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Abstract— Within a location based social network, carpooling 

is becoming more and more preferable among workers both 

living and working near each other due to the continuous 

increase in gasoline price and air pollution, and is more 

desirable when working places are far away from homes. To 

find the least-cost path for carpooling means to find the 

optimal order to traverse the homes and workplaces to pick up 

passengers and to drop off them. However, before the order 

searching is performed, in a large transportation network, it is 

prevalent to first obtain the least-cost path between any two 

locations, with one as a work place and the other as a home, to 

reduce computation time. In fact, for carpool, since only a few 

people can stay within a vehicle, it is fast to obtain the best 

pickup and drop-off order. Therefore, the bottleneck to obtain 

the least-cost route is indeed the calculation of the least-cost 

paths between any such two locations. The two existing 

dominant approaches to pre-compute these least-cost paths are 

Dijkstra’s algorithm and A*, where Dijkstra’s algorithm is 

used to compute single-origin multiple-destination least-cost 

paths while A* is used to compute the least-cost path between 

an origin-destination pair. In this paper, LU, a best first search 

algorithm and framework recently proposed to compute 

single-origin multiple-destination least-cost routes, is adopted 

in this pre-processing step to retrieve the optimal path to 

traverse the carpool-based pickup and drop-off locations. Its 

performance is compared with A* and Dijkstra’s algorithm 

through a set of experiments in a large transportation network. 

The results demonstrate that LU is significantly faster than 

Dijkstra’s algorithm and much better than A*.  

Keywords- LU, A*, Dijkstra’s algorithm, Best First Search, 

Single-Origin Multiple-Destination, Carpool, Location Based 

Social Network 

I.  INTRODUCTION 

Within a location based social network, carpooling is 
becoming more and more preferable among workers both 
living and working near each other due to the continuous 
increase in gasoline price and air pollution, and is more 
desirable when working places are far away from homes. In 
general, to carpool, a worker is assigned to start from 
him/her home to pick up the other workers from their homes 
and drop off them at their workplaces and to end at his/her 
workplace. This carpool-based least-cost route processing is 
similar to a Traveling Salesman Problem (TSP) that asks for 
a least-cost route traversing a set of non-ordered points of 
interest [1][2]. Compared to TSP, it has an additional 
constraint in the sense that a worker must be picked up at 
his/her home before he/she is dropped off at his/her 

workplace, i.e., an order is imposed on any origin-destination 
pair. In addition, compared to general TSPs, there are two 
distinct characters for carpooling routing. First, origins and 
destinations are likely to cluster. Second, the number of 
destinations for a ride is not large.  

In a large transportation network, prior to obtaining the 
least-cost path for carpooling, which means to find the 
optimal order to traverse the homes and workplaces to pick 
up passengers and drop off them, similar to TSP, it is 
prevalent to obtain the least-cost path between any two 
locations, with one as a work place and the other as a home, 
to reduce computation time [1] [2]. Otherwise, a partial 
optimal traversal order may have to be evaluated at each 
vertex along a minimum-cost route between any two 
locations in a transportation network, which is computation-
intensive. In fact, for carpool, since only a few people can 
stay within a vehicle, given the pre-computed least-cost 
routes, it takes no time for a computer to calculate the best 
pickup and drop-off order. The only issue is to guarantee that 
the pickup location of a person is always traversed before 
his/her drop-off location during the optimal traversal order 
searching. Therefore, the dominant factor of the computation 
cost to obtain the least-cost route is indeed the cost to 
calculate the least-cost paths between any such two 
locations, which is the major challenge to obtain the least 
cost route for carpooling.  

A set of web sites are available to provide people the 
access to carpooling and even vanpooling. erideshare.com 
helps diverse people groups with different trip purposes 
organize carpooling. Vpsiinc.com provides vanpooling with 
more people sharing a ride than carpooling. However, till 
now, none of these websites provide a complete solution for 
carpooling or vanpooling. In other words, no site provides 
services to help organize carpooling or vanpooling and 
calculate the optimal routes for each ride.     

