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Abstract— Extreme precipitation events can be analyzed from 

multiple perspectives. Precipitation indices, estimated from the 

empirical distribution of the daily observations, are 

increasingly being used not only to investigate trends in 

observed precipitation records, but also to examine scenarios 

of future climate change. In this study, we propose a 

methodology for characterizing the spatial patterns of extreme 

precipitation in Madeira Island that is based on two types of 

approaches. The first one uses linear models, such as Ordinary 

Kriging and Ordinary Cokriging, to produce continuous 

surfaces of five extreme precipitation indices. The second one 

uses a 3D Self-Organizing Map (SOM) to visualize the 

phenomenon from a global perspective, allowing identifying 

and characterizing homogenous areas in a geo-spatial 

perspective. The methodology was applied to a set of 

precipitation indices, which were computed using daily 

precipitation data from 1998 to 2000 measured at 19 

meteorological stations located in Madeira Island. Results 

show that the island has distinct climatic areas in relation to 

extreme precipitation events. The northern part of the island 

and the higher locations are characterized by heavy 

precipitation events, whereas the south and northwest of the 

island exhibit low values in all indices. The promising results 

from this study indicate the proposed methodology, which 

combines linear and nonlinear approaches, as a valuable tool 

to deepen the knowledge on the local spatial patterns of 

extreme precipitation. 

Keywords-Geostatistics; Kriging; Precipitation patterns; Self-

Organizing Map. 

I.  INTRODUCTION 

The occurrence of extreme weather events, such as the 
extreme precipitation, is often associated to climate change 
and constitutes an enormous challenge to society. In fact, the 
monitoring of risk associated with such phenomena is a key 
element in ensuring the sustainability of economic 
development and living conditions of populations. It is in this 
context that we have been witnessing an increase in 
information on this type of extreme weather [1]. 

Extreme precipitation events can be characterized using 
several approaches. To gain a uniform perspective on 
observed changes in precipitation extremes, a core set of 
standardized indices was defined by the joint working group 
CCI/CLIVAR/JCOMM Expert Team on Climate Change 
Detection and Indices (ETCCDI). 

Numerous studies of changes in extreme weather events 
focus on linear trends in the indices, aiming to determine 
whether there has been a statistically significant shift in such 
indices of extremes [2-5], but only a few focus on their local 
spatial patterns [6]. 

Madeira is a Portuguese subtropical island located in the 
North Atlantic. It is considered a Mediterranean biodiversity 
'hot-spot' and is especially vulnerable to climate change [7]. 
During the winter season, eastward moving Atlantic low-
pressure systems bring precipitation to the island and 
stationary depressions can cause extreme precipitation events 
[7]. The characterization of precipitation in Portuguese 
islands has been less studied than in mainland Portugal [3]. 

The work reported herein investigates the spatial patterns 
of extreme precipitation in Madeira Island during three 
hydrological years (1998-2000). Among the eleven 
precipitation indices proposed by the ETCCDI, five indices 
were selected (R1, R1d, CWD, SDII and Rx5d), hoping to 
achieve a global characterization of the phenomenon in its 
different perspectives. The selected indices capture not only 
the precipitation intensity, but also the frequency and length 
of heavy precipitation events. Although the period chosen is 
not significant for a robust characterization of extreme 
precipitation events in Madeira Island, it is sufficient to test 
the proposed methodology and provide an exploratory 
analysis of the phenomenon. 

First, and for spatial interpolation purposes, the spatial 
continuity models of the five precipitation indices will be 
computed using geostatistical procedures, such as Ordinary 
Kriging (OK) and Ordinary Cokriging (OCK). Finally, the 
estimated surfaces of all the precipitation indices will be 
analyzed using a clustering tool especially adapted for 
visualizing multidimensional data: the SOM [8-10]. 

This paper is organized into five Sections as indicated: 
Section 2 presents the study area and the main data 
characteristics; Section 3 provides a description of the 
methodology; Section 4 reports the results obtained; and, 
finally, some concluding remarks are made in Section 5. 

II. STUDY REGION AND DATA 

This Section provides a description of the study region 
and of the data used to characterize the extreme precipitation 
patterns in Madeira Island. 
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A. Madeira Island 

The study area corresponds to Madeira Island, which is 
located in the Atlantic Ocean between latitudes 32° 30' N – 
33° 30' N and longitudes 16° 30' W – 17° 30' W. The island 
has an area of approximately 737 km2 distributed over a 
mountain range of 58 km oriented in the direction WNW-
ESE (Fig. 1). 

 

 
 

Figure 1.  Madeira’s Island Elevation Model. 

