
Marshaling and Un-marshaling CityGML Using Various XML Bindings

Techniques

Peter Follo, Robert Forsgren and Gustav Tolt

Sensor Informatics unit

FOI (Swedish Defence Research Agency)

Linköping, Sweden

peter.follo@foi.se, robert.forsgren@foi.se, gustav.tolt@foi.se

Abstract— This paper presents the methods and initial results

of a study at the Swedish Defence Research Agency in 2012,

aiming at investigating various techniques for binding a

complex XML schema, such as the OGC’s CityGML schema,

to a database. This form of binding technique performs a

mapping between XML objects and database objects thereby

enabling the use of relational databases for update and

input/output of customized CityGML models. The results so

far indicate that this might be possible with today's framework

but not without an undesirable work effort. Also, the lack of

documentation makes this work even harder. Follow-on work

is planned for 2013 and will provide a basis for an assessment

of the frameworks. In this paper, we propose a method to

evaluate such frameworks.

Keywords-CityGML; XML binding; marshaling; un-

marshaling

I. INTRODUCTION

The ever-increasing amount of geospatial data and the
demand to exchange data within and between authorities and
companies drive the demand of standards and regulated ways
to fulfil this. One initiative to achieve this is the EU directive
INSPIRE [1] stating that all geospatial data that affect
environmental domains should be accessible to all member
states within the EU. By 2018, these data should even be
accessible online. On the national level, in Sweden, the
answer to this directive is the implementation of a geodata
portal lead by the Swedish mapping, cadastral and land
registration authority [2]. Furthermore, many commercial
initiatives are possible only if governmental geospatial data
are freely available online [3]. This leads to more standards
with increasing complexity being developed. One such
example is the CityGML XML schema [4] from the Open
Geospatial Consortium (OGC) [5].

The question, then, arises how to handle vast amounts of
complex data – how to store and maintain it, how to keep up
with emerging standards and how to prevent vendor lock-in?
Digital geographical data, especially vector layers, are
commonly stored in relational databases. It is not to stretch a
thought to its limit to believe that also much of these
emerging, more complex data structures will be, or at least
are preferred to be, stored in relational databases, at least
from the point of view of municipal authorities. One
example of this is the 3DCityDB [6] developed at

Technische Universität Berlin, which stores CityGML
models in an Oracle Spatial database. While complex data
can be represented in many ways, it is believed that one of
the most common ways will be in XML documents with a
supporting schema, which is why this paper focuses on such.
Even though some relational databases, i.e., Oracle Spatial
[7], handle XML directly, this is often done with a severe
performance penalty and decreased functionality [8][9] and
thus the need to handle complex data structures in traditional
database schemes arises. Pure XML databases exist [10];
but, they often lack the GIS functionality present in other
more traditional databases such as Oracle Spatial and
PostgreSQL /PostGIS [11]. XML databases are also rare in
the municipal community where often significant
investments in time, money and education related to
relational databases have already been made. Several
frameworks for (semi-)automatically mapping XML
schemes to data structures exist, but not many highlight how
to deal with database storage.

This paper proposes a method for evaluating such
frameworks and studies a selection of them for their potential
ability to marshal and un-marshal CityGML models from
and to a database. Since these frameworks are complex and
often consist of frameworks-of-frameworks one needs a
structured and efficient way to evaluate them. The paper also
highlights some of the difficulties encountered with this
semi-automatic approach. Our study focuses on the process
of creating data structures to create and modify CityGML
objects. This is done through automatic generation of source
code and libraries from the CityGML XML schema. The
goal is to achieve this with a reasonable work effort.
CityGML references more than 40 other XML schemes
making per schema adoption a cumbersome exercise. Some
of the techniques studied in this paper may fail not because
of technical impossibilities, but rather on impractical
workload or lack of documentation.

Three XML schemas to data objects frameworks have
been evaluated: Oracle’s Java XML bindings (JAXB),
Castor and Apache’s Xmlbeans. Two data objects to Data
Definition Language (DDL) frameworks, Castor and
Hyperjaxb3 (the later based on JAXB and the Java
Persistence Application Programming Interface (JPA)) were
studied to generate DDL scripts. All these frameworks
generate Java sources and the ones capable of generating
DDL scripts are highly configurable in choice of database.

