
On Pre-Processing for Least-Cost Carpooling Routing in a Transportation Network

Qifeng Lu

MacroSys LLC.

Arlington, USA

qilu1@vt.edu

Abstract— Within a location based social network, carpooling

is becoming more and more preferable among workers both

living and working near each other due to the continuous

increase in gasoline price and air pollution, and is more

desirable when working places are far away from homes. To

find the least-cost path for carpooling means to find the

optimal order to traverse the homes and workplaces to pick up

passengers and to drop off them. However, before the order

searching is performed, in a large transportation network, it is

prevalent to first obtain the least-cost path between any two

locations, with one as a work place and the other as a home, to

reduce computation time. In fact, for carpool, since only a few

people can stay within a vehicle, it is fast to obtain the best

pickup and drop-off order. Therefore, the bottleneck to obtain

the least-cost route is indeed the calculation of the least-cost

paths between any such two locations. The two existing

dominant approaches to pre-compute these least-cost paths are

Dijkstra’s algorithm and A*, where Dijkstra’s algorithm is

used to compute single-origin multiple-destination least-cost

paths while A* is used to compute the least-cost path between

an origin-destination pair. In this paper, LU, a best first search

algorithm and framework recently proposed to compute

single-origin multiple-destination least-cost routes, is adopted

in this pre-processing step to retrieve the optimal path to

traverse the carpool-based pickup and drop-off locations. Its

performance is compared with A* and Dijkstra’s algorithm

through a set of experiments in a large transportation network.

The results demonstrate that LU is significantly faster than

Dijkstra’s algorithm and much better than A*.

Keywords- LU, A*, Dijkstra’s algorithm, Best First Search,

Single-Origin Multiple-Destination, Carpool, Location Based

Social Network

I. INTRODUCTION

Within a location based social network, carpooling is
becoming more and more preferable among workers both
living and working near each other due to the continuous
increase in gasoline price and air pollution, and is more
desirable when working places are far away from homes. In
general, to carpool, a worker is assigned to start from
him/her home to pick up the other workers from their homes
and drop off them at their workplaces and to end at his/her
workplace. This carpool-based least-cost route processing is
similar to a Traveling Salesman Problem (TSP) that asks for
a least-cost route traversing a set of non-ordered points of
interest [1][2]. Compared to TSP, it has an additional
constraint in the sense that a worker must be picked up at
his/her home before he/she is dropped off at his/her

workplace, i.e., an order is imposed on any origin-destination
pair. In addition, compared to general TSPs, there are two
distinct characters for carpooling routing. First, origins and
destinations are likely to cluster. Second, the number of
destinations for a ride is not large.

In a large transportation network, prior to obtaining the
least-cost path for carpooling, which means to find the
optimal order to traverse the homes and workplaces to pick
up passengers and drop off them, similar to TSP, it is
prevalent to obtain the least-cost path between any two
locations, with one as a work place and the other as a home,
to reduce computation time [1] [2]. Otherwise, a partial
optimal traversal order may have to be evaluated at each
vertex along a minimum-cost route between any two
locations in a transportation network, which is computation-
intensive. In fact, for carpool, since only a few people can
stay within a vehicle, given the pre-computed least-cost
routes, it takes no time for a computer to calculate the best
pickup and drop-off order. The only issue is to guarantee that
the pickup location of a person is always traversed before
his/her drop-off location during the optimal traversal order
searching. Therefore, the dominant factor of the computation
cost to obtain the least-cost route is indeed the cost to
calculate the least-cost paths between any such two
locations, which is the major challenge to obtain the least
cost route for carpooling.

A set of web sites are available to provide people the
access to carpooling and even vanpooling. erideshare.com
helps diverse people groups with different trip purposes
organize carpooling. Vpsiinc.com provides vanpooling with
more people sharing a ride than carpooling. However, till
now, none of these websites provide a complete solution for
carpooling or vanpooling. In other words, no site provides
services to help organize carpooling or vanpooling and
calculate the optimal routes for each ride.