Three fundamental and prevalent algorithms exist to 
process single-origin multiple-destination routes in a graph: 
Dijkstra’s algorithm [3], Bellman-Ford algorithm [4], and 
LU [5]. Compared to Bellman-Ford algorithm, Dijkstra’s 
algorithm is more efficient but only applicable to graphs with 
non-negative cost edges, while Bellman-Ford can be used in 
graphs with negative cost edges but still cannot handle cases 
with negative-cost cycles. Compared to LU, Dijkstra’s 
algorithm is less efficient when the number of destinations is 
relatively small compared to the total number of vertices in a 
transportation network [5], which is exactly the case In a 
carpooling scenario where there are only a small number of 
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pickup and drop-off locations in a large transportation 
network. 

The A* algorithm is a generalization of Dijkstra's 
algorithm for one origin and one destination routing [6]. It 
takes additional information from the problem domain into 
account to provide a lower bound on the "distance" from a 
generated state to the goal. It is best-first since the vertex 
chosen to be expanded in a graph is the one appearing to 
have the shortest path from the origin to the goal. 

The performance of LU has been studied against 
Dijkstra’s algorithm [5]. However, its performance against 
A* has not been explored. In this paper, LU is adopted to 
help calculate the least cost route for carpooling with 
clustered destinations more efficiently when compared to 
existing approaches, and extensive experiments and result 
analysis are performed to explore the performance 
differences between A* and LU for a set of carpooling 
scenarios in a large urban transportation network. The results 
demonstrate that LU is significantly faster than Dijkstra’s 
algorithm and much better than A* when the number of 
locations is not larger than 12.  

The paper is organized as follows. First, related work is 
presented in Section II. Next in Section III, the algorithm LU 
is introduced, an example is provided to illustrate how the 
algorithm works, and its characteristics are discussed and 
compared with A* and Dijkstra’s algorithm. Section IV 
presents the experiment and result analysis, followed by 
conclusions in Section V. Future research is discussed in 
Section VI. 

II. RELATED WORK 

Dijkstra’s algorithm is an algorithm to retrieve the 
shortest paths from a single source vertex to multiple 
destination vertices in a weighted, directed graph [3]. All 
weights must be nonnegative. Dijkstra’s algorithm works as 
follows. First, Dijkstra expands the origin and generates its 
children, or states, and the cost from the origin to each 
generated state is assigned to that state. Thereafter, Dijkstra 
continues to expand the state with the least cost, and generate 
its children, assigning the corresponding cost to each 
generated child. This process continues until all the 
destinations are reached or no state can be expanded. 
Dijkstra’s algorithm is used widely for routing in computer 
network, transportation network, etc. For example, for 
computer network routing, Dijkstra’s algorithm is the 
prevalent working principle behind link-state routing 
protocols such as OSPF and IS-IS [7][8][9]. In routing 
assignment in transportation, Dijkstra’s algorithm plays the 
key role [10].   

Unlike Dijkstra's algorithm, the Bellman-Ford algorithm 
[4] can be used on graphs with negative edge weights, as 
long as the graph does not contain any negative cycle 
reachable from the source vertex. Compared to Dijkstra’s 
algorithm in a graph with nonnegative cost edges, Bellman-
Ford requires more time to retrieve the optimal solutions.  

LU, a best first search algorithm, is another approach to 
retrieve single-origin multiple-destination least-cost routes 
[5]. It uses a heuristic, h_LU, estimated based on destinations 

yet-to-be-reached to expedite the search process following a 
best first way. In nature, LU is a framework that can adopt 
different heuristics to provide optimal, optimally efficient, 
and sub-optimal solutions [5]. As a result, the capability of 
best first search was first extended to process multiple-
destination queries in a graph. LU is significantly faster than 
Dijkstra’s algorithm when the number of destinations is 
much smaller than the total number of vertices in a 
transportation network and can perform worse when the 
number of destinations is comparable to the total number of 
vertices due to the additional time to compute the heuristics. 