 
The climate of the island is extremely affected by the 

Atlantic Azores anticyclone and also by its own 
characteristics of altitude and relief direction [11]. In fact, the 
Island topography orientation causes a barrier, almost 
perpendicular to the most frequent wind direction 
(northeast). As a result of this natural barrier, there is a 
continuous ascent of moist air masses from the Atlantic, 
causing frequent precipitation in the northern part of the 
island [11]. 

Despite the small size of the island, there are significant 
differences in the climate of its two halves [12]: the northern 
part of the island is colder and wetter, and the southern part 
is warmer and drier. Also, and as expected, the precipitation 
on the island increases with altitude but presents significant 
differences between those two halves.  

The highest annual precipitation occurs in the highest 
parts of the island and the lower rainfall amounts are 
observed in lowland areas, such as Funchal and Ponta do Sol 
[13].  

B. Precipitation indices 

The daily precipitation data used to compute the indices 
were observed at 19 meteorological stations of the National 
Information System of Hydric Resources (NISHR) in the 
period 1998–2000 (Fig. 2), and downloaded from the NISHR 
database (http://snirh.pt). In the present study, only annually 
specified indices are considered. A wet day is defined as a 
day with an accumulated precipitation of at least 1.0 mm. 
The precipitation indices computed on an annual basis can be 
described as follows: 

 R1 is the number of wet days (in days); 

 Rx1d is the maximum 1-day precipitation (in mm); 

 CWD is the maximum number of consecutive wet 
days (in days); 

 SDII is named simple daily intensity index, and is 
equal to the ratio between the total rain on wet days 
and the number of wet days (in mm); 

 Rx5d is the highest consecutive 5–day precipitation 
total. 

 

 
 

Figure 2.  Distribution of meteorological stations over the island (NISHR 

network). 

The precipitation data used in the subsequent analysis 
corresponds to the simple annual average of each index from 
October 1998 to September 2000, at each station location. 
Summary statistics of these data are presented in Table I. 
The combined analysis of the 5 indices allows characterizing 
extreme precipitation situations under different perspectives, 
namely considering the intensity, length and frequency of the 
precipitation events. 

TABLE I.  SUMMARY STATISTICS OF THE PRECIPITATION INDICES 

VALUES AVERAGED IN THE PERIOD 1998–2000 

Variable CWD R1 Rx1d SDII Rx5d 

Min 5 52 50 8 64 

Median 9 104 114 15,00 216 

Max 15 141 169 26 390 

Mean 9,53 94,95 114,74 15,48 218,2 

Standard-

deviation 
3,1 27,47 35,0 4,26 92,9 

Skewness 0,44 -0,25 -0,06 1,11 0,18 

Kurtosis -0,77 -1,22 -1,22 2,15 -0,63 

 
The data and ancillary information used in this study, 

particularly the island map and its Terrestrial Digital 
Elevation Model (Fig. 1) were downloaded from the 
Portuguese Hydrographic Institute website and from the 
GeoCommunity™ portal, respectively. 
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III. METHODOLOGY 

The methodology used in this study integrates two main 
steps: first, the values of each variable at unsampled 
locations are estimated using geostatistical procedures; 
second, the variables are visualized using the SOM. 

A. Geostatistical modeling of precipitation indices 

As the ultimate goal is to get an insight of the spatial 
patterns of extreme precipitation over the island, the first step 
corresponds to the spatial interpolation of each averaged 
index, i.e., to estimate the values of each primary variable at 
unsampled locations.  

Deterministic interpolation methods, such as Inverse 
Distance Weighting (IDW), were not considered because this 
methods produce inaccurate results when applied to clustered 
data [14]. In fact, not only the number of stations is small, 
but also the stations are not distributed equally over the 
island.  

Geostatistical methods, known as Kriging, are usually 
preferred to estimate unknown values at unsampled locations 
because they account for the attribute spatial continuity. In 
this study, we will focus on two particular cases of this group 
of linear regression estimators: the OK and the OCK. The 
main difference between these two Kriging variants is that 
OCK explicitly accounts for the spatial cross-correlation 
between the primary variable and secondary variables [15]. 
The elevation model of the Madeira Island will be used as 
secondary information as some primary variables are 
strongly correlated with elevation. 

