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Abstract - The paper contextualizes the traveling 

salesman problem applied to S-Route, a system 
developed based upon the ant colony approach and used 
by the Analysis and Research in Petroleum Analytical 
Chemistry Laboratory - UFMA in order to generate 
routes in the process of fuel collection. Some heuristic 
approaches (constructive and improvement), such as 
Nearest Neighbor, Clarke and Wright, Mole and 
Jameson, 2-Opt, 3-Opt and Opt-K, are conceptualized 
and compared to the Ant Colony. Comparisons between 
the heuristics, and in some cases the combination of the 
constructive and improvement occurred through the S-
TSP system. Like S-Route, the application was 
developed in a web environment and integrated with 
Google Maps API in order to facilitate visualization of 
the results from georeferenced data. Thus, the essay 
aims at identifying amongst the listed and/or combined 
heuristics, the best one regarding cost/benefit to be 
utilized by S-Route. 
 

Keywords-Traveling salesman problem; S-Route; Fuel Quality 

Monitoring; ANP. 

I. INTRODUCTION 

National Petroleum, Natural Gas and Biofuels Agency 
(ANP in Portuguese) is the Brazilian agency responsible for 
regulating, supervising and hiring all activities related to 
petroleum, natural gas and biofuels in Brazil [1]. In order to 
follow the general indicators of fuel quality traded in Brazil, 
ANP has the Liquid Fuels Quality Monitoring Program 
(PMQC in Portuguese), which is summarized in the 
following stages: Fuel Sample Collection (CAC in 
Portuguese); Sample Laboratory Analysis, Data Handling 
and Information Submission to ANP [1, 2]. 

In this context, the S-route system was developed in 
order to optimize part of CAC process. Having the principle 
of obtaining a path from a starting point going through all 
gas stations selected [2]. However, the systematic 
arrangement of this scenario can be associated with the 
graph theory and characterized by the Shortest Path 
Problem, precisely, the Travelling Salesman Problem(TSP) 
[3,4].  

The purpose of the TSP is to find the lowest total cost of 
Hamiltonian cycle [5]. However, the TSP is classified as a 
NP–Complete problem, in other words, the execution time 
grows exponentially in accordance with the number of 
points in the route [4, 5]. In this scenario, it is suggested the 

utilization of heuristic methods that optimize the 
relationship between time and cost in order to find a 
solution. 

TSP heuristic algorithms are an approach that do not 
offer the guarantee for the best solution, but seek to meet the 
standards through a good solution, which approximates the 
optimal solution and minimize time and cost execution [6]. 

S-Route system utilizes the ant colony heuristic method 
to elaborate routes [2]. Aiming to improve the performance 
of the S-Route system, this essay conducts a comparative 
study between the ant colony heuristic and other TSP 
heuristic algorithms: The nearest neighbor; Clarke and 
Wright (Saving); Mole and Jameson; Ant colony 
optimization; 2-Opt and 3-Opt e Lin and Kernighan (K-opt). 

II. S-ROUTE SYSTEM 

The S-Route System is a prototype of a web-based 
system that aims to automate part of the process of Fuel 
Sample Collection, the first phase of PMQC [2]. In State of 
Maranhão, the Federal University of Maranhão with its 
Analysis and Research in Petrol Analytical Chemistry 
Laboratory (LAPQAP / UFMA) is responsible by the 
PMQC– ANP in monitoring the fuel’s quality in State. 

The Maranhão State is divided in four regions by the 
LAPQAP called R1, R2, R3 and R4. This way, the 
laboratory has one week to collect the samples in each 
region [2]. 

The first week of the month is destined to the region R1 
(Saint Louis city), so, the initial task is to make 10% (ten 
percent) of the fuel station in the group of towns of R1. The 
same thing happens in the others regions, even though needs 
to be kept the second week to R2, the third one to R3 and 
the forth one to R4 [2]. 

Therefore, the first stage of the system is a list of 10% of 
active gas stations in the data bank and randomly (drawing). 
Next, the administrator visualizes the layout of the gas 
stations, using a maps API and then, requests the generation 
of a route from the listed gas stations. 

The first generated route takes into account the savings 
in time and distance between Federal University of 
Maranhão (starting point) and the drawn gas stations. Then, 
the path is displayed on a map, as well as the route 
description to be trafficked. 

S-route application was developed through PHP 
programming languages [7] and JavaScript [8]. The use of 
PHP language, for business rules and information 
management, doesn't present a single or absolute 
justification in the development, but yet for implementation 
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ease. Albeit the use of JavaScript language by the S-Route is 
not facultative, communication between maps API and 
application takes place via JavaScript and data structures in 
XML format. 