The A* algorithm is a generalization of Dijkstra's 
algorithm for one origin and one destination routing [6]. It 
takes additional information from the problem domain into 
account to provide a lower bound on the "distance" from a 
generated state to the goal. It is best-first since the vertex 
chosen to be expanded in a graph is the one appearing to be 
the closest to the goal. A* uses a distance-plus-cost heuristic 
function as f(n) to determine the order in which the search 
visits vertices in the graph [6]. f(n) is the sum of two 
functions: g(n), the path cost function of the path from the 
origin to the current vertex n, and h(n), the heuristic estimate 
of the distance from the current vertex n to the goal. 

III. LU: A BEST FIRST SEARCH ALGORITHM TO 

RETRIEVE SINGLE-ORIGIN MULTIPLE-

DESTINATION ROUTES IN A GRAPH 

In this section, the details of the recently proposed 
algorithm LU to retrieve single-origin multiple-destination 
least cost routes [5] are presented. As a best first search, LU 
follows a vertex generation and expansion search process. It 
evaluates the promise, the closeness, of each generated 
vertex towards the destinations yet-to-be-reached. Starting 
from the origin, every time LU expands the most promising 
vertex based on some rule and generates its children, until all 
the destinations are expanded, or reached [5]. It takes 
advantage of useful information from a problem domain to 
expedite the search process in a graph without negative cost 
edges.   

A. Algorithm 

LU uses the following evaluation function, f(n), to 
evaluate the promise of a vertex, or a state, n.  

 
 f(n)=g(n)+h_LU(n)   (1) 
 
where 
f(n) is the estimate to the promise of a state n to be 

expanded, 
g(n) is the cost from the origin state to the state n, and  
h_LU(n) is the minimum estimate to the actual cost from 

the state n to any unclosed destination state. 
h_LU(n) is evaluated through equation (2). 
 
 h_LU(n)=min(hi(n)) (1<=i<=K)  (2) 
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Figure 1.  The LU search Process 

 
where K is the number of unclosed, i.e., unreached, 

destination, and 
hi(n) is the heuristic between n and the ith unclosed 

destination. 
LU incrementally searches all paths leading from the 

starting vertex until it finds the path of minimum cost to any 
destination. It first takes the partial paths most likely to lead 
towards the unclosed destination appearing to have the least 
cost.  

Similar to A*, LU also maintains a closed list where 
expanded states are stored, and a set of partial paths, 
unexpanded leaf states of expanded states. These partial 
paths are stored in an open list, also called a priority queue, a 
modified queue that outputs the one with the highest priority. 
Differently from existing best first searches, 1) LU has an 
array that marks a destination as closed after its path is found 
by LU, and a destination is unclosed, or open, when a route 
for the destination is not found yet; and 2) one additional   
variable, Dest_H, is adopted as one component of a 

 
 

generated state, gs, to indicate the unclosed destination 
appearing to be the one to which gs is the closest. In other 
words, Dest_H is used to indicate the unclosed destination 
towards which the heuristic is equal to h_LU(gs).  

Whenever an equal f(n) occurs, one is randomly selected 
to expand. 

To retrieve least-cost routes for N destinations, LU first 
generates the origin and puts it into the open list. Next, for all 
the states in the open list, LU expands the state with the 
lowest f(n) value, and its children states are generated and 
their f values are evaluated based on all the unclosed 
destinations. The process continues until all destination states 
are reached or no solution is found, i.e., at least no route for 

one destination is found. Once a destination, DS, is reached, 
the algorithm will output the obtained path, mark the 
destination as closed, reevaluate the generated but 
unexpanded states whose Dest_H is equal to DS, and update 
their f(n)s in the open list by removing DS from 
consideration to calculate h_LU(n), which results in equal or 
larger f(n)s.  

LU is optimal, i.e., the retrieved routes are all optimal, 
when hi(n) is never larger than its corresponding actual cost, 
i.e., the actual least-cost between n and the ith unclosed 
destination. 

