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Abstract—The Dihedral Hidden Subgroup Problem (DHSP) is
a long-standing open problem in quantum computation. The best
known quantum algorithm for the DHSP is Kuperberg’s sieve
algorithm which runs in subexponential time. Regev showed that
the DHSP is related to a lattice problem on which the security
of some public-key cryptosystems is based, and that an efficient
solution to the DHSP would lead to breaking such cryptosystems.
In this extended abstract, we present a simple quantum algorithm
for the hidden subgroup problem over the dihedral group of
order a power of two, which runs in polynomial time under
some heuristic assumptions. We have implemented our algorithm
in MATLAB and tested it with a small example. The simulation
result shows evidence of the correctness of our algorithm.

Index Terms—dihedral group; hidden subgroup problem; quan-
tum algorithm; statistical test.

I. I NTRODUCTION

Since Shor’s seminal work [1] on quantum algorithms
for integer factorization and discrete logarithms, the Hidden
Subgroup Problem (HSP) has been a hot research topic in
the field of quantum information and computation. See, e.g.,
[2], for a survey on this topic. The HSP is classified into two
categories: abelian and nonabelian. Many abelian HSPs have
been well understood and a quantum computer can solve many
abelian HSPs exponentially faster than a classical computer.
On the other hand, nonabelian HSPs in general are difficult
to solve and for some nonabelian groups (e.g., the symmetric
group) negative results have been reported.

The Dihedral HSP (DHSP for short) stated in the next sec-
tion is the first step towards understanding nonabelian HSPs.
Ettinger and Høyer [3] were the first to consider the DHSP and
showed that polynomial-time quantum computation provides
enough information to solve the problem, but classical post-
processing may take exponential time. At the time of writing,
the best quantum algorithm known to date is due to Kuperberg
[4] who shows a subexponential-time quantum algorithm for
the DHSP (see also [5][6] for its improvements).

The DHSP is related to a lattice problem. Regev [7] shows
that if an efficient algorithm exists for the DHSP then one can
efficiently solve the unique Shortest Vector Problem (uSVP).
Some lattice-based cryptosystems assume the hardness of the
uSVP. In fact, no classical polynomial-time algorithm for the
uSVP is known. However, since the periodic structure of a
lattice is suited to quantum computation, many researchers
have tried to solve lattice problems with a quantum computer,

but no polynomial-time quantum algorithm for the uSVP is
known to date.

A. Problem Statement and Our Main Result

In this paper, we restrict ourselves to dihedral groups of
order a power of two. For a positive integern, letD2n denote
a dihedral group of order2n+1 (see the next section for the
definition of the dihedral groupD2n ). Let f be a function on
D2n andH a subgroup ofD2n . We say that the functionf
hides the subgroupH if the following holds: for allg, g′ ∈
D2n , f(g) = f(g′) if and only if Hg = Hg′ for the right
cosets ofH. The DHSP is stated as follows.

Problem 1 (DHSP). Given an efficiently computable function
f onD2n that hides a subgroupH of D2n , find the generators
of H by evaluating the functionf .

In our paper [8], we present a simple quantum algorithm
for the DHSP. Our approach to the DHSP is essentially the
same as the one taken by Ettinger and Høyer [3]. Using the
quantum Fourier transform, we reduce the DHSP to a problem
of distinguishing (discrete) probability distributions. To solve
the latter problem we propose a simple statistical test, which
can be performed in polynomial time on a classical computer
under some heuristic assumptions stated in Section 4.2 of [8],
and so the DHSP can be solved in polynomial time on classical
and quantum computers. The description and analysis of our
quantum algorithm are given in Sections 3 and 4 of [8]. Our
main result is summarized in the following (informal) theorem:

Theorem 2. There exists a quantum algorithm for the DHSP
over D2n , whose runtime is polynomial inn under some
heuristic assumptions.

See [8] for aheuristicproof.