Three fundamental and prevalent algorithms exist to
process single-origin multiple-destination routes in a graph:
Dijkstra’s algorithm [3], Bellman-Ford algorithm [4], and
LU [5]. Compared to Bellman-Ford algorithm, Dijkstra’s
algorithm is more efficient but only applicable to graphs with
non-negative cost edges, while Bellman-Ford can be used in
graphs with negative cost edges but still cannot handle cases
with negative-cost cycles. Compared to LU, Dijkstra’s
algorithm is less efficient when the number of destinations is
relatively small compared to the total number of vertices in a
transportation network [5], which is exactly the case In a
carpooling scenario where there are only a small number of

62

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

pickup and drop-off locations in a large transportation
network.

The A* algorithm is a generalization of Dijkstra's
algorithm for one origin and one destination routing [6]. It
takes additional information from the problem domain into
account to provide a lower bound on the "distance" from a
generated state to the goal. It is best-first since the vertex
chosen to be expanded in a graph is the one appearing to
have the shortest path from the origin to the goal.

The performance of LU has been studied against
Dijkstra’s algorithm [5]. However, its performance against
A* has not been explored. In this paper, LU is adopted to
help calculate the least cost route for carpooling with
clustered destinations more efficiently when compared to
existing approaches, and extensive experiments and result
analysis are performed to explore the performance
differences between A* and LU for a set of carpooling
scenarios in a large urban transportation network. The results
demonstrate that LU is significantly faster than Dijkstra’s
algorithm and much better than A* when the number of
locations is not larger than 12.

The paper is organized as follows. First, related work is
presented in Section II. Next in Section III, the algorithm LU
is introduced, an example is provided to illustrate how the
algorithm works, and its characteristics are discussed and
compared with A* and Dijkstra’s algorithm. Section IV
presents the experiment and result analysis, followed by
conclusions in Section V. Future research is discussed in
Section VI.

II. RELATED WORK

Dijkstra’s algorithm is an algorithm to retrieve the
shortest paths from a single source vertex to multiple
destination vertices in a weighted, directed graph [3]. All
weights must be nonnegative. Dijkstra’s algorithm works as
follows. First, Dijkstra expands the origin and generates its
children, or states, and the cost from the origin to each
generated state is assigned to that state. Thereafter, Dijkstra
continues to expand the state with the least cost, and generate
its children, assigning the corresponding cost to each
generated child. This process continues until all the
destinations are reached or no state can be expanded.
Dijkstra’s algorithm is used widely for routing in computer
network, transportation network, etc. For example, for
computer network routing, Dijkstra’s algorithm is the
prevalent working principle behind link-state routing
protocols such as OSPF and IS-IS [7][8][9]. In routing
assignment in transportation, Dijkstra’s algorithm plays the
key role [10].

Unlike Dijkstra's algorithm, the Bellman-Ford algorithm
[4] can be used on graphs with negative edge weights, as
long as the graph does not contain any negative cycle
reachable from the source vertex. Compared to Dijkstra’s
algorithm in a graph with nonnegative cost edges, Bellman-
Ford requires more time to retrieve the optimal solutions.

LU, a best first search algorithm, is another approach to
retrieve single-origin multiple-destination least-cost routes
[5]. It uses a heuristic, h_LU, estimated based on destinations

yet-to-be-reached to expedite the search process following a
best first way. In nature, LU is a framework that can adopt
different heuristics to provide optimal, optimally efficient,
and sub-optimal solutions [5]. As a result, the capability of
best first search was first extended to process multiple-
destination queries in a graph. LU is significantly faster than
Dijkstra’s algorithm when the number of destinations is
much smaller than the total number of vertices in a
transportation network and can perform worse when the
number of destinations is comparable to the total number of
vertices due to the additional time to compute the heuristics.