B. An Example 

Figure 1 presents the state snapshot when LU finishes its 
search for a problem asking for shortest routes from O to D1 
and D2 respectively. For each vertex, (cost1,cost2) in blue 
represents the cost estimations, or heuristics, where cost1 
represents the estimated cost, or heuristic, to D1 and cost2 
represents the estimated cost to D2. For a vertex n, 
(cost3,cost4) in dark red represents the cost estimations where 
cost3 represents f(n), and cost4 represents h_LU(n).The cross 
line in (cost3,cost4) indicates that a state is generated first and 
then either discarded directly or put into the open list and 
later removed from the open list. 

The search starts with the generation of state O in the 
open list. Its cost to D1 and D2 are evaluated and the 
corresponding f(O) and h_LU(O) are calculated. Next, since 
O is the only state in the open list, O is expanded, and its 
three children states, V1, V2, and D1, are generated and their 
costs to the destinations are evaluated. Now D1 has a 
minimum f(n) value, so it is expanded. A state for V3 is 
generated and put into the open list. Since D1 is a destination, 
D1 is put into the closed destination list, and the state for V1 
and V2 are re-evaluated only based on the cost estimation to 
D2. Accordingly, (30,13) for V1 is changed to (43,28), and 
(21,7) for V2 is changed to (36,22). Then V2 is selected 
because it has a smallest f(n) among V1, V2, and V3. It 
generates its children states for V1, V3, and V5 and put them 

64

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-118-2



into the open list. Since the original states for V1 and V3 have 
smaller f(n)s, their newly generated states are discarded. 
Next, since V5 has the lowest f(n) in the open list, it is 
expanded, and its children states for V4 and D2 are generated 
and put into the open list. Next, since D2 has the lowest f(n), 
it is expanded. Since it is a destination, it is put into the 
closed list. Now the closed list contains all the destinations, 
so the search stops. Therefore, the optimal routes obtained 
are O->D1, and O->V2->V5->D2.  

C. Discussion 

LU can be used for both route planning and dynamic 
routing. When a traffic event occurs, the costs of the 
corresponding street links can be adjusted accordingly. For 
example, the costs for closed streets can be considered as 
infinite and for congested links can be high so that an 
alternative route not traversing the closed streets can be 
chosen as the best route.  Under these situations, only the 
graph representing the street network needs update, and no 
need to change the algorithm LU.  

Compared to Dijkstra’s algorithm, LU gains performance 
through reduced state generations. However, to retrieve N-
destination least-cost paths, LU may not outperform N 
sequentially-running A*s when their corresponding 
expanded states do not significantly overlap. The major 
reason is that compared to an A* search process, LU must 
maintain a longer closed list and a longer open list. 
Consequently, it requires more time to update and re-order 
the open list and search the closed list. This additional cost 
will be dominant if the expanded states between different A* 
processes do not significantly overlap. Therefore, when the 
destinations are far away from the origin and not clustered, 
for example, uniformly distributed in a transportation 
network, LU may not outperform A*. When carpooling, 
generally workers are both living closely and working 
closely. In other words, both the origins and the destinations 
are likely to cluster, which indicates LU may perform much 
better than multiple sequentially-running A*s. 

Since a pickup location, represented by pkloc, for a 
person is always traversed before his/her drop-off location, 
represented by drloc, during the least-cost route calculation, 
no need to calculate any route from drloc to pkloc. In LU and 
Dijkstra’s algorithm, this can be achieved by neglecting the 
corresponding pkloc as a destination when a route starts with 
a drloc.  

IV. EXPERIMENT AND RESULT ANALYSIS 

To investigate the performance of LU for route pre-
processing to retrieve a carpool-based least-cost route 
traversing a set of pickup and drop-off locations, a set of 
experiments is performed, and Dijkstra’s algorithm and 
multiple sequentially-running A*s are used as the baselines. 
Their performance is studied using network distance in a 
large dense urban transportation road network. In the 
experiment, each problem sample is to ask for a set of 
shortest routes, each of which is between two locations 
within the pickup homes and drop-off workplaces. 