A key step of Kriging interpolation is the spatial 
continuity modeling, which corresponds to fit an authorized 
semivariogram model (e.g., exponential, spherical, Gaussian, 
etc.) to the experimental semivariogram cloud of points [15]. 
This procedure is extremely important for structural analysis 
and is essential to get the Kriging parameters [16]. The 
modeling results of this stage will be detailed in the next 
Section. The methodology used to model the spatial 
continuity of each index can be summarized as follows: 

 Determine the experimental semivariogram for the 
two main directions of the island relief orientation (if 
there is significant evidence of geometric 
anisotropy). Isotropy can be assumed only if the 
semivariogram is not dependent on direction [17]; 

 In the remaining cases assume isotropy; 

 If there is evidence of strong correlation and linear 
relationship between some primary variable and the 
existing secondary information (i.e., elevation), the 
model of co-regionalized variables is considered in 
the semivariogram modeling phase; 

 After modeling the experimental semivariograms, 
the OK/OCK methods are applied. The interpolation 
model selected to describe each index will be chosen 
based on the Mean Error (ME) of the cross-
validation (or "leave-one-out" cross-validation) 
results. This criterion is especially appropriate for 
determining the degree of bias in the estimates [14], 
but it tends to be lower than the real error [18]. 
Therefore, the final decision will also consider the 

Root Mean Square Error (RMSE) of the cross-
validation results, which is an error statistic 
commonly used to check the accuracy of the 
interpolation method. 

B. Using the SOM to Visualize the Precipitation Indices 

After producing the spatial surface of each averaged 
precipitation index, the main goal is to visualize this set of 
indicators in order to identify areas with similar patterns of 
occurrence of extreme precipitation. To achieve this, we 
propose the use of the SOM, a data visualization tool that has 
been proposed for visualizing spatial data [19, 20]. 

The SOM is an artificial neural network based on an 
unsupervised learning process that performs a gradual and 
nonlinear mapping of high dimensional input data onto an 
ordered and structured array of nodes, generally of lower 
dimension [10]. As a result of this process, and by 
combining the properties of an algorithm for vector 
quantization and vector projection, the SOM compresses 
information and reduces dimensionality [21]. 

Because the SOM converts the nonlinear statistical 
relationships that exist in data into geometric relationships, 
able to be represented visually [9, 10], it can be considered 
as a visualization method for multidimensional data 
especially adapted to display the clustering structure [22, 23], 
or in other words, as a diagram of clusters [9]. When 
compared with other clustering tools, the SOM is 
characterized mainly by the fact that, during the learning 
process, the algorithm tries to guarantee the topological order 
of its units, thus allowing an analysis of proximity between 
the clusters and the visualization of their structure [24]. 

Typically, a clustering tool must ensure the 
representation of the existing patterns in data, the definition 
of proximity between these patterns, the characterization of 
clusters and the final evaluation of output [25]. In the case of 
spatial data, the clustering tool should also ensure that the 
groups are made in line with the geographical closeness [24]. 
The geo-spatial perspective is, in fact, a crucial point that 
makes the difference between spatial clustering and 
clustering in common data. Recognizing this, there are 
several approaches, including some variants to the SOM 
algorithm [26], proposed to visualize the SOM in order to 
deal with geo-spatial features. 

In this context, an alternative way to visualize the SOM 
taking advantage of the very nature of geo-referenced data 
can be reached by coloring the geographic map with label 
colors obtained from the SOM units [24].  One such 
approach is the “Prototypically Exploratory Geovisualization 
Environment” [27] developed in MATLAB®. This prototype 
incorporates the possibility of linking SOM to the 
geographic representation by color, allowing dealing with 
data in a geo-spatial perspective.  

In this study, we propose to use a clustering method for 
spatial data based on the visualization of the output space of 
a 3D SOM [28]. This approach is based on the association of 
each of the three orthogonal axes (x, y and z) that define the 
SOM grid to one of the three primary colors: red, green and 
blue (RGB scheme). As a result, each of the three 
dimensions of the 3D SOM will be expressed by a change in 
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tone of one particular primary color (RGB), and each SOM 
unit will have a distinct color label. Therefore, each geo-
referenced element can be painted with the color of its Best 
Matching Unit (BMU), i.e., the SOM unit where each geo-
referenced element is mapped. 

Fig. 3 represents schematically a SOM with 27 units 
(3x3x3) in the RGB space followed by the geographical 
representation of several geo-referenced elements painted 
with the color labels of their BMU’s. 

 

 
 

Figure 3.  Linking SOM’s knowledge to cartographic representation. A 

color is assigned to each SOM unit (following the topological order). Then 

the geo-referenced elements are painted with the color of their BMU’s. 

IV. RESULTS 

In this Section we present the spatial interpolation of the 
precipitation indices and the spatial patterns of extreme 
precipitation obtained using the methodology proposed in the 
previous Section. 

