
A Comparison Between Optimization Heuristics of the Best Path Problem Applied

to S-Route

Adriano dos Santos, Alex Barradas, Sofiani Labidi, Nilson Costa

Federal University of Maranhão

Sao Luiz, Brazil

{adriano.asr, barradas.alex, soflabidi, nilson2001}@gmail.com

Abstract - The paper contextualizes the traveling

salesman problem applied to S-Route, a system
developed based upon the ant colony approach and used
by the Analysis and Research in Petroleum Analytical
Chemistry Laboratory - UFMA in order to generate
routes in the process of fuel collection. Some heuristic
approaches (constructive and improvement), such as
Nearest Neighbor, Clarke and Wright, Mole and
Jameson, 2-Opt, 3-Opt and Opt-K, are conceptualized
and compared to the Ant Colony. Comparisons between
the heuristics, and in some cases the combination of the
constructive and improvement occurred through the S-
TSP system. Like S-Route, the application was
developed in a web environment and integrated with
Google Maps API in order to facilitate visualization of
the results from georeferenced data. Thus, the essay
aims at identifying amongst the listed and/or combined
heuristics, the best one regarding cost/benefit to be
utilized by S-Route.

Keywords-Traveling salesman problem; S-Route; Fuel Quality

Monitoring; ANP.

I. INTRODUCTION

National Petroleum, Natural Gas and Biofuels Agency
(ANP in Portuguese) is the Brazilian agency responsible for
regulating, supervising and hiring all activities related to
petroleum, natural gas and biofuels in Brazil [1]. In order to
follow the general indicators of fuel quality traded in Brazil,
ANP has the Liquid Fuels Quality Monitoring Program
(PMQC in Portuguese), which is summarized in the
following stages: Fuel Sample Collection (CAC in
Portuguese); Sample Laboratory Analysis, Data Handling
and Information Submission to ANP [1, 2].

In this context, the S-route system was developed in
order to optimize part of CAC process. Having the principle
of obtaining a path from a starting point going through all
gas stations selected [2]. However, the systematic
arrangement of this scenario can be associated with the
graph theory and characterized by the Shortest Path
Problem, precisely, the Travelling Salesman Problem(TSP)
[3,4].

The purpose of the TSP is to find the lowest total cost of
Hamiltonian cycle [5]. However, the TSP is classified as a
NP–Complete problem, in other words, the execution time
grows exponentially in accordance with the number of
points in the route [4, 5]. In this scenario, it is suggested the

utilization of heuristic methods that optimize the
relationship between time and cost in order to find a
solution.

TSP heuristic algorithms are an approach that do not
offer the guarantee for the best solution, but seek to meet the
standards through a good solution, which approximates the
optimal solution and minimize time and cost execution [6].

S-Route system utilizes the ant colony heuristic method
to elaborate routes [2]. Aiming to improve the performance
of the S-Route system, this essay conducts a comparative
study between the ant colony heuristic and other TSP
heuristic algorithms: The nearest neighbor; Clarke and
Wright (Saving); Mole and Jameson; Ant colony
optimization; 2-Opt and 3-Opt e Lin and Kernighan (K-opt).

II. S-ROUTE SYSTEM

The S-Route System is a prototype of a web-based
system that aims to automate part of the process of Fuel
Sample Collection, the first phase of PMQC [2]. In State of
Maranhão, the Federal University of Maranhão with its
Analysis and Research in Petrol Analytical Chemistry
Laboratory (LAPQAP / UFMA) is responsible by the
PMQC– ANP in monitoring the fuel’s quality in State.

The Maranhão State is divided in four regions by the
LAPQAP called R1, R2, R3 and R4. This way, the
laboratory has one week to collect the samples in each
region [2].

The first week of the month is destined to the region R1
(Saint Louis city), so, the initial task is to make 10% (ten
percent) of the fuel station in the group of towns of R1. The
same thing happens in the others regions, even though needs
to be kept the second week to R2, the third one to R3 and
the forth one to R4 [2].

Therefore, the first stage of the system is a list of 10% of
active gas stations in the data bank and randomly (drawing).
Next, the administrator visualizes the layout of the gas
stations, using a maps API and then, requests the generation
of a route from the listed gas stations.

The first generated route takes into account the savings
in time and distance between Federal University of
Maranhão (starting point) and the drawn gas stations. Then,
the path is displayed on a map, as well as the route
description to be trafficked.