The A* algorithm is a generalization of Dijkstra's
algorithm for one origin and one destination routing [6]. It
takes additional information from the problem domain into
account to provide a lower bound on the "distance" from a
generated state to the goal. It is best-first since the vertex
chosen to be expanded in a graph is the one appearing to be
the closest to the goal. A* uses a distance-plus-cost heuristic
function as f(n) to determine the order in which the search
visits vertices in the graph [6]. f(n) is the sum of two
functions: g(n), the path cost function of the path from the
origin to the current vertex n, and h(n), the heuristic estimate
of the distance from the current vertex n to the goal.

III. LU: A BEST FIRST SEARCH ALGORITHM TO

RETRIEVE SINGLE-ORIGIN MULTIPLE-

DESTINATION ROUTES IN A GRAPH

In this section, the details of the recently proposed
algorithm LU to retrieve single-origin multiple-destination
least cost routes [5] are presented. As a best first search, LU
follows a vertex generation and expansion search process. It
evaluates the promise, the closeness, of each generated
vertex towards the destinations yet-to-be-reached. Starting
from the origin, every time LU expands the most promising
vertex based on some rule and generates its children, until all
the destinations are expanded, or reached [5]. It takes
advantage of useful information from a problem domain to
expedite the search process in a graph without negative cost
edges.

A. Algorithm

LU uses the following evaluation function, f(n), to
evaluate the promise of a vertex, or a state, n.

 f(n)=g(n)+h_LU(n) (1)

where
f(n) is the estimate to the promise of a state n to be

expanded,
g(n) is the cost from the origin state to the state n, and
h_LU(n) is the minimum estimate to the actual cost from

the state n to any unclosed destination state.
h_LU(n) is evaluated through equation (2).

 h_LU(n)=min(hi(n)) (1<=i<=K) (2)

63

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Figure 1. The LU search Process

where K is the number of unclosed, i.e., unreached,

destination, and
hi(n) is the heuristic between n and the ith unclosed

destination.
LU incrementally searches all paths leading from the

starting vertex until it finds the path of minimum cost to any
destination. It first takes the partial paths most likely to lead
towards the unclosed destination appearing to have the least
cost.

Similar to A*, LU also maintains a closed list where
expanded states are stored, and a set of partial paths,
unexpanded leaf states of expanded states. These partial
paths are stored in an open list, also called a priority queue, a
modified queue that outputs the one with the highest priority.
Differently from existing best first searches, 1) LU has an
array that marks a destination as closed after its path is found
by LU, and a destination is unclosed, or open, when a route
for the destination is not found yet; and 2) one additional
variable, Dest_H, is adopted as one component of a

generated state, gs, to indicate the unclosed destination
appearing to be the one to which gs is the closest. In other
words, Dest_H is used to indicate the unclosed destination
towards which the heuristic is equal to h_LU(gs).

Whenever an equal f(n) occurs, one is randomly selected
to expand.

To retrieve least-cost routes for N destinations, LU first
generates the origin and puts it into the open list. Next, for all
the states in the open list, LU expands the state with the
lowest f(n) value, and its children states are generated and
their f values are evaluated based on all the unclosed
destinations. The process continues until all destination states
are reached or no solution is found, i.e., at least no route for

one destination is found. Once a destination, DS, is reached,
the algorithm will output the obtained path, mark the
destination as closed, reevaluate the generated but
unexpanded states whose Dest_H is equal to DS, and update
their f(n)s in the open list by removing DS from
consideration to calculate h_LU(n), which results in equal or
larger f(n)s.

LU is optimal, i.e., the retrieved routes are all optimal,
when hi(n) is never larger than its corresponding actual cost,
i.e., the actual least-cost between n and the ith unclosed
destination.

B. An Example

Figure 1 presents the state snapshot when LU finishes its
search for a problem asking for shortest routes from O to D1
and D2 respectively. For each vertex, (cost1,cost2) in blue
represents the cost estimations, or heuristics, where cost1
represents the estimated cost, or heuristic, to D1 and cost2
represents the estimated cost to D2. For a vertex n,
(cost3,cost4) in dark red represents the cost estimations where
cost3 represents f(n), and cost4 represents h_LU(n).The cross
line in (cost3,cost4) indicates that a state is generated first and
then either discarded directly or put into the open list and
later removed from the open list.

