
Automated Processing of Postal Addresses

Konstantin Clemens
Deutsche Telekom Laboratories, TU Berlin

Service-centric Networking
konstantin.clemens@campus.tu-berlin.com

Abstract—Postal addresses are involved whenever post mail
is to be delivered to an addressee, or to describe the location of
a person or organization. The world-wide adoption of postal
addresses and the lack of a centralized control entity led to
very heterogeneous postal address formats. Even within a single
country various postal address formats may be used. In this
paper the main tools for processing postal addresses in an
automated fashion are compared: Multidimensional indices,
address patterns and gazetteers. Special focus is put upon
supporting as many heterogeneous postal address formats as
feasible with the various tools.

Keywords-postal automated processing; postal addresses;
address patterns; gazetteer; spatial indices

I. INTRODUCTION

Postal Addresses identify addressees so that no room
for ambiguity is left. There was no need for that before
modern postal systems began offering their service to the
broad public. Until every citizen was eligible to receive
post office mail, many regions lacked house numbers or
street names. That still is the case in many areas. E.g., in
Japan often named houses are used over numbered houses
on named streets. Extremely poor neighborhoods without
official organization as the Brazilian favelas often lack street
names and house numbers too.

To disambiguate the name of an addressee, postal ad-
dresses utilize the addressee’s whereabouts. A typical postal
address is composed from multiple administrative areas, a
postal code, a street name, and a house number. As names
are reused across different streets often, administrative areas
are disambiguating street names. The street name and house
number in turn identify a specific house where the post
office mail can reach the addressee. Postal codes are the
latest innovation in postal addresses. Being invented in the
first half of the 20th century, postal codes usually encode
information redundant to administrative areas. Sometimes
postal codes are as accurate as streets or blocks. Besides
functioning as a verification to confirm or repair a postal
address, postal codes are mainly used to identify a post mail
distribution center easily. They thereby enable automated
mail sorting. Postal codes are not used by every addressing
system. Also the way location data is encoded in postal
codes obeys local requirements and varies from country
to country. Similar to country specific postal codes, street
naming conventions vary by region. While in European

countries most streets are named by destinations, areas,
landmarks, famous people or events, in USA and Canada
many streets are incrementally numbered or labeled and
carry directional information with regard to a reference
point. House numbering schemes vary just as much as
street naming conventions. House numbers may be assigned
incrementally or by distance within a street or a block. In
the latter case, usually blocks are numbered incrementally.
These schemes can be combined with distributing even and
odd numbers on different street sides. Some times a single
house number is assigned to multiple buildings. A single
house number is then not sufficient any more. Additional
information identifying a block, a floor or a suite is then
added to the postal address. Depending on how important
an addressee is in a given region, the location specified in
the address may be less specific. Parts of the location may
be omitted still assembling a postal address identifying an
important addressee unambiguously. E.g., children, address-
ing post mail to Santa Claus reasonably expect the addressee
to be unambiguous, despite the location part of the address
being not more specific then North Pole.

Usually computers are only utilized to make sense of
location parts of an address. Reaching the addressee (and
handing the post mail over) is left to human beings. Because
of that there is no unified scheme applied for specifying
addressees within large organizations. Arbitrary department
hierarchies and case workers may be named as addressees
therefore.

Nowadays addresses are present in a variety of sources.
Postal addresses are hand-written or printed on letters, forms
and packages. Addresses are stored in proprietary schemas
in databases of users, customers, orders, etc. GIS databases
store addressable entities too, usually with coordinates only
not including their postal addresses. Often address parts are
also mentioned in free text. From that we can name the
following use cases:

Computer systems can be used to
1) derive complete and valid postal addresses from nu-

merical location representations.
2) parse postal addresses from post mail or forms.
3) identify postal address parts in free text documents.
4) construct full and partial valid postal addresses from

entities stored in proprietary database schemas.
5) validate, enhance and fix given postal addresses.

155Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

Use case (1) is also referred to as reverse geocoding.
Measured coordinates, for example, attached to photographs
by GPS-enabled cameras, can be presented to users in a
more comprehensible way deriving named address parts at
the coordinate’s location. Use cases (2) and (3) are the daily
business at banks, hospitals, government agencies, and such.
These organizations do receive filled out forms and informal
documents that contain postal addresses to be parsed. Use
case (4) is the reverse of (2). It is applied to generate and
print an address suitable to post mail from separate address
parts. Finally use case (5) is of value for every system
gathering postal addresses, to sort out fake or erroneous
input. Also having a sparse but unambiguous input address,
it is use case (5) to enrich it with all address parts required
for a fully specified address.

For dealing with location data contained in postal ad-
dresses in an automated way, the common tools are patterns,
gazetteers and multidimensional indices. Patterns allow split-
ting an address into its address parts and assembling it back
according to a predefined format. Gazetteers allow looking
up named entities and deriving attached information. The
information retrieved from gazetteers may explain hierar-
chical dependencies between the entities or contain other
metadata useful for processing addresses. Finally spatial
indices support the reverse look up of geographical entities.
Given a point or a polygon, such indices allow deriving
address entities that enclose, overlap or touch the specified
area.

This paper compares the named tools for processing postal
addresses in an automated fashion. Special focus is given
to the variety and complexity of postal address formats in
use. The goal of this paper is to summarize the merits and
demerits of the three tools, thereby identifying gaps for
further tooling.

In the following section postal address formats in general
are discussed. Next, these tools and their selected variants
are analyzed with regards to the defined use cases. Note that
it is outside of the scope of this paper to analyze how address
texts get digitalized. Hybrid approaches for extending OCR
with gazetteers to reach better address recognition while
scanning printed or hand written addresses are available [1]
but are not included in this analysis.

II. POSTAL ADDRESSES

As discussed, there is a variety of postal address formats.
As most postal services operate within country borders, most
postal address formats differ from country to country. In
some countries though, addressing differs within the country
depending on the addressee’s location being a city, a rural
area or a specific region. There are also special address
formats for special cases, as the military, where the location
of the addressee alters quickly, or shall not be known to
the public. Table I illustrates addresses in various formats
valid in USA, France, Ireland, and Japan. All addresses

Table I
EXAMPLE ADDRESSES IN DIFFERING FORMATS WITHIN A COUNTRY.

were taken from the address examples provided by the
Universal Postal Union UPU[2]. In the first row on the left
hand side an typical US address containing an addressee,
house number, street name, town, state, zip-code (the US-
version of a postal code) and country is shown. The other
address in the same row is addressing military personal,
and contains no location information. Only numbers are
used that unambiguously identify the addressee but only
bear meaning to the Army Post Office of USA. In the next
row two French addresses are displayed. While the address
on the left refers to an addressee in the city Mios, the
address in the right column points to the village Auterive
in a rural area. The urban address format also contains
the addressee’s apartment number and entrance as extended
location information. Its parts are addressee, apartment, en-
trance, house number, street name, district, postal code, town
and country. The rural address format includes addressee,
district, postal code, town and country but names neither a
street name nor a house number. In the third row two Irish
addresses are confronted with each other. In this case the
address formats differ because of regional diversity. Postal
codes in Ireland have only been introduced in Dublin. Thus,
while the Dublin address contains addressee, house number,
street name, postal code and country, the address with the
location information outside of Dublin names the county
instead. It consists of addressee, house number, street name,
town, county and country. In the last row two Japanese
addresses are shown. The left address points to an urban
area. It contains zone, block, house number, district, town,
prefecture, postal code and country, as in Japan street names
are not common. Instead houses numbered within blocks
which in turn are numbered within zones that assemble
a district. If required, a fourth number could be added
to that address to specify an apartment. Addressing rural

156Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

areas in Japan uses a different format. The address on the
right contains addressee, house number, district, town, area,
prefecture, postal code and country. The area hereby is a part
of the prefecture and may contain multiple small towns.