S-route application was developed through PHP
programming languages [7] and JavaScript [8]. The use of
PHP language, for business rules and information
management, doesn't present a single or absolute
justification in the development, but yet for implementation

172Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

ease. Albeit the use of JavaScript language by the S-Route is
not facultative, communication between maps API and
application takes place via JavaScript and data structures in
XML format.

III. HEURISTICS

The shortest path problem is originated in the purpose of
obtaining the minimum route of an associated path using the
graph theory [3, 4, 5]. In this case, a graph may represent a
road network and geographical distance from one point to
another or from an entire circuit. One of the trends of the
shortest path problem is the Traveling Salesman Problem,
which represents an optimization problem greatly studied by
scholars from several areas, such as: logistics, genetics,
production and others [9].

However, the resolution of Travelling Salesman
Problem through exact methods or Brute Force algorithms,
is not recommended, what is suggested is the utilization of
polynomial complexity approximation algorithms that are
called by Heuristic methods [10], which allow to obtain
reasonable answers to the TSP.

Heuristic methods for TSP, according to the literature,
can be classified into two types: Circuit Construction
Methods and Circuit Improvement Methods [11].

In the first case, the circuits are built progressively, in
other words, the nodes are sequentially inserted in the
circuit, under the insertion conditions defined in the
algorithm [11]. In the second case, the Circuit Improvement
Methods aim to improve the existing Hamiltonian circuit
through other methods applied [11].

Hereinafter, the heuristics which were used in the essay
development and which comprise both types of methods
will be presented.

A. Nearest Neighbor(NN)

The nearest neighbor heuristic starts with an empty
circuit at a starting point in order to seek "the closest" point
that is out of the circuit. For each subsequent interaction, the
heuristic searches “the closest” point for the last point
inserted in the circuit [12].

In summary, the path is constructed as per the shortest
distance between these points, in other words, a point is
added to a route based upon proximity in relation to the last
point inserted. This distance is verified in the matrix, where
 is the distance between i and j. The metric applied to

the NN approach can refer either on the spatial distance or
temporal points.

In short, the NN heuristic is simple to implement,
besides achieving good results for short distances, although
for long distances it is not so recommended.

B. Clarke and Wright

Clarke and Wright method (CW) is based upon the
concept of "gain" that can be achieved by connecting two
knots in succession on a script [13]. The heuristic works
similar to the Nearest Neighbor, differentiated by the search
for better savings and NN searches the smallest edge.

The savings would be the cost of going and coming back
to point 0 going through a and b without having to go
through 0. Instead of going through a, getting back to 0,
going to b, and coming back again to 0.

In essence, the algorithm computes all the savings
amongst all pairs of possible vertexes using formula 1:

 (1)

Sij represents the path savings of going and coming back

to point 0 going through points i and j without having to
return to 0 instead of going through i going back to 0, going
to j e going back again to 0, as it is suggested by the initial
routes that were previously created. Cij represents the cost
of going from point i to j.

After calculating all the graph savings, a table of savings
is created, with i, j, and the savings value. The table lines
are ordered up, from the largest to the smallest savings.
Then, the path is assembled, by using the vertexes of the
table, from the beginning to the end of the table.

The advantage is that Clark and Wright algorithm
computational complexity is O(n2), in other words, it is
solved in polynomial time. The main contribution of this
algorithm can be considered by the fact that it has paved the
way to more powerful algorithms that emerged after this
one, for example, the Mole and Jameson [14].

C. Mole and Jameson

Mole and Jameson heuristic [15] is an evolution of
Clarke and Wright savings algorithm. The main difference
between the two heuristics is the comparisons between the
nodes and internal vertexes of the partial path, and
allowance of insertions inside this path.

Mole and Jameson algorithm starts from the cost matrix
that represents the route relationship, by selecting an initial
vertex to build the path. After insertion of the first vertex
into the route, the algorithm executes a loop that
successively inserts the nodes in the path.

The previous action is performed according to two
criteria: proximity and savings. The proximity criterion
selects the node that is closer to the current route, according
to the two distances calculated by formula 2 [14]:

 (2)

where C represents the cost between one vertex to

another, l is the tested vertex to be inserted, the index i
represents the beginning of the route j means the end of the
route.

The savings Criterion selects the best place in the route
to insert the chosen I vertex. This criterion follows the
formula:

 (3)

The place that presents the largest savings σ will be

selected to receive l. The parameters and allow
changing the behavior of the algorithm in several ways [15].

173Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

The literature indicates to follow the Gaskell criterion [16],
where , in which the following
values are advisable. The algorithm ends
when there are no more vertexes to be inserted in the route.

D. Ant Colony Optimization (ACO)

Ant colony optimization algorithm (ACO) [17] is a
constructive meta-heuristic based upon a real behavior of
ants using adaptation, cooperation and parallelism
techniques [18].

The main idea of this algorithm is the agents indirect
communication based on routes trailed by pheromones that
are left by ants [17,18] and choice of the best route using the
probability.

The ACO is based upon the probability of an ant k being
in a point i to choose point j in an interaction t, following
the formula below:

 (4),

where the variable α is the pheromone weighting
 and β is the heuristic information weighting
 . is the pheromone present in the path between i

and j, t being updated in every interaction. The value

represents the ant's attractiveness at point i to visit point j,
displayed in the following formula:

 (5)

The pheromone deposit is calculated in a pheromone

matrix , similar to the cost matrix, however the values of
this matrix, , are in constant variation.The utilization of

the matrix values occurs after the completion of each route
built by ants.

In the update, the pheromone is added to the path as
below:

where Q is a project constant and is the length of the
circuit of the K-th ant.

The pheromone is also decreased from the edges,
simulating the evaporation through the following formula:

 (7)

where ρ is the pheromone evaporation rate, defined in (0 <ρ
≤ 1).

In general terms, k ants are scattered by the nodes
starting from the starting node i to j, where the choice of

node j will have the highest probability according to formula
4, and thus they carry on building their paths. When all of
them complete their paths, the level of pheromone on the
paths is updated following the formulas 6 and 7.

Upon completion of the update, a new path search is
performed until t interaction completion. The process ends
with the end of the interactions or when all ants are on the
same path.

E. 2-Opt e 3-Opt Improvement

The 2-Opt and 3-Opt heuristics are the most used and
known path improvement methods in the literature. They
were proposed respectively by Croes [19] and Lin [20],
inaugurating the improvement of k-opt type. These methods
work basically by removing k arcs from a script and
replacing by other k arcs, with the purpose of reducing the
total distance traveled.

To Laporte [21], the higher k value, the better method
accuracy, but the higher computational effort. In this
context, it highlights the preference of working with two or
three arches, therefore, the use of 2-opt and 3-opt heuristics.

The 2-opt method works as follows: from a Hamiltonian
path, the first step is to remove two edges from n edges,
resulting in a pair of arcs. Then, the arcs are reconnected in
an inverted way, the beginning of an arc is connected to the
beginning of another arc and the end with the other arc's
end, where the process repeats to the other arcs.

In 3-opt case three arcs are considered instead of two in
order to assess the alterations in the connections between the
nodes, which results in seven possible combinations.

F. Lin and Kernighan Improvement (LK)

The algorithm proposed by Lin and Kernighan [22] is
based upon type k-opt improvements, differentiating itself
by the k value variation during the improvement execution.
In general terms, the algorithm determines which k to be
utilized at each interaction without the need to indicate the k
value before starting the execution.

Basically, the LK algorithm works as follows: The
algorithm searches, in increasing values of k, which
variation results in the shortest route and in each interaction
the algorithm performs arc switching.

After a number of r switching, series of tests are
performed in order to check if r +1 must be considered until
some stopping condition is satisfied.

Lin and Kernighan [22] defined rules to edge searching
and switching, where only sequential switching is permitted,
the search for an edge cannot exceed more than 5 nearest
neighbors of the current point, and an edge previously
excluded cannot be added to the route as well as an edge
previously added cannot be excluded.

Starting from the Lin and Kernighan's original idea,

other researchers have developed several modifications and
improvements, always following the K variation line in
algorithm execution. One of them was proposed by

174Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

researchers Nguyen, Yoshihara, Yamamori and Yasunaga
(LK-NYYY), in the algorithm called LK-NYYY [23].

LK-NYYY algorithm uses a sequence of 5-opt starting
movements followed by 3-opt basic movements. By
performing this sequence of movements, it’s intended to
balance the quality of solutions obtained and computational
time.

IV. S-TSP IMPLEMENTATION

In order to find the most suitable heuristics to S-Route, it
was necessary to implement each of the ones described
previously. The S-TSP was responsible for embodying all
heuristics equalizing all input conditions, facilitating the
visualization of the results and using the same S-Route
technologies [2].