The search starts with the generation of state O in the
open list. Its cost to D1 and D2 are evaluated and the
corresponding f(O) and h_LU(O) are calculated. Next, since
O is the only state in the open list, O is expanded, and its
three children states, V1, V2, and D1, are generated and their
costs to the destinations are evaluated. Now D1 has a
minimum f(n) value, so it is expanded. A state for V3 is
generated and put into the open list. Since D1 is a destination,
D1 is put into the closed destination list, and the state for V1
and V2 are re-evaluated only based on the cost estimation to
D2. Accordingly, (30,13) for V1 is changed to (43,28), and
(21,7) for V2 is changed to (36,22). Then V2 is selected
because it has a smallest f(n) among V1, V2, and V3. It
generates its children states for V1, V3, and V5 and put them

64

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

into the open list. Since the original states for V1 and V3 have
smaller f(n)s, their newly generated states are discarded.
Next, since V5 has the lowest f(n) in the open list, it is
expanded, and its children states for V4 and D2 are generated
and put into the open list. Next, since D2 has the lowest f(n),
it is expanded. Since it is a destination, it is put into the
closed list. Now the closed list contains all the destinations,
so the search stops. Therefore, the optimal routes obtained
are O->D1, and O->V2->V5->D2.

C. Discussion

LU can be used for both route planning and dynamic
routing. When a traffic event occurs, the costs of the
corresponding street links can be adjusted accordingly. For
example, the costs for closed streets can be considered as
infinite and for congested links can be high so that an
alternative route not traversing the closed streets can be
chosen as the best route. Under these situations, only the
graph representing the street network needs update, and no
need to change the algorithm LU.

Compared to Dijkstra’s algorithm, LU gains performance
through reduced state generations. However, to retrieve N-
destination least-cost paths, LU may not outperform N
sequentially-running A*s when their corresponding
expanded states do not significantly overlap. The major
reason is that compared to an A* search process, LU must
maintain a longer closed list and a longer open list.
Consequently, it requires more time to update and re-order
the open list and search the closed list. This additional cost
will be dominant if the expanded states between different A*
processes do not significantly overlap. Therefore, when the
destinations are far away from the origin and not clustered,
for example, uniformly distributed in a transportation
network, LU may not outperform A*. When carpooling,
generally workers are both living closely and working
closely. In other words, both the origins and the destinations
are likely to cluster, which indicates LU may perform much
better than multiple sequentially-running A*s.

Since a pickup location, represented by pkloc, for a
person is always traversed before his/her drop-off location,
represented by drloc, during the least-cost route calculation,
no need to calculate any route from drloc to pkloc. In LU and
Dijkstra’s algorithm, this can be achieved by neglecting the
corresponding pkloc as a destination when a route starts with
a drloc.

IV. EXPERIMENT AND RESULT ANALYSIS

To investigate the performance of LU for route pre-
processing to retrieve a carpool-based least-cost route
traversing a set of pickup and drop-off locations, a set of
experiments is performed, and Dijkstra’s algorithm and
multiple sequentially-running A*s are used as the baselines.
Their performance is studied using network distance in a
large dense urban transportation road network. In the
experiment, each problem sample is to ask for a set of
shortest routes, each of which is between two locations
within the pickup homes and drop-off workplaces.

The Euclidean distance is used as the basis to calculate
the heuristic h_LU(n) for each generated vertex n in LU.

Since a Euclidean distance between two vertices in
transportation network is never larger than the actual
network distance, LU is optimal.

The experiment uses one large dense urban transportation
network, the road network of Fairfax City and Fairfax
County, US that contains 35,435 vertices and 82,926 directed
edges, as shown in Figure 2. Both origins and destinations
are clustered. In practice people use a van or a car for
carpooling, so the number of pickup and drop-off locations,
N, may not be larger than 12.