A. Spatial interpolation of precipitation indices 

The semivariogram modeling was conducted using the 
GeoMS® software and the spatial prediction models were 
obtained using ARCGIS®. The final visualization of the 
extreme precipitation was produced through routines and 
functions implemented in MATLAB®. 

Not surprisingly, the most correlated indices are Rx1d 
and Rx5d (R2=0.804). The remaining indices are moderately 
or weakly correlated, which indicates their suitability to 
characterize different features of the precipitation regime in 
the Madeira Island. Moreover, Rx5d and CWD are 
moderately correlated with elevation (Table II). 

TABLE II.  CORRELATION MATRIX BETWEEN INDICES AND 

ELEVATION (ELEV.) 

Variables Elev. CWD R1 Rx1d SDII Rx5d 

Elev. 1      

CWD 0,768 1     

R1 0,424 0,684 1    

Rx1d 0,393 0,242 0,489 1   

SDII 0,308 -0,134 -0,098 0,627 1  

Rx5d 0,616 0,440 0,542 0,804 0,62 1 

Taking into account the results obtained in the 
exploratory analysis (IDW models not shown), several 
modeling strategies were compared taking into account the 
spatial continuity behavior assumed for each index and its 
correlation with elevation (Table III). Although the relief of 
the island is in direction WNW-ESE, the analysis of the 
estimated surfaces obtained with IDW (not shown) shows no 
evidence of anisotropy, except for variable Rx5d. This 
means that the spatial variability of all other indices was 
assumed identical in all directions (i.e., isotropic). 

Table IV summarizes the semivariogram parameters 
estimated for the models indicated in Table III. 

TABLE III.  EXPERIMENTAL SEMIVARIOGRAM MODELING STRATEGIES 

Index model 

number 
Semivariogram 

Spatial 

behavior 

assumed 

CWD-1 Omnidirectional Isotropic 

CWD-2 
Linear model of co-
regionalization with elevation 

Isotropic 

R1 Omnidirectional Isotropic 

Rx1d Omnidirectional Isotropic 

SDII Omnidirectional Isotropic 

Rx5d-1 Omnidirectional Isotropic 

Rx5d-2 
Semivariogram models for the 
azimuth directions 100º and 10º 

Anisotropic 

Rx5d-3 
Linear model of co-

regionalization with elevation 
Isotropic 

TABLE IV.  SEMIVARIOGRAM PARAMETERS ESTIMATED FOR THE 

MODELS INDICATED IN TABLE III 

Index 

model 

number 

Model 

type 

Nug

get 
Partial sill 

Spatial 

range (Km) 

CWD-1 Spherical 6 3 11.7 

CWD-2 
Exponent

ial (Exp.) 
0 

9 (CWD) 
940 (CWD-

Elevation) 

166272 (Elevation) 

13.4 

R1 Exp. 0 714 12.6 

Rx1d Exp. 0 1157 8.2 

SDII Exp. 0 17 5.3 

Rx5d-1 Gaussian 1165 6992 12.7 

Rx5d-2 Gaussian 1371 6794 
14.3 (major) 

8.2 (minor) 

Rx5d-3 Spherical 0 

16440 (Rx5d) 

23891 (Rx5d-

Elevation) 
166380 (Elevation) 

12.6 

 
OCK with elevation was used in the spatial interpolation 

of the averaged Rx5d and CWD, whereas all other variables 
were interpolated through OK (Fig. 4-8). 

The final interpolation model selected to describe the 
spatial distribution of Rx5d and CWD depends on the error 
statistics of the cross-validation (Table V). ME values close 
to zero indicate a small bias in the estimation. Hence, the 
best interpolation strategy for both variables is OCK with the 
semivariogram models Rx5d-3 and CWD-2, respectively. 
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TABLE V.  CROSS-VALIDATION ERROR STATISTICS OBTAINED IN THE 

VARIOUS SPATIAL INTERPOLATION STRATEGIES (SELECTED MODELS ARE 

IN ITALICS) 

Indices Spatial interpolation model ME RMSE 

CWD 

OK with the semivariogram model CWD-

1 
0,045 3,13 

OCK with the semivariogram model 

CWD-2 
-0,02 3,214 

R1 OK 0,529 20,77 

Rx1d OK 2,68 31,67 

SDII OK -0,01 5,012 

Rx5d 

OK with the semivariogram model Rx5d-1 5,647 59,52 

OK with the semivariogram model Rx5d-2 4,493 56,5 

OCK with the semivariogram model 

Rx5d-3 
-0,853 69,04 

 
 

 
 

(a) 
 

 
 

(b) 

Figure 4.  Interpolation of the averaged CWD index using: (a) OK and the 

semivariogram model CWD-1; (b) OCK and the semivariogram model 

CWD-2. 