Postal addresses do contain redundant information to
make sure that the addressee is identified unambiguously.
This redundancy allows postal addresses to be inconsistent.
An address may be contradicting containing a valid postal
code that does not match the specified administrative areas,
or a street name of a street that is located in a district
other than the one specified. An address may be incomplete
not specifying some vital address parts. Due non-distinct
naming of address entities, incomplete addresses may be
ambiguous, making post mails undeliverable. Because such
addresses do exist, when referring to locations in a computer
system, usually numeric location identifiers are used. Such
identifiers can be latitude and longitude values of points, a
hash value computed from latitude and longitude, or any
reference on a Cartesian coordinate system. However, as
soon as humans are involved interacting with computer
systems about location information, numeric identifiers do
no longer suffice. Humans prefer postal addresses mainly for
two reasons: First, common adaptation of postal addresses
makes them easy comprehensible. Similarly the used scale
when referring to time is comprehensible for every human,
although it is not based on the decimal system that is em-
ployed everywhere else. Second, if an address is not known
to a human being, a vague understanding of the location is
supported by the named entities of higher hierarchies. In the
worst case the only known address part of a given address
is the country. Even then, that data is directly derivable data
for a human, more then looking at a numeric value.

III. EVALUATION OF POSTAL ADDRESS PROCESSING
TOOLS

In this section the tools suitable for processing postal
address formats are analyzed with regards to their capability
for serving the use cases defined in the introduction. Table II
summarizes the outcome. As we will see, multidimensional
indices are only capable to look up postal addresses for given
coordinates. Patterns support parsing formatted addresses to
elementize the addresses parts. Also the reverse procedure
assembling an address from separate address parts is exe-
cutable using patterns. Gazetteers support all the use cases
that multidimensional indices and patterns support. That is

Table II
OVERVIEW OF TOOLS AND THE USE CASES THEY SERVE

use case Indices Patterns Gazetteers
(1) derive from coordinates X X
(2) parse structured X X
(3) parse unstructured X
(4) construct from parts X X
(5) validate X

due to gazetteers containing multidimensional indices and
patterns as internal components. In addition, gazetteers may
support parsing address parts from unstructured text. As
gazetteer contain only valid address parts, they implicitly
validate the addresses given.

A. Multidimensional Indices

The algorithmic task for efficiently resolving coordi-
nates on a surface into geographical objects covering the
coordinates has been solved in a variety of ways. R-
Trees [3], Quadtrees [4] and many specialized variants of
these [5][6][7][6] make resolving coordinates performant
and scalable. A necessary requirement for building such an
index is the knowledge about the geographical spread of
the postal address parts. With the spatial index at hand it is
a straight-forward task to resolve coordinates to the postal
addresses that address the same location. Multidimensional
indices are therefore a suitable tool for serving use case (1)
defined in the introduction.

Figure 1. Organizational diagram of a two dimensional Quadtree. Each
sector containing more than a specified amount of elements is split in four
equally sized sectors.

Figure 1 illustrates the internals of a two dimensional
Quadtree. Each square plane is split into four equally sized
sectors, as soon as the maximum bound for entries in a
single section is exceeded. Depending on the distribution of
the entries, some parts of the area are split to smaller chunks,
while others remain unsplit. The resulting rectangles are
referenced as leaves in an unbalanced tree. The tree grows
when on an insert into the Quadtree a sector needs to be
split. It then becomes a tree node with four new children.

Often Quadrees are modeled using points with associated
location data. The concept of points, e.g., coordinates with
zero extent, does not reflect the real world. Houses, blocks,
streets, etc. are all objects that have extent. Therefore some
Quadtrees are modeled using polygons instead of points.
Both points and polygons may be used as input parameters

157Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

to look up address data. Input coordinates may lie exactly
between indexed points, or on the border of two polygons.
Polygons may contain several indexed points or overlap with
multiple indexed polygons to the same part. To resolve these
ambiguities, Quadtrees can employ various strategies, i.e.,
always choose the indexed entity with the lowest coordinate
values.

B. Patterns

Schema patterns are by the simplest tool that can be
used to process postal addresses. As patterns are stateless,
applying patterns is parallelizable easy. Also there is no data
used in a pattern that needs to be kept up to date.