 

III. HEURISTICS 

The shortest path problem is originated in the purpose of 
obtaining the minimum route of an associated path using the 
graph theory [3, 4, 5]. In this case, a graph may represent a 
road network and geographical distance from one point to 
another or from an entire circuit. One of the trends of the 
shortest path problem is the Traveling Salesman Problem, 
which represents an optimization problem greatly studied by 
scholars from several areas, such as: logistics, genetics, 
production and others [9]. 

However, the resolution of Travelling Salesman 
Problem through exact methods or Brute Force algorithms, 
is not recommended, what is suggested is the utilization of 
polynomial complexity approximation algorithms that are 
called by Heuristic methods [10], which allow to obtain 
reasonable answers to the TSP. 

Heuristic methods for TSP, according to the literature, 
can be classified into two types: Circuit Construction 
Methods and Circuit Improvement Methods [11]. 

In the first case, the circuits are built progressively, in 
other words, the nodes are sequentially inserted in the 
circuit, under the insertion conditions defined in the 
algorithm [11]. In the second case, the Circuit Improvement 
Methods aim to improve the existing Hamiltonian circuit 
through other methods applied [11]. 

Hereinafter, the heuristics which were used in the essay 
development and which comprise both types of methods 
will be presented. 

A. Nearest Neighbor(NN) 

The nearest neighbor heuristic starts with an empty 
circuit at a starting point in order to seek "the closest" point 
that is out of the circuit. For each subsequent interaction, the 
heuristic searches “the closest” point for the last point 
inserted in the circuit [12]. 

In summary, the path is constructed as per the shortest 
distance between these points, in other words, a point is 
added to a route based upon proximity in relation to the last 
point inserted. This distance is verified in the matrix, where 
      is the distance between i and j. The metric applied to 

the NN approach can refer either on the spatial distance or 
temporal points. 

In short, the NN heuristic is simple to implement, 
besides achieving good results for short distances, although 
for long distances it is not so recommended. 

B. Clarke and Wright  

Clarke and Wright method (CW) is based upon the 
concept of "gain" that can be achieved by connecting two 
knots in succession on a script [13]. The heuristic works 
similar to the Nearest Neighbor, differentiated by the search 
for better savings and NN searches the smallest edge. 

The savings would be the cost of going and coming back 
to point 0 going through a and b without having to go 
through 0. Instead of going through a, getting back to 0, 
going to b, and coming back again to 0. 

In essence, the algorithm computes all the savings 
amongst all pairs of possible vertexes using formula 1: 

  
 
                                  (1) 

 
Sij represents the path savings of going and coming back 

to point 0 going through points i and j without having to 
return to 0 instead of going through i going back to 0, going 
to j e going back again to 0, as it is suggested by the initial 
routes that were previously created. Cij represents the cost 
of going from point i to j. 

After calculating all the graph savings, a table of savings 
is created, with i, j, and the savings value. The table lines 
are ordered up, from the largest to the smallest savings. 
Then, the path is assembled, by using the vertexes of the 
table, from the beginning to the end of the table. 

The advantage is that Clark and Wright algorithm 
computational complexity is O(n2), in other words, it is 
solved in polynomial time. The main contribution of this 
algorithm can be considered by the fact that it has paved the 
way to more powerful algorithms that emerged after this 
one, for example, the Mole and Jameson [14]. 

C. Mole and Jameson 

Mole and Jameson heuristic [15] is an evolution of 
Clarke and Wright savings algorithm. The main difference 
between the two heuristics is the comparisons between the 
nodes and internal vertexes of the partial path, and 
allowance of insertions inside this path. 

Mole and Jameson algorithm starts from the cost matrix 
that represents the route relationship, by selecting an initial 
vertex to build the path. After insertion of the first vertex 
into the route, the algorithm executes a loop that 
successively inserts the nodes in the path. 

The previous action is performed according to two 
criteria: proximity and savings. The proximity criterion 
selects the node that is closer to the current route, according 
to the two distances calculated by formula 2 [14]: 

 
                                          (2) 

 
where C represents the cost between one vertex to 

another, l is the tested vertex to be inserted, the index i 
represents the beginning of the route j means the end of the 
route. 

The savings Criterion selects the best place in the route 
to insert the chosen I vertex. This criterion follows the 
formula: 

 
                                            (3) 

 
The place that presents the largest savings σ will be 

selected to receive l. The parameters    and   allow 
changing the behavior of the algorithm in several ways [15]. 
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The literature indicates to follow the Gaskell criterion [16], 
where              , in which the following 
values             are advisable. The algorithm ends 
when there are no more vertexes to be inserted in the route. 