The matching system allows the user to select the
amount of gas stations that will be used. Then the next step
consists in selecting one of the heuristics, Figure 1 ilustrates
the application home screen.

Figure 1. S-TSP.

The first text box represents the distance used to calculate
the route, in other words, the sum of sections, in case of
present costs in the cost matrix. The second text box is the
heuristic execution time expressed in seconds.

Like in S-Route [2], the coordinates are transferred from

the database to an XML file and then the JavaScript
interacts with the data file. In the XML file there's the
identification of each element and related latitude and
longitude coordinates.

The class responsible for managing all heuristics, on

equal terms, is denominated SuperMap. In this class the gas

station sorting operation takes place in a vector in order to
visualize the route via Google Maps API.

In order to perform the matching of algorithm

performance the following heuristics were implemented in
JavaScripts:

 Nearest Neighbor;

 Clark e Wright (Saving);

 Mole e Jameson;

 Ant Colony Optmization

 2-Opt e 3-Opt;

 Lin e Kernighan(K-opt).
For results validation purposes the Brute force algorithm

was also developed.
Each algorithm is represented by a SuperMap class

method, where each method has the same parameters, the
input criterion is the cost matrix, and the output is the route
array. With these methods approach it is possible to use
constructive heuristics alongside with improvement
heuristics.

Some important descriptions regarding the
implementations are listed below:

 Brute Force algorithm is implemented in a
recursive performance in order to test all possible
combinations of routes and verify which one is the
shortest;

 Lin and Kernighan algorithm is implemented in
Nguyen, Yoshihara, Yamamori and Yasunaga's
technique. However, the algorithm has gone
through some modifications in the initial
movement sequence from 5-Opt to 3-opt and basic
movements from 3-Opt to 2-opt;

 In Ant Colony algorithm implementation, ACO
variables used the following values, all of them
recommended in the literature [16]: α = 1.0, β =
1.0, ρ = 0.1, Number of ants = 10 and = Number of
interactions = 10;

 All the other heuristics followed chapter III
descriptions.

V. COMPARATIVE AND RESULTS

In order to find the best heuristic comparisons were
carried out in two stages. At first the best constructive and
improvement heuristics are verified independently. In the
second stage, the best constructive algorithms as well as
improvement algorithms are combined and compared.

A. First Matching Stage.

The first testing stage aims to find the best improvement
and construction heuristic. At this stage, the heuristics are
compared to each other by utilizing the total distance as per
table 1.

175Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

TABLE I. CONSTRUCTIVE HEURISTICS

 10

stations

15

stations

20

stations

25

stations

30

stations

TSP 33.463 45.609 50.574 72.107 62.989

Clark and

Wright

36.235 45.589 54.532 63.379 66.306

M&J 34.244 43.576 43.878 51.288 54.514

ACO 32.637 42.384 43.726 52.536 55.394

BruteForce 32.637 42.384 - - -

Comparing Table 1, the best results based upon distance

are found by the Ant Colony (ACO) and with similar
performance to it, the Mole & Jameson (M&J). The
execution time was disregarded due to the fact that all the
heuristics performed below 1 second.

In Table 2 the improvement heuristic performance is
verified. For all improvement algorithms, the test uses as
input the same array of the ordered gas stations.

TABLE II. IMPROVEMENT HEURISTICS

 10

stations

15

stations

20

stations

25

stations

30

stations

2-OPT 33.051 49.839 52.867 65.011 71.742

3-OPT 33.051 48.319 51.347 64.598 68.036

Lin and

Kernighan

32.637 45.39 50.416 58.912 61.698

BruteForce 32.637 42.384 - - -

A performance better than Lin-Kernighan in 2-OPT and

3-OPT is noticed. Out of the OPT heuristics, the one that
had the best performance was 3-OPT, which is justified by
the greater amount of switching cycles.

However, Lin and Kernighan has a higher cost when
compared to 2-OPT and 3-OPT, as you can see in Table 3.

TABLE III. EXECUTION TIME OF IMPROVEMENT HEURISTICS

Time/sec 2-OPT 3-OPT Lin and

Kernighan

10 stations 0.00199 0.00399 0.02399

15 stations 0.00299 0.01900 0.06599

20 stations 0.00600 0.02599 0.32200

25 stations 0.02000 0.07290 1.45299

30 stations 0.01100 0.10899 412.800

For the second matching stage the chosen improvement

heuristics, picked from Table 2 and Table 3 results, were
Lin and Kernighan and 3-OPT.