It seems that patterns are a good fit in fulfilling use
case (2) from Section I. If the addresses to be parsed
contain a delimiter splitting the address parts, simple regular
expressions suffice for that purpose. Table III illustrates a
Ukrainian sample address with annotated address parts taken
from the UPU address samples. The address contains natural
delimiters surrounding address parts: Either a whole address
part is on its own line, or, if multiple address parts are on
the same line, they are separated by commas. Similarly the
Japanese address in the fourth row of Table I is machine-
readable using simple regular expressions.

That does not apply for every postal address format. The
address formats for USA, France and Ireland on Table I use a
single space to separate address parts. As some address parts
contain spaces in their name, a simple regular expression
cannot recognize the exact range of every address part. To
approach this problem, Hidden Markov Models (HMM) [8]
can be trained to parse the address parts. Conceptually
HMMs are statistically learned patterns that pick the most
probable path through a finite state automaton to determine
the type of input tokens. It is common to use HMMs
for elementising address parts as streets names and house
numbers from single address lines [9][10].

Both regular expression and HMMs patterns are not
flexible enough to support parsing of all address formats.
Addresses in use contain errors and might have a required
delimiter missing. Also, as discussed, not all addresses
contain all address parts. Especially addresses of important
addressees might omit address parts required by a pattern.
Finally as multiple postal address formats are in use, it often
is not unambiguous which patter to apply on which address.
Therefore Patterns are only serving use case (2) well, if the
input addresses to be parsed are of a single known format.

Table III
UKRAINIAN SAMPLE ADDRESS WITH ANNOTATED ADDRESS PARTS

Table IV
JOINABLE AND NON-JOINABLE ADDRESS FORMATS

Patterns can also be used to process addresses in the
opposite direction. Use case (4) requires constructing of
valid post addresses from separate postal address parts.
Given that the schema of the source containing the address
parts is known, applying a pattern rule to assemble these is
a very easy step. However, that approach too is constrained
by the variety of the postal address formats. If the source
contains addresses that have to be assembled according
to different postal address formats, the information which
pattern to use on which address needs to be available as
well.

Figure 2 shows how an address is assembled using a
pattern. The separate address parts are retrieved from a
proprietary database schema. The pattern instructs in which
order to assemble the address parts and what separators to
use. Note that not all the address parts retrieved from the
database are used.

The UPU follows this approach with their product ”Inter-
national Postal Address Components and Templates” (UPU
S-42). It specifies rules for assembling the 35 identified
address parts. UPU S-42 covers 246 countries but it needs
to define regional postal address formats too. To estimate
the amount of schemes in UPU S-42, for a reduced address
part set of 17 address parts, address samples provided by the
UPU have been annotated. The resulting 450 address formats
have been joined as shown in Table IV: Two address formats
may be joined only if the address parts present in both
address sets are ordered equally. They are then combined
into a joined address format that contains all address parts
from both address formats, respecting the order of address
parts in both original formats. In Table IV the two combined
address formats may not be joined, because the orders of
street name and house number and administrative level one
and postcode are conflicting. The joinable address formats
have been joined so that the amount of address formats
was reduced to 41. The same effort has been undertaken

Figure 2. The address of the Nokia headquarters Berlin assembled by a
pattern from a proprietary data base schema.

158Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

by the UPU. UPU S-42 is a ready alternative for composing
valid postal addresses without the upfront analysis. However,
it requires the data to be as fine-grained as the scheme
used in UPU S-42 using the same 35 parts of a postal
address. For denormalized data bases, and if not all address
formats identified by UPU need to be constructed, a light-
weight approach using patterns suffices, to construct postal
addresses from their parts.

C. Gazetteers

As multidimensional indices discussed in Section III-A,
gazetteers index location parts entities. Unlike multidimen-
sional indices gazetteers index names of entities instead
of their position. This way gazetteers support querying
for address parts by name. Retrieved entities usually have
attached metadata describing relationships to other named
entities. This spanned structure may be browsed.

Gazetteers can be used for detecting address parts in free
text and in structured addresses. Those are use cases (2) and
(3) from Section I. For both use cases, as no clear boundaries
of a single address part is described. It is not obvious what
part of an address or a free text to use when querying a
gazetteer service. Some gazetteers may be able to retrieve all
address parts it finds in a query, solving the splitting problem
transparently to the user. Others require multiple queries
of n-grams. Splitting a unstructured text or an address
of an arbitrary format is complex in implementation and
execution. Therefore most gazetteers are not independent of
the input but define a fixed postal address format that they
support.