The Euclidean distance is used as the basis to calculate 
the heuristic h_LU(n) for each generated vertex n in LU. 

Since a Euclidean distance between two vertices in 
transportation network is never larger than the actual 
network distance, LU is optimal.  

The experiment uses one large dense urban transportation 
network, the road network of Fairfax City and Fairfax 
County, US that contains 35,435 vertices and 82,926 directed 
edges, as shown in Figure 2. Both origins and destinations 
are clustered. In practice people use a van or a car for 
carpooling, so the number of pickup and drop-off locations, 
N, may not be larger than 12.  

Figure 2.  The road network of Fairfax county and Fairfax city, VA, US 

Three data sets are generated. As shown in Figure 3, in 
each data set, an origin, represented by a green dot in Figure 
3, is generated first, and then a destination around a specified 
Euclidean distance, ED (in mile), is generated. Thereafter, 
the other origins, represented by green dots in Figure 3, 
within a selected radius, R, of the origin and the other 
destinations, represented by red dots in Figure 3, within the 
same radius of the destination are generated. The origin 
number is either equal to or 1 larger than the destination 
number. 

Data set I is used to investigate the impact of the number 
of pickup and drop-off locations on LU, Dijkstra’s algorithm, 
and A*. It varies N from 3 to 12. ED is 10 miles and R is 0.5 
mile. For each N, the number of problem samples, PS, is 30.  
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Figure 3.   Data set generation 

Data set II is generated to investigate the impact of the 
distance between homes and workplaces on LU and A*. It 
varies ED from 8 miles to 18 miles, with a fixed 2-mile 
interval. N is 3, and R is 0.5 mile. For each ED, PS is 30. 

Data set III is adopted to investigate the impact of the 
radius size for carpool on LU and A*. It varies R from 0.5 
mile to 1.0 mile. ED is 10 miles and N is 3. For each R, PS is 
30. 

A*, Dijkstra’s algorithm, and LU are implemented with 
C#. The experiments are performed on a Toshiba Satellite 
A215 Laptop with 2.0GB memory (RAM), AMD Turion™ 
64*2 Mobile Technology TL-56 1.80HZ processors, and 
Windows Vista™ Home Premium operating system. 

 

A. Performance Measures 

The following measures are used to analyze the 
performance of LU, Dijkstra’s algorithm, and A*. 

Average Shortest Distance (ASD): the average sum of 
shortest route distances obtained over all runs, in mile; 

Average Number of States Expanded (ANSE): the 
average number of expanded states obtained over all runs; 

Maximum Additional Number of States expanded by 
Dijkstra’s algorithm or A* (MaxANS): For each run, 
compared to LU, obtain the additional number of states 
expanded by Dijkstra’s algorithm or A*, and the measure is 
the maximum among all runs;  

Minimum Additional Number of States expanded by 
Dijkstra’s algorithm or A* (MinANS): For each run, 
compared to LU, obtain the additional number of states 
expanded by Dijkstra’s algorithm or A*, and the measure is 
the minimum among all runs; 

Average Process Time (APT): the time required to return 
the solution for a query, in second; 

Maximum Additional Cost by Dijkstra’s algorithm or A* 
(MaxAC): For each run, compared to LU, obtain the 

additional time cost required by Dijkstra’s algorithm or A*, 
and the measure is the maximum among all runs;  

Minimum Additional Cost by Dijkstra’s algorithm or A* 
(MinAC): For each run, compared to LU, obtain the 
additional time cost required by Dijkstra’s algorithm or A*, 
and the measure is the maximum among all runs; 

Average Relative Number of States expanded (ARNS): 
the ratio of the number of states expanded by Dijkstra’s 
algorithm or A* over by LU; and 

Average Relative Process Time (ARPT): the ratio of the 
time processed by Dijkstra’s algorithm or A* over by LU. 

