GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Geographic Data Modeling for NoSQL Document-Oriented Databases

Wagner Boaventura Filho, Harley Vera Olivera, Maristela Holanda, Aleteia A. Favacho

Department of Computer Science
University of Brasilia
Brasilia, Brazil
{wagnerbf, harleyve}@gmail.com, {mholanda, aleteia}@cic.unb.br

Abstract—The integration of Geographical Information Systems
(GIS) with relational databases (RDBMS) and the search for
interoperable standards among geospatial systems have been
featured focuses on the agendas of academia, industry, and the
spatial data user community in for some time now. Subsequently,
in database technologies, some of the new issues increasingly
debated are non-conventional applications, including NoSQL (Not
only SQL) databases, which were initially created in response
to the needs for better scalability, lower latency and higher
flexibility in an era of bigdata and cloud computing. These non-
functional aspects, which are very common in the treatment of
spatial data, are the main reason for using NoSQL database.
However, currently there are no systematic studies on the data
modeling for NoSQL databases, especially the document-oriented
ones. Therefore, this article proposes a NoSQL data modeling
standard, introducing modeling techniques that can be used on
document-oriented databases, including geographical features.
In addition, to validate the proposed model, a study case was
implemented using geographic information on changes in the land
use of Brazilian biomes.

Keywords—NoSQL; GIS; Data modeling; Document-oriented
database.

I. INTRODUCTION

Huge amounts of spatial data are produced daily. They
are generated by satellites, telescopes, sensor networks, and
provide information that is growing exponentially. The man-
agement of this data is currently performed in most cases
by relational databases with spatial extensions that provide
centralized control of data, redundancy control and elimination
of inconsistencies [1]; but, some of these factors restrict the use
of alternative database models. Consequently, certain limiting
factors have led to alternative models of databases that are used
in these scenarios. Primarily, motivated by the issue of system
scalability, a new generation of databases, known as NoSQL, is
gaining strength and space both in information systems. The
NoSQL databases emerged in the mid-90s, from a database
solution that did not provide an SQL interface. Later, the term
came to represent solutions that promoted an alternative to
the Relational Model, becoming an abbreviation for Not Only
SQL.

The purpose, therefore, of NoSQL solutions is not to
replace the Relational Model as a whole, but only in cases
in which there is a need for scalability and bigdata. In
the recent years, a variety of NoSQL databases has been
developed mainly by practitioners looking to fit their specific
requirements regarding scalability performance, maintenance
and feature-set. Subsequently, there have been various ap-
proaches to classify NoSQL databases, each with different
categories and subcategories, such as key-value stores, column-

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

oriented and graph databases, oriented-document. MongoDB
[2], Neo4j [3], Cassandra [4] and HBase [S] are examples
of NoSQL databases. This article only applies to NoSQL
document-oriented databases, because of the heterogeneous
characteristics of the each NoSQL database classification.

Nonetheless, data modeling still has an important role to
play in NoSQL environments. The data modeling process
[1] involves the creation of a diagram that represents the
meaning of the data and the relationship between the data
elements. Thus, “understanding” is a fundamental aspect of
data modeling [6], and a pattern for this kind of representation
has few contributions for NoSQL databases.

Addressing this issue, this article proposes a standard for
NoSQL data modeling. This proposal uses NoSQL document-
oriented databases, including geographic data, aiming to intro-
duce modeling techniques that can be used on databases with
document features.

The remainder of the paper is organized as follows: Section
IT presents related works. Section III explores the concepts
of modeling for NoSQL databases based on documents, in-
troducing the different types of relationships and associations.
Section IV shows the proposal model in the context of NoSQL
databases based on documents. Section V presents the study
case to validate the proposal model. Finally in Section VI, we
present the conclusion of the research and future works.

II. RELATED WORKS

Specifically for geographic data, the current literature sug-
gests a standard of data modeling for relational databases, for
example: OMT-G, the acronym for Object Modeling Technique
for Geographic Applications [7], GMOD, an environment for
modeling and design of geographic applications [8], GISER, a
data model for geographic information systems [9], GeoOOA,
an object-oriented analysis for geographic information systems
[10], MODUL-R, a data model for design spatio-temporal
databases [11] and OMT EXT, an explicit representation of
data that depends on topological relationships and control over
data consistency [12].

Katsov [13] presents a study of techniques and patterns
for data modeling using the different categories of NoSQL
databases. However, the approach is generic and does not
define a specific modeling engine to each database.

Arora and Aggarwal [14] propose a data modeling, but
restricted to MongoDB document database, describing a UML
Diagram Class format to represent the documents.