B. Second Matching Stage.

The second testing stage aims to find the best heuristic
by verifying simple heuristics as well as combined
heuristics. The combined heuristics are the construction
ones which have their results improved by the improvement
heuristics.

The heuristic defined in the first stage were tested with a
larger amount of gas stations based upon distance as shown
in table 4.

TABLE IV. HEURISTIC MATCHING

Stations M&J
M&J +

3OPT

M&J +

LK
ACO

ACO +

3OPT

ACO

+ LK

20 43.878 42.930 42.686 43.726 42.930 42.686

30 54.514 53.565 52.725 55.394 54.927 53.640

40 74.352 71.417 64.667 68.300 67.595 67.595

50 81.876 77.614 68.693 70.560 70.291 70.139

60 104.121 100.168 88.927 84.339 83.666 83.490

80 155.866 144.459 123.951 111.439 110.933 110.489

100 175.055 163.648 134.412 122.840 121.074 116.751

M&J obtained better performance over ACO regarding

the preparation of route for 25 gas stations as shown in
Table 1 and 30 gas stations as shown in table 4. ACO
succeeded in constructing the route to the quantity of 10, 15,
20, 40, 50, 60, 80 and 100 gas stations (see Table 1 and
Table 4).

With the combination of 3-OPT improvement heuristics
and constructive heuristics (M&J and ACO), ACO
continues to obtain better results over M&J except when the
amount is equal to 30 gas stations.

By combining L&K to M&J and ACO heuristics,
respectively, M&J showed better results (30, 40 and 50)
than ACO except when the amount of gas stations was equal
to 60 gas stations.

Table 5 shows the execution time of the heuristics as
follows:

TABLE V. EXECUTION TIME(SEC) OF HEURISTICS

Stations M&J
M&J +

3OPT

M&J +

LK
ACO

ACO +

3OPT

ACO

+ LK

20
0.004 0.031 0.3329 0.025 0.0569 0.3209

30
0.023 0.027 41.789 0.032 0.069 4.210

40
0.037 0.207 15.700 0.085 0.230 23.200

50
0.070 0.500 101.500 0.052 0.480 102.290

60
0.088 0.976 300.430 0.115 1.006 301.530

80
0.223 2.790 1623 0.159 2.782 1731

100
0.364 7.935 7603 0.277 7.506 7570

In general, M&J has a lower computational cost ACO

both in its original state as combined with the improvement
heuristics. Albeit, the results do not show significant
differences when they are compared to each other.

In this context, the combinations of L&K heuristics and

constructive heuristics presented the best results in distance
criterion albeit the execution time is high when compared to
3-OPT.

VI. CONCLUSION

The research addressed the traveling salesman problem
applied to the S-Route system [2]. The objective was to

176Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

compare the heuristics used originally by the S-Route, to
ACO to other relevant heuristics in the literature.

Thus, the essay selected the following constructive
heuristics: Nearest Neighbor, Clark and Wright (Saving);
Mole and Jameson. For heuristic improvement, the research
addressed: 2-OPT and 3-OPT; Lin and Kernighan (K-OPT).

The combination amongst L&K M&J and ACO
heuristics, respectively, achieved the best results related to
the distance.

However, the computational cost of L&K combinations
was very high when compared to 3-OPT combinations,
which somehow do not favor the utilization of L&K. In
turn, the combination between 3-OPT + ACO got closer to
the results of L&K + M&J and L&K + ACO, which did not
occur to 3-OPT + M&J.

In this context, the essay suggests, for S-Route
implementation purpose, the combination between ACO 3-
OPT heuristic considering the cost benefit between distance
and execution time.

ACKNOWLEDGMENT

Thank you very much to everyone who helped directly
and indirectly and allowed the development of this research.
Thanks in particular to PRH39-ANP and PPGEE-UFMA
programs, and to LSI, LAPQAP and LPQA laboratories.

REFERENCES

[1] ANP, “Programa de Monitoramento”, Agência Nacional do Petróleo,
Gás Natural e Biocombustíveis, 2011. Accessed september 26, 2011.
Available at http://www.anp.gov.br/?pg=33970

[2] A. Barradas, A .Santos, S. Labidi, and N. Costa, “A Heuristic
Approach Based on the Ant Colony Optimization for the Routes
Elaboration on the Fuel Collection for the Brazilian Petrolium
Agency” IARIA – GEOProcessing 2011, pp. 69-74, ISBN: 978-1-
61208-118-2.