B. Results 

The results are provided in Table I through Table VI.  
Dijk represents Dijkstra’s algorithm. The minimum and 
maximum are highlighted in bold for ASD, MaxAC, MinAC, 
ARPT, MaxANS, MinANS, and ARNS. “-” represents a value 
is not available due to the high computation cost. 

It is observed that all ASDs obtained from LU are the 
same as from Dijkstra’s algorithm and from A*, which is 
direct evidence showing that LU retrieves optimal solutions 
with Euclidean distance as the basis to calculate its 
heuristics. 

TABLE I.  THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE 

AND PROCESS TIME FOR DATA SET I 

N ASD 

APT ARPT 

LU A* Dijk A* Dijk 

3 49.5 12.1 13.1 
733.4 

1.1 60.6 

4 100.4 26.5 37.9 
1060.1 

1.4 40.0 

5 153.8 38.3 66.7 
1567.7 

1.7 41.2 

6 223.6 16.9 39.9 
1750.7 

2.4 103.5 

7 313.3 48.9 118.0 
1746.4 

2.4 35.7 

8 394.9 36.5 75.1 
2093.2 

2.1 57.3 

9 438.8 39.1 97.8 
- 

2.5 - 

10 640.9 45.6 171.4 
- 

3.8 - 

11 775.9 59.7 205.4 
- 

3.4 - 

12 931.8 73.0 264.7 
- 

3.6 - 

TABLE II.  THE PERFORMANCE ON EXPANDED STATES FOR DATA SET I 

N ASD 

ANSE ARNS 

LU A* Dijk A* Dijk 

3 49.5 9972 76348 
59372 

7.6 5.9 

4 100.4 14802 226009 
82399 

15.2 5.5 

5 153.8 20328 593254 
109821 

29.1 5.4 

6 223.6 19649 952359 
124700 

48.4 6.3 

7 313.3 31809 2544339 
133529 

79.9 4.2 

8 394.9 28206 2633455 
150217 

93.3 5.3 

9 438.8 25504 5893107 
- 

231.0 - 

10 640.9 43738 9211019 
- 

210.5 - 

11 775.9 51828 14425335 
- 

278.3 - 

12 931.8 57312 19725022 
- 

344.1 - 
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TABLE III.  THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE 