 

 
 

(a) 

 
(b) 

 
 

(c) 

Figure 5.  Interpolation of the averaged Rx5d index using: (a) OK and 

the semivariogram model Rx5d-1; (b) OK and the semivariogram model 

Rx5d-2. (c) OCK and the semivariogram model Rx5d-3. 

 

 
 

Figure 6.  OK interpolation of the averaged R1 index. 
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Figure 7.  OK interpolation of the averaged Rx1d. 

 

 
 

Figure 8.  OK interpolation of the averaged SDII index. 

B. Spatial patterns of extreme precipitation 

In order to visualize the spatial patterns of extreme 
precipitation from a global perspective, a 3D SOM was 
applied to the indices surfaces obtained through Kriging. 
First, the selected models (Table V), obtained in raster 
format, were converted back to point data, sampled at regular 
intervals. Afterwards, the indices values were normalized to 
ensure equal variance in all variables and the SOM was 
parameterized as follows: 

 The output space was set with 3 dimensions [4 × 4 × 
4], which corresponds to 64 units in total; 

 The neighborhood function selected was Gaussian; 

 The length of the training was set to “long” (8 
epochs); 

 Random initialization. 
As the final results depend on the initialization of the 

SOM, 100 models were obtained and the best model was 
chosen according to the criterion of best fit, i.e., the lowest 
quantization error (Table VI). 

TABLE VI.  3D SOM RESULTS (100 MODELS) 

 Quantization Error Topological Error 

Selected Model 0,74747 0,042616 

Average Model 0,78156 0,041578 

 

To each unit of the SOM (output space of the network) 
was then assigned a RGB color according to its output space 
coordinates. In turn, each raster cell was represented 
cartographically with the color assigned to the unit of the 
SOM where that cell is mapped, i.e., its BMU (Fig. 9). This 
means that each color corresponds to a homogeneous zone in 
terms of the various indices values. 

 

 

Figure 9.  Visualization of the five precipitation indices using the output of 

the SOM mapped to a 3D RGB space. Areas with similar colors have 
similar characteristics. 

Table VII summarizes the characteristics of each area 
identified in Fig. 9. There are significant differences between 
the different areas (colors). Table VII allows comparing the 
predicted mean values for the whole island. 

TABLE VII.  SUMMARY OF THE AVERAGE VALUES FOR EACH AREA  

Color\Index CWD R1 Rx1d SDII Rx5d 

Black 6,58 91 100,2 13,73 124,89 

White 10,12 92,60 138 19,87 336,1 

Yellow 9,57 75,86 101 16,99 206,24 

Light Blue 12,88 116,46 115,4 15,62 301,5 

Blue 9,465 109,81 106,3 14,14 198,82 

Green 8,91 92,3 105 15,09 188,0 

Red 7,52 72,46 95 14,60 132,08 

Violet 7,87 94,71 110,9 15,51 184,6 

 
Despite its small size, Madeira Island has distinct zones 

in relation to extreme precipitation events. The white area 
corresponds to the higher regions of the island characterized 
by higher values in all indices, whereas the darkest area 
(black in the far east of the island), is characterized by the 
lowest values in all indices. The north of the island, which is 
colored dark blue and light blue, corresponds to high values 
in all indices (although much smaller than in the white 
colored area), with particularly high R1 index values. 
Finally, the area colored in red is characterized by low values 
in all indices. The green area is very close to the average 
values (a phenomenon that is partly explained by the lack of 
information in the area). There are no significant differences 
between the green and violet zone (analysis of Euclidean 
distance). 
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V. CONCLUSION 

In this paper, we propose a methodology for 
characterizing the spatial patterns of extreme precipitation in 
Madeira Island. This methodology combines two different 
approaches: the first one is based on geostatistical 
procedures, and the second one is based on the 3D SOM. 
The first approach is used to estimate spatial surfaces of 
extreme precipitation indices, and the second one allows 
visualizing the phenomenon from a global perspective, thus 
enabling the identification of homogeneous areas in relation 
to extreme precipitation events. 

The spatial and temporal resolution of the data set 
considered is too small to thoroughly characterize the 
extreme precipitation phenomenon in Madeira Island. 
Nevertheless, the results indicate the proposed methodology 
as a valuable tool to provide a set of maps that can 
effectively assist the spatial analysis of a phenomenon. It can 
have multiple perspectives and deal with high dimensional 
data, which requires a global view. The results of this 
particular application open perspectives for new applications 
not only in the climate context, but also in other domains. 
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