89Copyright (c) The Government of Sweden, 2013. Used by permission to IARIA. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

Other framework exists such as Apache’s JaxMe, Extensible
Stylesheet Language Transformations (XSLT) and others.
Time, resources and in some cases technical difficulties
prevented these and others to be evaluated in this study.

The remainder of this paper is organized as follows. The
next section presents the method and the setup for the
experiments conducted. Then, the Experiments section
presents the conducted experiments and some intermediate
findings. In Section IV, the results are summarized and
figures of merits from the experiments are shown. The last
chapter, Conclusions, presents the authors’ beliefs regarding
the feasibility to proceed further with the described method.

II. METHOD

The proposed method consists of three phases with
increasing complexity.

The first phase, Object Model Generation, examines the
framework’s ability to generate compilable and useful source
code. Within this phase we start with a minimal set of
customizations and later on add more customizations when
needed. When the source finally is generated the compilation
stage starts. Some frameworks offer to do this automatically.
If this fails we import the generated source code into some
Integrated Development Environment (IDE) such as
Netbeans and try to compile it that way. On success, to prove
usability, we un-marshal and marshal one or more
documents and compares the result with the original.

If the first phase is successful it is time to focus on the
framework’s DDL abilities which are done in the second
phase, Data Model Generation. Again, with a similar
approach as in phase 1, we try to generate DDL scripts with
a minimal set of customizations. It is anticipated that this
phase will generate very complex, maybe even impractical,
data models, and these generated DDL scripts should not to
be considered as the final product. If possible though; un-
marshaling and marshaling should be done to prove no loss
of data.

The third and last phase, Application Customization,
focuses on the framework’s abilities to customize the data
model to the user’s need and the database’s capabilities, such
as the ability to handle geometries and coordinate
transformations. In addition, many times it is not necessary
to store every part of the XML structure in a structured way.
To reduce the complexity of the data model one might have
to simplify the model. The third phase investigates if this is
possible and what implications this has on reduced
functionality and information loss.

III. EXPERIMENTS

In this section, we describe the work conducted for the
first two experimental phases along with observations made
during the work. The experiments are described in a
chronological manner reflecting the difficulties that could
arise along the way.

To evaluate the frameworks a LOD 3 sample data set
from citygml.org covering a street in Frankfurt was
downloaded and used. Each experiment was divided in three
phases, as stipulated by the proposed method; however no

framework reached the third phase due to technical
difficulties.

The following (semi-)automatic XML bindings
frameworks was used:

- JAXB version 2.2.4 (from the JDK)
- Hyperjaxb3 version 0.5.6
- Castor version 1.3
- Apache Xmlbeans version 2.4.0-7.

Among these frameworks, only Castor and Hyperjaxb3
have the ability to generate DDL scripts.

All experiments were conducted on a Dell XPS M1330
laptop with an Intel Dual Core 2.2 GHz Processor (T7500)
and 4 GB of RAM. Operating system of choice was Fedora
16. Java version was Oracle's JDK version 1.7.0_04.
Netbeans 7.0.1 was used as Java IDE.

A. Phase 1: Object Model Generation

1) Oracle JAXB 2.2.4
First try: generate and build a Java library using JAXB's

xjc without any customization. This yielded name conflicts
in the included XML schemes due to multiple definitions of
elements with the same name. Some of them should really
not be a conflict since they should be defined in different
namespaces, i.e., the element Role defined both in
cityObjectGroup.xsd and xlink.xsd. xjc is kind enough to
output some hints to overcome the name clashes. Thus, the
second try was to generate and build a Java library with a
minimal set of customizations. Several conflicts arise due to
XML names being converted to the same Java name, i.e., the
XML name _Solid transforms to the Java name Solid which
conflicts with a previous defined XML name Solid also
transformed to the Java name Solid. Thirteen customizations
were necessary due to conflicts in the XML schemas.
Thereafter, the errors change focus to conflicts within the
package to be built, conflicts sometimes already addressed in
earlier customization, some of them really not conflicts at all.
The third try was then to generate sources and build in a
separate step. 594 Java source files were generated in about
10 seconds, including the time for internet access to the
referenced schemes. The sources were imported into
Netbeans and compiled without errors in 12 seconds.
Marshaling and un-marshaling of the sample data set went
without errors. Visual random inspection of the original data
and the marshaled data indicated no errors or data loss.

2) Apache Xmlbeans 2.4.0-7
First try: generate and build Java library without any

customizations. The SchemaCompiler worked out of the box
generating 2526 classes in 6 seconds and building a Java
library in 55 seconds with one ignorable warning about
classpath settings. Marshaling and un-marshaling went
without problems.