AND PROCESS TIME FOR DATA SET II 

ED ASD 

APT 

MaxAC MinAC ARPT LU A* 

8 40.5 4.2 5.2 1.8 -0.1 1.2 

10 49.5 12.1 13.0 4.9 -1.2 1.1 

12 59.4 13.1 15.4 5.9 -0.3 1.2 

14 64.5 19.9 23.2 9.8 -0.5 1.2 

16 70.1 96.9 146.8 246.9 0.4 1.5 

18 83.3 110.9 139.8 119.6 -15.1 1.3 

TABLE IV.   THE PERFORMANCE ON EXPANDED STATES FOR DATA SET 

II 

ED 

ANSE 

MaxANS MinANS ARNS LU A* 

8 6587 51362 59519 31877 7.8 

10 9972 76348 126260 26931 7.7 

12 12438 97819 132983 52870 7.9 

14 14863 114118 143007 50346 7.7 

16 21728 206193 301551 43721 9.5 

18 24109 196415 294018 87167 8.1 

TABLE V.  THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE 

AND PROCESS TIME FOR DATA SET III 

R ASD 

APT 

MaxAC MinAC ARPT LU A* 

0.5 49.5 12.1 13.0 4.9 -1.2 1.1 

0.6 50.5 14.2 17.7 10.2 0.7 1.3 

0.7 50.0 11.7 13.7 2.8 1.2 1.2 

0.8 50.1 11.7 14.8 4.8 2.2 1.3 

0.9 49.6 12.1 13.1 4.9 -1.2 1.1 

1.0 49.7 11.8 14.5 5.0 1.1 1.2 

TABLE VI.  THE PERFORMANCE ON EXPANDED STATES FOR DATA SET 

III 

R 

ANSE 

MaxANS MinANS ARNS LU A* 

0.5 9972 76348 126260 26931 7.7 

0.6 11736 96549 112879 48974 8.2 

0.7 11261 91033 99623 54530 8.1 

0.8 11174 91257 99623 54530 8.2 

0.9 9972 76348 126260 26931 7.7 

1.0 10950 89573 99623 54530 8.2 

 
Based on Table I through Table VI, the following 

conclusions can be drawn. 
Compared to A* and Dijkstra's algorithm, based on 

MinANS values in Table II, Table IV, and Table VI, it is 
clear that LU always expands the least number of states. This 
is because LU is more informed than Dijkstra’s algorithm 
and do not have to re-expand states, which occur when 

multiple sequentially-running A*s are used to retrieve all 
shortest pair-wise distances.  

In practice, for carpooling, both pickup locations and 
drop-off locations likely cluster to reduce trip cost, gasoline 
usage, and emission. Compared to of A*, According to the 
ARPT values in Table I, Table III, and Table V, on average 
LU is about 0.1 to 2.8 times faster than A*. Especially, based 
on ARPT in Table I, when N increases, LU is increasingly 
faster than A*.  According to ARPT in Table 1, it is clear 
that when the number of pickup and drop-off locations 
increase, Lu increasingly outperforms A* because more 
states are re-expanded by sequentially-running A*s. 

It is clear that when N is small, LU significantly 
outperforms Dijkstra’s algorithm in terms of computation 
efficiency. Based on Dijkstra’s ARPT values in Table I, LU 
can outperform Dijkstra’s algorithm by 2 magnitudes. 

Based on ARPT values in Table III, when ED increases, 
generally LU is increasingly faster than A*. 

Based on ARPT values in Table V, compared to of A*, 
the performance of LU does not have a clear relation to R.  

Based on MinAC values in Table III and Table V, in 
some rare cases, LU may still be less efficient than A*. 

V. CONCLUSION 

Within a location based social network, carpooling is 
becoming more and more preferable among workers both 
living and working near each other due to the continuous 
increase in gasoline price and air pollution, and is more 
desirable when working places are far away from homes. 
Consequently, it is highly desirable to obtain the optimal 
traversal order to pick up carpool participants and drop off 
them to retrieve the least-cost carpooling route. However, in 
a large network, it is desirable to first compute least-cost 
pair-wise distances among the pickup and drop-off locations 
to reduce the computation complexity to retrieve the optimal 
route for carpooling.  

In this paper, LU, a fundamental best first search 
algorithm and framework, is adopted to pre-compute all 
least-cost pairwise routes. In a carpooling scenario, both 
pickup locations and drop-off locations are likely to cluster 
to get most out of carpooling in terms of reductions in trip 
cost, emission, and gasoline usage. Accordingly, compared 
to the two existing prevalent algorithms, A* and Dijkstra’s 
algorithm, LU is more appropriate to compute all least-cost 
pairwise network distances. A set of experiments is 
performed, and the results demonstrate that LU expands the 
least number of states when compared to A* and Dijkstra’s 
algorithm, and 2) on average LU is much more efficient than 
A* and significantly faster than Dijkstra’s algorithm when 
the number of pickup and drop-off locations are not larger 
than 12. On average, LU is 0.1~2.8 times faster than A* and 
outperforms Dijkstra’s algorithm by 2 magnitudes.  

VI. FUTURE RESEARCH 

Even though LU significantly reduces overlapped states 
expanded by multiple sequentially-running A*s, LU may 
still be less efficient. One major reason is that unnecessary 
states having been used to search for the routes to the closed 
destinations but not helpful for searching the routes to the 
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remaining unclosed destinations are not removed timely in 
the current implementation of LU. Future research can be 
performed to reduce unnecessary states stored in the open list 
and the closed list whenever a destination is closed to 
expedite the search and update operations performed on both 
lists in LU, and thus to further improve the efficiency of LU. 
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