Figure 2. The road network of Fairfax county and Fairfax city, VA, US

Three data sets are generated. As shown in Figure 3, in
each data set, an origin, represented by a green dot in Figure
3, is generated first, and then a destination around a specified
Euclidean distance, ED (in mile), is generated. Thereafter,
the other origins, represented by green dots in Figure 3,
within a selected radius, R, of the origin and the other
destinations, represented by red dots in Figure 3, within the
same radius of the destination are generated. The origin
number is either equal to or 1 larger than the destination
number.

Data set I is used to investigate the impact of the number
of pickup and drop-off locations on LU, Dijkstra’s algorithm,
and A*. It varies N from 3 to 12. ED is 10 miles and R is 0.5
mile. For each N, the number of problem samples, PS, is 30.

65

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Figure 3. Data set generation

Data set II is generated to investigate the impact of the
distance between homes and workplaces on LU and A*. It
varies ED from 8 miles to 18 miles, with a fixed 2-mile
interval. N is 3, and R is 0.5 mile. For each ED, PS is 30.

Data set III is adopted to investigate the impact of the
radius size for carpool on LU and A*. It varies R from 0.5
mile to 1.0 mile. ED is 10 miles and N is 3. For each R, PS is
30.

A*, Dijkstra’s algorithm, and LU are implemented with
C#. The experiments are performed on a Toshiba Satellite
A215 Laptop with 2.0GB memory (RAM), AMD Turion™
64*2 Mobile Technology TL-56 1.80HZ processors, and
Windows Vista™ Home Premium operating system.

A. Performance Measures

The following measures are used to analyze the
performance of LU, Dijkstra’s algorithm, and A*.

Average Shortest Distance (ASD): the average sum of
shortest route distances obtained over all runs, in mile;

Average Number of States Expanded (ANSE): the
average number of expanded states obtained over all runs;

Maximum Additional Number of States expanded by
Dijkstra’s algorithm or A* (MaxANS): For each run,
compared to LU, obtain the additional number of states
expanded by Dijkstra’s algorithm or A*, and the measure is
the maximum among all runs;

Minimum Additional Number of States expanded by
Dijkstra’s algorithm or A* (MinANS): For each run,
compared to LU, obtain the additional number of states
expanded by Dijkstra’s algorithm or A*, and the measure is
the minimum among all runs;

Average Process Time (APT): the time required to return
the solution for a query, in second;

Maximum Additional Cost by Dijkstra’s algorithm or A*
(MaxAC): For each run, compared to LU, obtain the

additional time cost required by Dijkstra’s algorithm or A*,
and the measure is the maximum among all runs;

Minimum Additional Cost by Dijkstra’s algorithm or A*
(MinAC): For each run, compared to LU, obtain the
additional time cost required by Dijkstra’s algorithm or A*,
and the measure is the maximum among all runs;

Average Relative Number of States expanded (ARNS):
the ratio of the number of states expanded by Dijkstra’s
algorithm or A* over by LU; and

Average Relative Process Time (ARPT): the ratio of the
time processed by Dijkstra’s algorithm or A* over by LU.

B. Results

The results are provided in Table I through Table VI.
Dijk represents Dijkstra’s algorithm. The minimum and
maximum are highlighted in bold for ASD, MaxAC, MinAC,
ARPT, MaxANS, MinANS, and ARNS. “-” represents a value
is not available due to the high computation cost.

It is observed that all ASDs obtained from LU are the
same as from Dijkstra’s algorithm and from A*, which is
direct evidence showing that LU retrieves optimal solutions
with Euclidean distance as the basis to calculate its
heuristics.