 

D. Ant Colony Optimization (ACO) 

Ant colony optimization algorithm (ACO) [17] is a 
constructive meta-heuristic based upon a real behavior of 
ants using adaptation, cooperation and parallelism 
techniques [18]. 

The main idea of this algorithm is the agents indirect 
communication based on routes trailed by pheromones that 
are left by ants [17,18] and choice of the best route using the 
probability. 

The ACO is based upon the probability of an ant k being 
in a point i to choose point j in an interaction t, following 
the formula below: 

 

    
     

 
 

 
        

 
      

 

         
 
      

 

          

              

            (4), 

 
where the variable α is the pheromone weighting       
   and β is the heuristic information weighting      
  .        is the pheromone present in the path between i 

and j, t being updated in every interaction. The value     

represents the ant's attractiveness at point i to visit point j, 
displayed in the following formula: 

 

       
 
   
             (5) 

 
The pheromone deposit is calculated in a pheromone 

matrix    , similar to the cost matrix, however the values of 
this matrix,    , are in constant variation.The utilization of 

the matrix   values occurs after the completion of each route 
built by ants. 

In the update, the pheromone is added to the path as 
below: 

 

    
   

 

  
                              

              

 

where Q is a project constant and    is the length of the 
circuit of the K-th ant. 

The pheromone is also decreased from the edges, 
simulating the evaporation through the following formula: 

 

    
             

         
                 (7) 

 
where ρ is the pheromone evaporation rate, defined in (0 <ρ 
≤ 1). 

In general terms, k ants are scattered by the nodes 
starting from the starting node i to j, where the choice of 

node j will have the highest probability according to formula 
4, and thus they carry on building their paths. When all of 
them complete their paths, the level of pheromone on the 
paths is updated following the formulas 6 and 7. 

Upon completion of the update, a new path search is 
performed until t interaction completion. The process ends 
with the end of the interactions or when all ants are on the 
same path. 

 

E. 2-Opt e 3-Opt Improvement  

The 2-Opt and 3-Opt heuristics are the most used and 
known path improvement methods in the literature. They 
were proposed respectively by Croes [19] and Lin [20], 
inaugurating the improvement of k-opt type. These methods 
work basically by removing k arcs from a script and 
replacing by other k arcs, with the purpose of reducing the 
total distance traveled. 

To Laporte [21], the higher k value, the better method 
accuracy, but the higher computational effort. In this 
context, it highlights the preference of working with two or 
three arches, therefore, the use of 2-opt and 3-opt heuristics. 

The 2-opt method works as follows: from a Hamiltonian 
path, the first step is to remove two edges from n edges, 
resulting in a pair of arcs. Then, the arcs are reconnected in 
an inverted way, the beginning of an arc is connected to the 
beginning of another arc and the end with the other arc's 
end, where the process repeats to the other arcs. 

In 3-opt case three arcs are considered instead of two in 
order to assess the alterations in the connections between the 
nodes, which results in seven possible combinations. 
 

F. Lin and Kernighan Improvement (LK) 

The algorithm proposed by Lin and Kernighan [22] is 
based upon type k-opt improvements, differentiating itself 
by the k value variation during the improvement execution. 
In general terms, the algorithm determines which k to be 
utilized at each interaction without the need to indicate the k 
value before starting the execution. 

Basically, the LK algorithm works as follows: The 
algorithm searches, in increasing values of k, which 
variation results in the shortest route and in each interaction 
the algorithm performs arc switching. 

After a number of r switching, series of tests are 
performed in order to check if r +1 must be considered until 
some stopping condition is satisfied. 

Lin and Kernighan [22] defined rules to edge searching 
and switching, where only sequential switching is permitted, 
the search for an edge cannot exceed  more than 5 nearest 
neighbors of the current point, and an edge previously 
excluded cannot be added to the route as well as an edge 
previously added cannot be excluded. 

 
Starting from the Lin and Kernighan's original idea, 

other researchers have developed several modifications and 
improvements, always following the K variation line in 
algorithm execution. One of them was proposed by 
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researchers Nguyen, Yoshihara, Yamamori and Yasunaga 
(LK-NYYY), in the algorithm called LK-NYYY [23]. 

LK-NYYY algorithm uses a sequence of 5-opt starting 
movements followed by 3-opt basic movements. By 
performing this sequence of movements, it’s intended to 
balance the quality of solutions obtained and computational 
time. 