[3] N. Aras, B. J. Oommen, and I. K. Altinel, “The Kohonen network
incorporating explicit statistics and its application to the traveling
salesman problem”. Neural Networks, 12rd ed, vol. 9, 1999, pp.
1273–1284.

[4] K. Helsgaun, “An effective implementation of the Lin-Kernigham
Traveling Salesman Heuristic”, European Journal of Operational
Research, vol. 126, 2000, pp.106-130.

[5] C. H. Papadimitriou, “The Euclidean travelling salesman problem is
NP-complete”. Theoretical Computer Science, 4, 1978, pp.237–244.

[6] P. H. Siqueira, M. T. A. Steiner, S. Scheer, “A new approach to solve
the traveling salesman problem”. Amsterdam: ScienceDirect -

Neurocomputing: A new approach to solve the traveling salesman
problem, 2006.

[7] PHP, Manual, 2013. Accessed september 23, 2013. Available at
http://www.php.net/manual/pt_BR/preface.php.

[8] J. Resig, “Pro JavaScript Techniques”, Apress, 2006.

[9] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook “The
travelling salesman problem: a computational Study”. Princeton:
Princeton University Press, 2006. ISBN 978-0-691-12993-8.

[10] A. Diaz, M. Laguna, P. Moscato, F.T. Tseng, F. Glover, and H. M.
Ghaziri, “Optimización Heurística y Redes Neuronales”. Editorial
Paraninfo, Madrid. 1996.

[11] D. E. Rosenkrantz, R. E. Stearns & P. M. Lewis II, “An analysis of
several heuristics for the traveling salesman problem”. SIAM J.
Comput., vol. 6, 1977, pp. 563-581.

[12] M. M. Solomon, “Algorithms for the Vehicle Routing and Scheduling
Problems with Time Window Constraints”. Operations Research, vol.
35, ed. 2, 1987, pp. 254-265.

[13] G. Clarke, and J. Wright, "Scheduling of vehicles from a central
depot to a number of delivery points", Operations Research, vol. 12
ed. 4, 1964, pp. 568-581.

[14] M. R. Heinen, and F. S. Osório, “Algoritmos Genéticos Aplicados ao
Problema de Roteamento de Veículos”. Hífen, Uruguaina. vol. 30,
ed.58, 2006.

[15] R. H. Mole, and R. S. Jameson, “A sequential routing-building
algorithm employing a generalized savings criterion”, Opl. Res Q,
vol. 27, 1976, pp. 503–512.

[16] T. J. Gaskell, “Bases for the vehicle fleet scheduling”, Opl. Res. Q,
ed. 18, 1967, pp. 281–294.

[17] M. Dorigo, “Optimization, Learning and Natural Algorithms”. M..
PhD thesis, Italy: Politecnico di Milano, 1992.

[18] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents”. IEEE Transactions on Systems,
Man, and Cybernetics––Part B: Cybernetics vol. 26 ed.1, 1996, pp.
29–41.

[19] G. A. Croes. “A method for solving traveling salesman problems”. In:
Operations Research n. 6, 1958, pp. 791-812.

[20] Lin, S. “Computer solutions of the traveling salesman problem”. In:
Bell System. Technical. Jour nal. n. 44, 1965, pp. 2245-2269.

[21] G. Laporte, H. Mercure, and Y. Nobert, "A Branch and Bound
algorithm for a class of asymmetrical vehicle routing problems".
Journal of the Operational Research Society. vol. 43, ed. 5, 1992, pp.
469-481.

[22] S. Lin, and B. Kernighan, “An Effective Heuristic Algorithm for the
Traveling Salesman Problem”. Operational Research, vol. 21, 1973,
pp. 498-516.

[23] H. D. Nguyen, I. Yoshihara, M. Yamamori, “Implementation of an
Effective Hybrid GA for Large-Scale Traveling Salesman Problems”.
IEEE Transaction on System, Man, and Cybernetics-PART B:
Cybernetics, vol. 37, no. 1, 2007, pp. 92-99.

177Copyright (c) IARIA, 2013. ISBN: 978-1-61208-251-6

GEOProcessing 2013 : The Fifth International Conference on Advanced Geographic Information Systems, Applications, and Services

http://www.anp.gov.br/?pg=33970&m=&t1=&t2=&t3