TABLE I. THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE

AND PROCESS TIME FOR DATA SET I

N ASD

APT ARPT

LU A* Dijk A* Dijk

3 49.5 12.1 13.1
733.4

1.1 60.6

4 100.4 26.5 37.9
1060.1

1.4 40.0

5 153.8 38.3 66.7
1567.7

1.7 41.2

6 223.6 16.9 39.9
1750.7

2.4 103.5

7 313.3 48.9 118.0
1746.4

2.4 35.7

8 394.9 36.5 75.1
2093.2

2.1 57.3

9 438.8 39.1 97.8
-

2.5 -

10 640.9 45.6 171.4
-

3.8 -

11 775.9 59.7 205.4
-

3.4 -

12 931.8 73.0 264.7
-

3.6 -

TABLE II. THE PERFORMANCE ON EXPANDED STATES FOR DATA SET I

N ASD

ANSE ARNS

LU A* Dijk A* Dijk

3 49.5 9972 76348
59372

7.6 5.9

4 100.4 14802 226009
82399

15.2 5.5

5 153.8 20328 593254
109821

29.1 5.4

6 223.6 19649 952359
124700

48.4 6.3

7 313.3 31809 2544339
133529

79.9 4.2

8 394.9 28206 2633455
150217

93.3 5.3

9 438.8 25504 5893107
-

231.0 -

10 640.9 43738 9211019
-

210.5 -

11 775.9 51828 14425335
-

278.3 -

12 931.8 57312 19725022
-

344.1 -

66

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

TABLE III. THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE

AND PROCESS TIME FOR DATA SET II

ED ASD

APT

MaxAC MinAC ARPT LU A*

8 40.5 4.2 5.2 1.8 -0.1 1.2

10 49.5 12.1 13.0 4.9 -1.2 1.1

12 59.4 13.1 15.4 5.9 -0.3 1.2

14 64.5 19.9 23.2 9.8 -0.5 1.2

16 70.1 96.9 146.8 246.9 0.4 1.5

18 83.3 110.9 139.8 119.6 -15.1 1.3

TABLE IV. THE PERFORMANCE ON EXPANDED STATES FOR DATA SET

II

ED

ANSE

MaxANS MinANS ARNS LU A*

8 6587 51362 59519 31877 7.8

10 9972 76348 126260 26931 7.7

12 12438 97819 132983 52870 7.9

14 14863 114118 143007 50346 7.7

16 21728 206193 301551 43721 9.5

18 24109 196415 294018 87167 8.1

TABLE V. THE PERFORMANCE ON AVERAGE SHORTEST DISTANCE

AND PROCESS TIME FOR DATA SET III

R ASD

APT

MaxAC MinAC ARPT LU A*

0.5 49.5 12.1 13.0 4.9 -1.2 1.1

0.6 50.5 14.2 17.7 10.2 0.7 1.3

0.7 50.0 11.7 13.7 2.8 1.2 1.2

0.8 50.1 11.7 14.8 4.8 2.2 1.3

0.9 49.6 12.1 13.1 4.9 -1.2 1.1

1.0 49.7 11.8 14.5 5.0 1.1 1.2

TABLE VI. THE PERFORMANCE ON EXPANDED STATES FOR DATA SET

III

R

ANSE

MaxANS MinANS ARNS LU A*

0.5 9972 76348 126260 26931 7.7

0.6 11736 96549 112879 48974 8.2

0.7 11261 91033 99623 54530 8.1

0.8 11174 91257 99623 54530 8.2

0.9 9972 76348 126260 26931 7.7

1.0 10950 89573 99623 54530 8.2

Based on Table I through Table VI, the following

conclusions can be drawn.
Compared to A* and Dijkstra's algorithm, based on

MinANS values in Table II, Table IV, and Table VI, it is
clear that LU always expands the least number of states. This
is because LU is more informed than Dijkstra’s algorithm
and do not have to re-expand states, which occur when

multiple sequentially-running A*s are used to retrieve all
shortest pair-wise distances.

In practice, for carpooling, both pickup locations and
drop-off locations likely cluster to reduce trip cost, gasoline
usage, and emission. Compared to of A*, According to the
ARPT values in Table I, Table III, and Table V, on average
LU is about 0.1 to 2.8 times faster than A*. Especially, based
on ARPT in Table I, when N increases, LU is increasingly
faster than A*. According to ARPT in Table 1, it is clear
that when the number of pickup and drop-off locations
increase, Lu increasingly outperforms A* because more
states are re-expanded by sequentially-running A*s.

It is clear that when N is small, LU significantly
outperforms Dijkstra’s algorithm in terms of computation
efficiency. Based on Dijkstra’s ARPT values in Table I, LU
can outperform Dijkstra’s algorithm by 2 magnitudes.