IV. S-TSP IMPLEMENTATION 

In order to find the most suitable heuristics to S-Route, it 
was necessary to implement each of the ones described 
previously. The S-TSP was responsible for embodying all 
heuristics equalizing all input conditions, facilitating the 
visualization of the results and using the same S-Route 
technologies [2]. 

The matching system allows the user to select the 
amount of gas stations that will be used. Then the next step 
consists in selecting one of the heuristics, Figure 1 ilustrates 
the application home screen. 

 

 
Figure 1.  S-TSP. 

The first text box represents the distance used to calculate 
the route, in other words, the sum of sections, in case of 
present costs in the cost matrix. The second text box is the 
heuristic execution time expressed in seconds. 

 
Like in S-Route [2], the coordinates are transferred from 

the database to an XML file and then the JavaScript 
interacts with the data file. In the XML file there's the 
identification of each element and related latitude and 
longitude coordinates. 

 
The class responsible for managing all heuristics, on 

equal terms, is denominated SuperMap. In this class the gas 

station sorting operation takes place in a vector in order to 
visualize the route via Google Maps API. 

 
In order to perform the matching of algorithm 

performance the following heuristics were implemented in 
JavaScripts: 

 Nearest Neighbor; 

 Clark e Wright (Saving); 

 Mole e Jameson; 

 Ant Colony Optmization 

 2-Opt e 3-Opt; 

 Lin e Kernighan(K-opt). 
For results validation purposes the Brute force algorithm 

was also developed. 
Each algorithm is represented by a SuperMap class 

method, where each method has the same parameters, the 
input criterion is the cost matrix, and the output is the route 
array. With these methods approach it is possible to use 
constructive heuristics alongside with improvement 
heuristics. 

Some important descriptions regarding the 
implementations are listed below: 

 Brute Force algorithm is implemented in a 
recursive performance in order to test all possible 
combinations of routes and verify which one is the 
shortest; 

 Lin and Kernighan algorithm is implemented in 
Nguyen, Yoshihara, Yamamori and Yasunaga's 
technique. However, the algorithm has gone 
through some modifications in the initial 
movement sequence from 5-Opt to 3-opt and basic 
movements from 3-Opt to 2-opt; 

 In Ant Colony algorithm implementation, ACO 
variables used the following values, all of them 
recommended in the literature [16]: α = 1.0, β = 
1.0, ρ = 0.1, Number of ants = 10 and = Number of 
interactions = 10; 

 All the other heuristics followed chapter III 
descriptions. 

V. COMPARATIVE AND RESULTS 

In order to find the best heuristic comparisons were 
carried out in two stages. At first the best constructive and 
improvement heuristics are verified independently. In the 
second stage, the best constructive algorithms as well as 
improvement algorithms are combined and compared. 

A. First Matching Stage. 

The first testing stage aims to find the best improvement 
and construction heuristic. At this stage, the heuristics are 
compared to each other by utilizing the total distance as per 
table 1. 
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TABLE I.  CONSTRUCTIVE HEURISTICS 

 10 

stations 

15 

stations 

20 

stations 

25 

stations 

30 

stations 

TSP 33.463 45.609 50.574 72.107 62.989 

Clark and 

Wright 

36.235 45.589 54.532 63.379 66.306 

 

M&J 34.244 43.576 43.878 51.288 54.514 

ACO 32.637 42.384 43.726 52.536 55.394 

BruteForce 32.637 42.384 - - - 

 
Comparing Table 1, the best results based upon distance 

are found by the Ant Colony (ACO) and with similar 
performance to it, the Mole & Jameson (M&J). The 
execution time was disregarded due to the fact that all the 
heuristics performed below 1 second. 

In Table 2 the improvement heuristic performance is 
verified. For all improvement algorithms, the test uses as 
input the same array of the ordered gas stations. 

TABLE II.  IMPROVEMENT HEURISTICS 

 10 

stations 

15 

stations 

20 

stations 

25 

stations 

30 

stations 

2-OPT 33.051 49.839 52.867 65.011 71.742 

3-OPT 33.051 48.319 51.347 64.598 68.036 

Lin and 

Kernighan 

32.637 45.39 50.416 58.912 61.698 

 

BruteForce 32.637 42.384 - - - 

 
A performance better than Lin-Kernighan in 2-OPT and 

3-OPT is noticed. Out of the OPT heuristics, the one that 
had the best performance was 3-OPT, which is justified by 
the greater amount of switching cycles. 