3) Castor 1.3
First try: generate and build Java libraries without any

customizations. This resulted in a null pointer exception
complaining on missing parent for “the built in parent type
for: MeasureOrNullListType”. No sources were generated.
MeasureOrNullListType origins from the referenced GML
3.1.1 schema basicTypes.xsd.

90Copyright (c) The Government of Sweden, 2013. Used by permission to IARIA. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

Second try: generate sources for basicTypes.xsd. This
yielded in more errors of the same type, this time pointing to
CountExtentType. Some sources where generated though. No
workaround has been found not implying much work or
unacceptable loss of functionality why castor sadly has to
leave the stage. A bug report (CASTOR-3223) has been
filed.

B. Phase 2: Data Model Generation

1) Oracle JAXB 2.2.4/Hyperjaxb3 0.5.6
The first try was to examine the possibilities to add JPA

annotations to the generated classes. The goal is to annotate
every complexType as an Entity class. This was possible with
the JAXB Annotate plugin [12], but only feasible if enabling
the undocumented feature to allow multiple matches from
the XPath expressions. Otherwise, one has to do a
customization for each and every of the generated classes.
Moreover, the JAXB Annotate plugin extensions were not
allowed in the global binding scope, leading to a schema
binding for each and every imported and included schema.
However, Hyperjaxb3 targets this specific question, being a
plugin to JAXB linking JAXB to JPA. Hyperjaxb3 also takes
into account many other problems that arise when bridging
the object model and data model [13]. Thus, the second try
was to do the same experiment with Hyperjaxb3: Close to
twenty customizations were made and given to Hyperjaxb3.
770 classes were generated, but the generated code did not
compile due to invalid arguments to some methods. This
occurs in four of the generated classes but it is manageable
by manually editing the files. After editing, the process of
generating DDL scripts starts but soon bails out again.
According to the generated output, it is suggested that the
hibernate EntityManager jars are missing. Further
investigation could not conclude that this is the case; the
needed jars seems to be included.

IV. RESULTS

Table 1 summarizes some figure of merits for the
different frameworks together with some important notes.
Oracle’s JAXB 2.2.4 passes phase 1 but must be paired with
some other technique to reach phase 3 of the experiments.
This could be done with standalone JPA annotations but
since hyperjaxb3 exists which do exactly this and more this
was not further investigated in this study. Hyperjaxb3 was
the most successful framework reaching the DDL generation
phase but fails on a configuration error. No work-around was
found. Hyperjaxb3 is a maven plugin, using several other
artefacts. It is hard to follow exactly where or in what
artefact it goes wrong. Also, it is hard to understand what is
configurable or not from hyperjaxb3’s point of view. Some
configurations applied in the pom.xml file for the underlying
artefacts did not follow through. Documentation to clarify
this is desirable. Castor 1.3 fails with a null pointer
exception not finishing phase 1. No documentation was
found indicating what went wrong. To understand why one
has to dig into the source code but this is out of scope of this
study. Apache Xmlbeans 2.4.0-7 went without errors. No
customizations was needed what so ever and marshalling and

un-marshalling went without errors. Unfortunately,
Xmlbeans is not able to generate DDL scripts.

TABLE I. FIGURE OF MERITS FOR THE DIFFERENT FRAMEWORKS.

Framework Cust. Classes Note

Oracle's JAXB

2.2.4

3 594 Passes phase 1. Not applicable to

phase 2 & 3 standalone.

Hyperjaxb3
0.5.6

16 770 Passes phase 1 but fails in phase 2
during DDL generation. Generated

code does not compile without

editing. Build must be done in a
separate step.

Castor 1.3 7 - Fails on phase 1.

Apache

Xmlbeans 2.4.0-

7

0 2526 Passes phase 1. No customizations

needed. Not applicable to phase 2

& 3 standalone.