With all address parts being indexed in gazetteers, only
valid address parts are retrievable. Using the relationship
data – if present in the gazetteer – the parsed addresses
are implicitly validated. That serves use case (5) from the
introduction. Often the relationships of location entities are
represented via their numerical location and spread. E.g.,
a gazetteer could derive that New Jersey is a part of the
USA knowing the geographical spread of both entities. That
would be implemented using a multidimensional index as
discussed in Section III-A, enabling gazetteers serving use
case (1) as well.

Named location entities are the base units for gazetteers.
As entity names alone are ambiguous, gazetteers have to
qualify found entities using other address parts. Particu-
larly, to distinguish between equally named location entities,
gazetteers have to name all location entities enclosing the
equally named ones. This happens according to a schema
from which, in combination with a pattern, an address can
be constructed. Many gazetteers implement that feature on
their end, solving use case (4) from Section I.

A gazetteer protocol has been defined by the Open
Geospatial Consortium (OGC) [11]. The OGC Best Practices
Document defines a gazetteer as ”a database used to translate
between different representations of geospatial references,

such as place names and geographic coordinates” (Section
4, page 12). The OGC gazetteer does not define a specific
address format for processing, but defines a hierarchical
model of named location entities. These entities are associ-
ated to features, which are not necessarily spatial. This way
a gazetteer that complies with the OGC protocol supports
looking up location entities by name or coordinates. Queries
to the gazetteer are allowed to specify a filter on non-spatial
features, which reduce the result list. Optionally retrieving
location entities by a gazetteer specific ID is supported too.
The protocol allows browsing the relationship of entities
directly via links between them, or indirectly by fetching all
entities that are within a certain bounding box. A gazetteer
implementing the OGC protocol and filled with location
parts of addresses would support use cases (1) and (4) only if
a set of patterns matching the gazetteers internal schema was
provided. The gazetteer is incapable of detecting multiple
named entities in a query. It therefore requires the client to
slice the input according to the boundaries of address parts,
to support use cases (2) and (3). As any gazetteer, it does
fulfill use case (5) as only valid location address parts are
identified. Browsing the links between location parts allows
discovering contradicting addresses.

Another example of a gazetteer is the Google
Geocoder [12]. Unlike the multi-purpose protocol of
OGC, Google’s gazetteer focuses on translating addresses
into latitude and longitude coordinates and vice versa. For
that the gazetteer protocol accepts requests with addresses
only. No specific address format is required. As the OGC
gazetteer, Google’s gazetteer support filtering results by
specifying selected address parts as required. The address
parts route, locality, administrative area, postal code and
country are supported for filtering. Apparently Google’s
gazetteer internally defines the patterns required to construct
an address, as an assembled address is always part of each
result. Google’s gazetteer supports use cases (1), (2),
(4) and (5) as defined in the introduction. As the OGC
gazetteer, for detecting address parts in free text (use case
(3)) it remains to the client to slice the text into chunks that
contain single address parts.

Many other implementations of gazetteers exist. For

Figure 3. Gazetteer Data Flow. Depending on the request containing a
name or a coordinate, either the name index, or the multidimensional index
is queried. Addresses of retrieved entities are constructed through a pattern.

159Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

example, Densham et al. [13] describe a system that is
extending a gazetteer with capabilities to parse free text.
Clough et al. [14] have built and measured a system that
assigns coordinates to web documents.

Overall gazetteers are more complex than patterns or
multidimensional indices, as most gazetteers contain both
patterns and multidimensional indexes internally. That im-
plies that gazetteers have to maintain a list of patterns to
construct addresses according to various formats. Also as
multidimensional indices, the data on location entities needs
to be kept up to date. Finally indexing named entities is a
non-trivial task too. In sum, that makes gazetteers a tool that
is complex to manage, while it does support more use cases
simultaneously.