However, Lin and Kernighan has a higher cost when 
compared to 2-OPT and 3-OPT, as you can see in Table 3. 

TABLE III.  EXECUTION TIME OF IMPROVEMENT HEURISTICS  

Time/sec 2-OPT 3-OPT Lin and 

Kernighan 

10 stations 0.00199 0.00399 0.02399 

15 stations 0.00299 0.01900 0.06599 

20 stations 0.00600 0.02599 0.32200 

25 stations 0.02000 0.07290 1.45299 

30 stations 0.01100 0.10899 412.800 

 
For the second matching stage the chosen improvement 

heuristics, picked from Table 2 and Table 3 results, were 
Lin and Kernighan and 3-OPT. 

B. Second Matching Stage. 

The second testing stage aims to find the best heuristic 
by verifying simple heuristics as well as combined 
heuristics. The combined heuristics are the construction 
ones which have their results improved by the improvement 
heuristics. 

The heuristic defined in the first stage were tested with a 
larger amount of gas stations based upon distance as shown 
in table 4. 

 

TABLE IV.  HEURISTIC MATCHING 

Stations M&J 
M&J  + 

3OPT 

M&J  + 

LK 
ACO 

ACO  + 

3OPT 

ACO  

+ LK 

20 43.878 42.930 42.686 43.726 42.930 42.686 

30 54.514 53.565 52.725 55.394 54.927 53.640 

40 74.352 71.417 64.667 68.300 67.595 67.595 

50 81.876 77.614 68.693 70.560 70.291 70.139 

60 104.121 100.168 88.927 84.339 83.666 83.490 

80 155.866 144.459 123.951 111.439 110.933 110.489 

100 175.055 163.648 134.412 122.840 121.074 116.751 

 
M&J obtained better performance over ACO regarding 

the preparation of route for 25 gas stations as shown in 
Table 1 and 30 gas stations as shown in table 4. ACO 
succeeded in constructing the route to the quantity of 10, 15, 
20, 40, 50, 60, 80 and 100 gas stations (see Table 1 and 
Table 4). 

With the combination of 3-OPT improvement heuristics 
and constructive heuristics (M&J and ACO), ACO 
continues to obtain better results over M&J except when the 
amount is equal to 30 gas stations. 

By combining L&K to M&J and ACO heuristics, 
respectively, M&J showed better results (30, 40 and 50) 
than ACO except when the amount of gas stations was equal 
to 60 gas stations. 

Table 5 shows the execution time of the heuristics as 
follows: 

TABLE V.  EXECUTION TIME(SEC) OF HEURISTICS  

Stations M&J 
M&J  + 

3OPT 

M&J  + 

LK 
ACO 

ACO  + 

3OPT 

ACO  

+ LK 

20 
0.004 0.031 0.3329 0.025 0.0569 0.3209 

30 
0.023 0.027 41.789 0.032 0.069 4.210 

40 
0.037 0.207 15.700 0.085 0.230 23.200 

50 
0.070 0.500 101.500 0.052 0.480 102.290 

60 
0.088 0.976 300.430 0.115 1.006 301.530 

80 
0.223 2.790 1623 0.159 2.782 1731 

100 
0.364 7.935 7603 0.277 7.506 7570 

 
In general, M&J has a lower computational cost ACO 

both in its original state as combined with the improvement 
heuristics. Albeit, the results do not show significant 
differences when they are compared to each other. 

 
In this context, the combinations of L&K heuristics and 

constructive heuristics presented the best results in distance 
criterion albeit the execution time is high when compared to 
3-OPT. 

VI. CONCLUSION 

The research addressed the traveling salesman problem 
applied to the S-Route system [2]. The objective was to 
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compare the heuristics used originally by the S-Route, to 
ACO to other relevant heuristics in the literature. 

Thus, the essay selected the following constructive 
heuristics: Nearest Neighbor, Clark and Wright (Saving); 
Mole and Jameson. For heuristic improvement, the research 
addressed: 2-OPT and 3-OPT; Lin and Kernighan (K-OPT). 

The combination amongst L&K M&J and ACO 
heuristics, respectively, achieved the best results related to 
the distance. 

However, the computational cost of L&K combinations 
was very high when compared to 3-OPT combinations, 
which somehow do not favor the utilization of L&K. In 
turn, the combination between 3-OPT + ACO got closer to 
the results of L&K + M&J and L&K + ACO, which did not 
occur to 3-OPT + M&J. 

In this context, the essay suggests, for S-Route 
implementation purpose, the combination between ACO 3-
OPT heuristic considering the cost benefit between distance 
and execution time. 
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