Based on ARPT values in Table III, when ED increases,
generally LU is increasingly faster than A*.

Based on ARPT values in Table V, compared to of A*,
the performance of LU does not have a clear relation to R.

Based on MinAC values in Table III and Table V, in
some rare cases, LU may still be less efficient than A*.

V. CONCLUSION

Within a location based social network, carpooling is
becoming more and more preferable among workers both
living and working near each other due to the continuous
increase in gasoline price and air pollution, and is more
desirable when working places are far away from homes.
Consequently, it is highly desirable to obtain the optimal
traversal order to pick up carpool participants and drop off
them to retrieve the least-cost carpooling route. However, in
a large network, it is desirable to first compute least-cost
pair-wise distances among the pickup and drop-off locations
to reduce the computation complexity to retrieve the optimal
route for carpooling.

In this paper, LU, a fundamental best first search
algorithm and framework, is adopted to pre-compute all
least-cost pairwise routes. In a carpooling scenario, both
pickup locations and drop-off locations are likely to cluster
to get most out of carpooling in terms of reductions in trip
cost, emission, and gasoline usage. Accordingly, compared
to the two existing prevalent algorithms, A* and Dijkstra’s
algorithm, LU is more appropriate to compute all least-cost
pairwise network distances. A set of experiments is
performed, and the results demonstrate that LU expands the
least number of states when compared to A* and Dijkstra’s
algorithm, and 2) on average LU is much more efficient than
A* and significantly faster than Dijkstra’s algorithm when
the number of pickup and drop-off locations are not larger
than 12. On average, LU is 0.1~2.8 times faster than A* and
outperforms Dijkstra’s algorithm by 2 magnitudes.

VI. FUTURE RESEARCH

Even though LU significantly reduces overlapped states
expanded by multiple sequentially-running A*s, LU may
still be less efficient. One major reason is that unnecessary
states having been used to search for the routes to the closed
destinations but not helpful for searching the routes to the

67

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

remaining unclosed destinations are not removed timely in
the current implementation of LU. Future research can be
performed to reduce unnecessary states stored in the open list
and the closed list whenever a destination is closed to
expedite the search and update operations performed on both
lists in LU, and thus to further improve the efficiency of LU.

REFERENCES

[1] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The
Traveling Salesman Problem: A Computational Study. Springer,
2007.

[2] S. Arora. Approximation Schemes for NP-hard Geometric
Optimization Problems: A survey. Mathematical Programming,
Springer, 97 (2003) pp. 43-69.

[3] E. W. Dijkstra: A Note on Two Problems in Connexion with graphs.
In Numerische Mathematik, 1 (1959), S. pp. 269–271.

[4] Richard Bellman. On a Routing Problem, in Quarterly of Applied
Mathematics, 16(1), pp. 87-90, 1958.

[5] Q. Lu. LU: A Best First Search to Process Single-Origin Multiple-
Destination Route Query in a Graph. Proceedings of the 2010 Second
International Conference on Advanced Geographic Information
Systems, Applications, and Services, (2010) pp. 137-142.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics SSC4 (2) (1968) pp. 100–107.

[7] Grout, V., (2003), Towards an Optimal Routing Strategy,
Proceedings of IADIS WWW/Internet 2003, Algarve, Portugal, 5 th. -
8th. November, pp. 903-906

[8] Pierre A. Humblet. An adaptive distributed dijkstra shortest path
algorithm. Technical Report CICS-P-60, Center for Intelligent
Control Systems, MIT, May 1988

[9] Baruch Awerbuch. Shortest Paths and Loop-Free Routing in Dynamic
Networks. SIGCOMM '90 Proceedings of the ACM symposium on
Communications architectures & protocols: pp. 177-187

[1] Dafermos, Stella. C. and F.T. Sparrow. The Traffic Assignment

Problem for a General Network.” J. of Res. of the National Bureau of

Standards, 73B, pp. 91-118. 1969.

68

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