V. CONCLUSIONS

While promising, these frameworks still seem far from
being capable to handle large complex XML schemas such
as OGC’s CityGML schema out-of-the-box. If not by
technical means, so by the lack of documentation. The lack
of documentation and the fact that these frameworks often
are frameworks-of-frameworks makes debugging and
understanding of the internal processes hard. Yes, the source
code is there, but with productive aspects from e.g. a
municipal agency’s point of view it is not realistic to dig that
deep into a problem. First and foremost, these frameworks
must be better documented, to make it possible to know if
you are trying to solve your problem the right way. This will
give the developers the proper feedback to make the
frameworks easier to use and in the long term more robust.
Better documentation will also ease the burden of the
developers and the community to answer newbie questions
and it will also ease the burden of the users to adopt these
techniques. In the (failed) experiments it is pointed out,
several times, that no work-around was found, although this
does not mean that such does not exist.

VI. FUTURE WORK

In this paper, we have investigated three frameworks for
binding a complex XML schema to a database.

One of the most promising, due to its ease-of-use,
frameworks is Apache Xmlbeans. However, it could not be
investigated thoroughly enough up to this point due to time
and resource constraints, but a deeper analysis is scheduled
as an upcoming action. We also note that this framework
most be combined with other techniques to reach the third
phase of the experiments.

From what we have experienced so far, Hyperjaxb3
should also be further investigated to see whether it is
possible to circumvent the configuration error described in
Section III.B.1. It must be investigated how the hyperjaxb3
maven plugin interacts with other maven plugins, especially

91Copyright (c) The Government of Sweden, 2013. Used by permission to IARIA. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

the hibernate and ant task plugins. Lack of time prevented us
from addressing this issue thoroughly in this study, but will
instead be considered as a next step.

It is also desirable to dig deeper to find the exact reason
for processing errors, and for this we anticipate that working
closer together with the developers and the community is a
necessity.

A better XML comparison technique must be developed;
we must be able to compare large XML files in a more
clever way than manual inspection to guarantee integrity of
the object during marshaling and un-marshaling; taking into
account the fact that the object can be represented in many
valid ways in an XML structure.

ACKNOWLEDGMENTS

Thanks to the developers of these frameworks, working
under high pressure and short of resources, sometimes
sacrificing their spare time to answer questions and fix bugs.
Without your efforts this would be a daunting task, maybe
even impossible. Thanks also to the companies sponsoring
them in their work working along with the open source
community.

REFERENCES

[1] EU, “Directive 2007/2/EC of the European Parliament and of
the Council of 14 March 2007 establishing an Infrastructure
for Spatial Information in the European Community
(INSPIRE)”, European Commission, 2007

[2] Lantmäteriet - the Swedish mapping, cadastral and land
registration authority, “Geodataportalen”, Accessed Dec

2012: http://www.geodata.se/GeodataExplorer/start.jsp
?loc=en

[3] G. Vickery, “Review of recent studies on PSI re-use and
related market developments”, European Commission, 2011

[4] Open Geospatial Consortium, “OpenGIS® City Geography
Markup Language (CityGML) Encoding Standard”, OGC,
2008

[5] Open Geospatial Consortium, “About OGC|OGC®”,
Accessed Jan 2013: http://www.opengeospatial.org/ogc

[6] A. Stadler, C. Nagel, G. König. and T.H. Kolbe, ”Making
interoperability persistent: A 3D geo database based on
CityGML”, Lee & Zlatanova (eds.), 3D Geo-Information
Sciences, Selected papers from the 3rd International
Workshop on 3D Geo-Information, Seoul, Korea. LNG&C
series, Springer Verlag, pp. 175-192. 2008

[7] Oracle, “Oracle Database Online Documentation”, Accessed
Aug 2012: http://www.oracle.com/pls/db111/portal.portal_db
?frame=&selected=7

[8] PostgreSQL, “PostgreSQL: Manuals”, Accessed Dec 2012:
http://www.postgresql.org/docs/manuals/

[9] MySQL, “MySQL :: MySQL 5.5 Reference manual”,
Accessed Dec 2012, http://dev.mysql.com/doc/refman
/5.5/en/index.html

[10] “XML database”, Wikipedia, Accessed Dec 2012:
http://en.wikipedia.org/wiki/XML_database

[11] PostGIS, “PostGIS: Home”, Accessed Dec 2012:
http://www.postgis.org/

[12] A. Valikov, “Annotate Plugin - Confluence”, Accessed Dec
2012: http://confluence.highsource.org/display/
J2B/Annotate+Plugin

[13] A. Valikov, “JAXB vs. JPA - Confluence”, Accessed Dec
2012: http://confluence.highsource.org/display/HJ3/JAXB
+vs.+JPA

92Copyright (c) The Government of Sweden, 2013. Used by permission to IARIA. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

