. Procedure

The objective measurement involves a laboratory-based
movement experiment with three repetitions. We captured
the movements on 120 frames-per-second (FPS). During the
trial, the participant was instructed to perform a cricket bat
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swing motion based on the video playing in front of him. We
performed a five-minute warm-up test before the experiment.
It ensures the inherent reliability of the study.

E. Limitations

One potential limiting assumption was that the bias might
be minuscule and could be normalised. Hence, we ignored any
biases because the number of samples collected is large. Thus
significantly reducing the bias on frames captured from the
system.

F. Data Analysis

The motion data collected at the 120 (FPS) resulted in a
total of N = 1,588 frames, implying a successful recording
of approximately 1MB of data. Thus, provided enough data
for doing an analysis by quantitative method. The variance
of velocity is as shown in Fig. 8. The analysis of variance
indicated that the mean movement time was no significant
difference among three repetitive movements, p < 0.05. Thus,
the experiment design was consistent.

G. MOCAP Results

In the case of cricket batting, for right-handed batsmen, the
left hand is the leading side and vice versa for the left-handed
batsman. The leading hand is the most important in controlling
the bat movement. Hence, we focused on the data from the
three markers located at the left-hand wrist on top, bottom
and side-on positions. We calculated the position vectors
from the Cartesian coordinate values at each instant during
the movement as provided by the MOCAP and generated
Acceleration Profile for the left-hand wrist as shown in Fig. 8.

One subject was undergoing multiple trials to produce data
so that random statistical significance could be detected. In the
next phase, the subject will be identifying the ball movement
direction as a stimulus presented on a screen. A second task
will be to predict the spin and swing direction of the ball
concurrently capturing the MOCAP and EEG data.

Fig. 8. Variation of velocity with time of the wrist of the leading left hand
of a right handed subject performing the shadow forward defence shot

V. CONCLUSIONS, PERSPECTIVES, AND THE
FUTURE DIRECTION

In athletic performances, perception and action need to be
in a synchronised state. If an athlete is great at perceiving
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and processing a mental model on the sport specific task but
unable to perform the required action successfully, that will
be of no use in successful execution of the task.

The hypothesis that the action influences perception is one
of the ideas we aim to establish a multimodal methodology
encompassing neurofeedback and motion capture feedback on
task execution.In a case of cricket batting, this implies that a
successful hitting of the target at practice could lead to the
perception of increased size, and slower movement of the ball
against failed execution of interceptive action would result in
a perception of smaller size and faster motion of the ball. This
research extends the signal processing part from the previous
work [4], [8], and also looks at the experimental movement
data that could be correlated to neuroimaging data in future
as a gamified neurofeedback or as a neurogaming application
for training athletes. To attain the level of sophistication
to be used in real world situations, we need to improve
and develop existing data analytics methods and combine
with other movement related modalities to build a practical
training framework. We establish the feasibility of connectivity
measures in MEG-EEG monitoring and suggest ways measure
motor performance from a combination of cognitive states and
motion capture in an interceptive movement. To combine these
modalities for training interceptive action is the goal and future
direction of this research.

ACKNOWLEDGEMENT

This work was supported in part by Natural Science Foun-
dation of China (Grant no. 71473018). Special thanks to
the following staff members of the motion capture lab: Ji-
Fu Wang, Wei-Cheng Wang, and Yen-Nan Tung. This work
benefited from the informal discussion and insights on elite
performance from ex-cricketer and Delhi Ranji Trophy cricket
team strength and conditioning coach N. Bordoloi.

REFERENCES

[1]1 E. Morsella, J. Bargh, and P. M. Gollwitzer, Oxford Handbook of Human
Action, Oxford University Press, Oxford, 2008.

[2] R. C. Miall and D. M. Wolpert, “Forward Models for Physiological
Motor Control,” Neural Networks, 8, 2008.

[3] N. Wiener, Cybernetics or control and communication in the animal
and the machine, ~MIT Press Paperback Edition, 1965.

[4] D. Pathak, H. Yang, T. K. Chen, J. Fishenden, and A. Lee, “Measuring
Brain Signals to Evaluate the Role of Creativity in Interceptive Human
Movement,” IEEE ISCC, Oxford, 2016.

[5]1 T. Mitsuru et al. “Event related desynchronization-modulated functional
electrical stimulation system for stroke rehabilitation: A feasibility
study,” Journal of NeuroEngineering and Rehabilitation, vol. 19, 2012.

[6] J. H. Hamill and K. M. Knutzen, Biomechanical Basis of Human
Movement., Wolters Kluwer, 2009.

[71 R. A. States and E. Pappas, “Precision and repeatability of the Optotrak
3020 motion measurement system,”  Journal of Medical Engineering
& Technology, vol. 30, no. 1, pp. 11-16, 2006.

[8] D. Pathak, H. Yang, and T. K. Chen “Neurofeedback and Creativity in
Interceptive Human Movement: A Theoretical Model for Neurocyber-
netics Based Kinaesthetic Multimodal Learning Agent,” IEEE IWSC,
Vienna, 2016.

[9] A. Gramfort et al. “MEG and EEG data analysis with MNE-Python”

Frontiers in Neuroscience, vol. 7, 2013.

A. M. Dale, B. Fischl and M. 1. Sereno, “Cortical Surface-Based

Analysis I: Segmentation and Surface Reconstruction,”  Neurolmage,

vol. 9, 1999.

[10]

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

A. Gramfort et al. “MNE software for processing MEG and EEG data,”
Neurolmage, vol. 86, 2014.

M. A. Uusitalo and R. J. Ilmoniemi, “Signal-space projection method
for separating MEG or EEG into components,” Med Biol Eng Comput,
19, vol. 35, pp. 135-140, 1997.

A. M. Dale et al. “Dynamic statistical parametric mapping: combining
fMRI and MEG for high-resolution imaging of cortical activity,” Neu-
ron, vol. 26, no. 1, pp. 55-67, 2000.

O. Hauk, “Keep it simple: a case for using classical minimum norm
estimation in the analysis of EEG and MEG data,” Neuroimage, vol.
21, no. 4, pp. 1612-21, 2004.

Vinck et al. “An improved index of phase-synchronization for electro-
physiological data in the presence of volume-conduction, noise and
sample-size bias,”  Neurolmage, vol. 55, no. 4, pp. 1548-1565, Apr.
2011.

A. L. Goldberger et al. “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic
Signals,”  Circulation, vol. 101, no. 23, pp. €215-220, 2000.

G. Schalk, S. J. McFarland, T. Hinterberger, N. Birbaumer, and
J. R. Wolpaw, “BCI2000: A General-Purpose Brain-Computer Interface
(BCI) System,” IEEE Transactions on Biomedical Engineering, vol.
51, no. 6, pp. 1034-1043, 2004.

B. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xXDAWN algorithm
to enhance evoked potentials: application to brain-computer interface,”
IEEE Biomedical Engineering, IEEE Transactions on, vol. 56, no. 8, pp.
2035-2043, 2009.

B. Rivet, H. Cecotti, A. Souloumiac, E. Maby, and J. Mattout, “Theo-
retical analysis of xXDAWN algorithm: application to an efficient sensor
selection in a P300 BCI,”  IEEE Signal Processing Conference, 19th
European, pp. 1382-1386, 2011.

49