B. Related Work

The related work includes [3]–[6], among others, as men-
tioned above. For a survey on the DHSP see [9]. We have
to mention the work of Baconet al. [10]. They show the
optimal measurement for the DHSP using a Pretty Good
Measurement (PGM) and a result about quantum hypothesis
testing, which has a better query complexity than [3]. They
also show the equivalence between the implementation of the
optimal measurement in a restricted form and the solution of
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the average-case subset sum problem. Since the average-case
subset sum problem appears to be hard, the PGM approach
seems unlikely to yield an efficient quantum algorithm for
the DHSP. Chia and Hallgren [11] also consider a decision
problem related to the DHSP and show its relation to the subset
sum problem.

II. OUTLINE OF OUR SOLUTION TO THE DHSP

We will outline our quantum algorithm for the DHSP below.

A. Notation

For a positive integerN , let ZN = {0, 1, . . . , N − 1}. We
denote moduloN addition and subtraction onZN by “+”
and “−”, respectively. Although we use the same notation as
used in the field of real numbers, the meaning is clear from
the context. Note thatZN with respect to addition is a cyclic
group of orderN .

B. Reducing the DHSP to a Distribution Testing Problem

We first recall the definition of the dihedral groupD2n

of order 2n+1, where n is a positive integer. The dihedral
groupD2n is defined byZ2⋉Z2n , a semidirect product ofZ2

andZ2n both of which are considered as cyclic groups with
respect to addition. The product operation onD2n = Z2⋉Z2n ,
denoted by “◦”, is defined by

(a, x) ◦ (b, y) = (a+ b, (−1)bx+ y) (1)

for (a, x), (b, y) ∈ D2n . For simplicity we omit the notation
“◦”.

We may assume that the hidden subgroupH is of order 2
(see [3]). Using the so-called standard method (see, e.g., [2]
[9]), the DHSP for the aboveH is reduced to the following
Dihedral Coset Problem (DCP)which is equivalent to the
hidden shift problem over the cyclic groupZ2n (see, e.g., [2]).

Problem 3 (DCP). For s ∈ Z2n \ {0} andx ∈ Z2n , let

|ψs,x⟩ =
1√
2
(|0⟩1|x⟩2 + |1⟩1|x+ s⟩2). (2)

The state above is called acoset state. Given a (polynomial
size) sample of coset states in Eq. (2) with fixeds and varying
x both of which are unknown, the problem is to find the shift
s (or equivalently, its binary representation(s1, . . . , sn) with
s =

∑n
i=1 si2

i−1).

If we determine the least significant bits1 of the hidden shift
s, then the DCP overD2n reduces to a smaller one overD2n−1 .
By using such a reduction we can solve the DCP iteratively.
See [8] for more details.

To determine thes1 we use the Quantum Fourier Transform
(QFT). Using the QFT, we reduce the problem of determining
s1 to that of distinguishing between the discrete probability
distributionsP andQ onZN defined below, whereN = 2n−1.
For y ∈ ZN ,

P (y) =
1

N
and Q(y) =

2

N
cos2

(
π
s′y

N

)
, (3)

wheres′ is a nonzero element ofZN . See [8] for more details.

C. Distinguishing the DistributionsP andQ

To solve the above distribution testing problem we propose
the following statistical test:

1) (a) From coset states we obtainYj , j = 1, . . . ,M ,
samples from unknown distribution (P or Q).

(b) ComputeSM =
∑M

j=1 g(Yj) where g is the test
function defined onZN :

g(y) =
(
− ln

(
1− y

N

))K

, y ∈ ZN , (4)

whereM = poly(n) andK = poly(n).
(c) Continue the above steps to obtain manySM ’s.

2) (a) GenerateY ′
j , j = 1, . . . ,M , by sampling from the

uniform distributionP .
(b) ComputeSP

M =
∑M

j=1 g(Y
′
j ).

(c) Continue the above steps to obtain manySP
M ’s.

3) Compute(SM )1/K ’s and (SP
M )1/K ’s, and construct the

histograms of these data.
4) Conclude that the distribution in question isP if two

histograms are close inℓ1 metric, andQ otherwise.

We implemented the above statistical test in MATLAB and
performed a Monte Carlo simulation. The simulation result
can be found in [8].

III. C ONCLUSION

In this extended abstract, we outlined our solution to the
DHSP for the caseD2n . For lack of space we omitted a
heuristic analysis of the statistical test given in the previous
section, which can be found in [8]. It remains open to give a
rigorous proof of correctness of our quantum algorithm.
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