In Figure 3 a basic gazetteer set up is visualized. It
includes a text index for name queries, a multidimensional
index for coordinate queries and a pattern to assemble ad-
dress parts of results. The visualized gazetteer stores entities
with their address parts in both indices. To save space, other
gazetteer implementations might only store references in
their indices that point to a common data source. The entities
are stored in a schema that can be assembled to correct
addresses using patterns.

IV. CONCLUSION

The paper evaluated gazetteers, multidimensional indices
and patterns as tools for processing postal addresses. It
showed that there is no general pattern that is suitable to
support parsing or constructing addresses, because multiple
address formats need to be supported. The option to use
specialized patterns for individual address formats is not
available for all address sources, depending on the extent
of regions that are being covered. Multidimensional indices
resolve numeric location references as coordinate pairs into
location entities. These however still need to be assembled
to valid addresses. Also multidimensional indices need to be
kept up to date for resolving addresses accurately. Gazetteers
are the most versatile tool for processing postal addresses.
Depending on implementation and interface, gazetteers can
support parsing structured addresses and free text, construct-
ing and validating addresses and resolving addresses from
numerical references. To achieve that, gazetteers contain
patterns and multidimensional indices internally, in addition
to the text index for looking up named entities. Because
gazetteers are such a complex tool there are efforts joining
gazetteers with other address related tools to achieve better
performance.

There is a gap in complexity between gazetteers and
patterns. While gazetteers serve more use cases they also are
by magnitudes more complex compared to simple address
format patterns. One option to close this gap is to split
address patterns in logical units of multiple address parts.
These sub-patterns could be used in gazetteers that support
retrieving combined address parts if these belong together.

Another method to combine these tools are smart patterns
that rely on data to automatically determine how to assemble
a complete and correct address, depending on country and
region.

REFERENCES

[1] S. Srihari, “Recognition of handwritten and machine-printed
text for postal address interpretation,” Pattern recognition
letters, vol. 14, no. 4, pp. 291–302, 1993.

[2] “Universal Postal Union,” http://www.upu.int, Jun. 2012.

[3] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” vol. 14, no. 2, 1984.

[4] H. Samet, “The quadtree and related hierarchical data struc-
tures,” ACM Computing Surveys (CSUR), vol. 16, no. 2, pp.
187–260, 1984.

[5] R. Kothuri, S. Ravada, and D. Abugov, “Quadtree and R-
tree indexes in oracle spatial: a comparison using gis data,”
in Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 2002, pp. 546–
557.

[6] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The
R*-tree: an efficient and robust access method for points and
rectangles. ACM, 1990, vol. 19, no. 2.

[7] Y. Kim and J. Patel, “Performance comparison of the R*-
tree and the quadtree for knn and distance join queries,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 22, no. 7, pp. 1014–1027, 2010.

[8] L. Rabiner and B. Juang, “An introduction to hidden markov
models,” ASSP Magazine, IEEE, vol. 3, no. 1, pp. 4–16, 1986.

[9] A. Kornai, “An experimental hmm-based postal ocr system,”
in Acoustics, Speech, and Signal Processing, 1997. ICASSP-
97., 1997 IEEE International Conference on, vol. 4. IEEE,
1997, pp. 3177–3180.

[10] V. Borkar, K. Deshmukh, and S. Sarawagi, “Automatically
extracting structure from free text addresses,” IEEE Data
Engineering Bulletin, vol. 23, no. 4, pp. 27–32, 2000.

[11] J. Fitzke and R. Atkinson, “OGC best practices document:
Gazetteer service-application profile of the web feature ser-
vice implementation specification-0.9. 3,” Open Geospatial
Consortium, 2006.

[12] “The Google Geocoding API,”
https://developers.google.com/maps/documentation/geocoding,
Oct. 2012.

[13] I. Densham and J. Reid, “A geo-coding service encompassing
a geo-parsing tool and integrated digital gazetteer service,” in
Proceedings of the HLT-NAACL 2003 workshop on Analysis
of geographic references-Volume 1. Association for Com-
putational Linguistics, 2003, pp. 79–80.

[14] P. Clough, “Extracting metadata for spatially-aware informa-
tion retrieval on the internet,” in Proceedings of the 2005
workshop on Geographic information retrieval. ACM, 2005,
pp. 25–30.

160Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