Similarly, Banker [15] provides some ideas of data mod-
eling, but limited to MongoDB database and always referring
to JSON [16] format as a modeling solution.

63

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

As one can see, none of these approaches refers to spatial
data, and nor do they present a graphical model for use in any
NoSQL document-oriented database.

III. DATA MODELING FOR DOCUMENT-ORIENTED
DATABASE

An important step in database implementation is the data
modeling, because it facilitates the understanding of the project
through key features that can prevent programming and opera-
tion errors. For relational databases, the data modeling uses
the Entity-Relationship Model [1]. For NoSQL, it depends
on the database category. The focus of this article is NoSQL
document-oriented databases, where the data format of these
documents can be JSON, BSON, or XML [17].

Basically, the documents are stored in collections. A par-
allel is made with relational databases, the equivalent for a
collection is the record (tuple) and for a document it is the
relation (table). Documents can store completely different sets
of attributes, and can be mapped directly to a file format
that can be easily manipulated by a programming language.
However, it is difficult to abstract the modeling of documents
for the entity relationship model [6].

A. Modeling Paradigm for document-oriented database

The relational model designed for SQL has some important
features such as integrity, consistency, type validation, transac-
tional guarantees, schemes and referential integrity. However,
some applications do not need all of these features. The
elimination of these resources has an important influence on
the performance and scalability of data storage, bringing new
meaning to data modeling.

Document-oriented databases have some significant im-
provements, e.g., index management by the database itself,
flexible layouts and advanced indexed search engines [13]. By
associating these improvements (some being denormalization
and aggregation) to the basic principles of data modeling in
NoSQL, it is possible to identify some generic modeling stan-
dards associated to document-oriented databases. Analyzing
the documentation of the main document-oriented databases,
MongoDB [18] and CouchDB [19], similar representations
of data mapping relationships can be found: References and
Embedded Documents, featuring a structure which allows
associating a document to another, retaining the advantage of
specific performance needs and data recovery standards.

B. References Relationship

This type of relationship stores the data by including
links or references, literally, from one document to another.
Applications can resolve these references to access the related
data in the structure of the document itself [18]. Figure 1 shows
three documents for Geographical Location, Municipality and
Coordinates in a reference relationship.

C. Embedded Documents

This type of relationship stores in a single document
structure, where the embedded documents are disposed in a
field or an array. These denormalized data models allow data
manipulation in a single database transaction [18]. Figure 2
shows a document of a Land Treatment with a Management
embedded document.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

Municipality

{
municipality_geocodigo: 5300108
.‘name: “Brasilia”
/| approximate_geometry
/| name_abrev: “BSB"

/ }

Geographical Location Vi

{
location_id:<objectiD> /
site: “‘Embrapa Cerrados” /
site_area: 4891
municipality_geocodigo
coordinates_id ‘_\

S~

S~ Coordinates
.

A
~ coordinates_id: <objectID>
coordinates_got_at: “SP”
decimal_latitude: -15,95
decimal_longitude: -47,88

Figure 1. Example of documents referenced

Land Treatment

land_treatment_id: <objectlD>
name: "Fertilization”
management: {)
management_id:<obje ctID>}
}

}

Embedded Document

Figure 2. Example of embedded documents

IV. PROPOSAL FOR DOCUMENT-ORIENTED DATABASES
VIEWING

Unlike the traditional relational databases that have a sim-
ple form in the disposition in rows and columns, a document-
oriented database stores information in text format, which
consists of collections of records organized in the key-value
concept, ie, for each value represented a name (or label) is
assigned, which describes its meaning. This storage model
is known as JSON object, and the objects are composed of
multiple name/value pairs for arrays, and other objects.

In this scenario, the number of objects (or documents) in
a database increases the abstraction complexity of the logical
relationship between the stored information, especially when
objects have references to other objects. Currently, there is a
lack of solutions to conceptually represent those associated
with a NoSQL document-oriented database. As described in
[14], there is no standard to represent this kind of object
modeling, and several different manners of modeling may
arise, depending on each data administrator’s understanding,
which makes learning difficult for those who need to read the
database model.

Therefore, this section proposes a standard for document-
oriented database viewing, including for geographical data
references.

Our proposal has some properties, considering the concep-

tual representation modeling type, such as:

e Ensuring a single way of modeling for the several
NoSQL document-oriented databases.

e Simplifying and facilitating the understanding of a
document-oriented database through its conceptual
model, leveraging the abstraction ability and making
the correct decisions about the data storage.

64

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

e Providing an accurate, unambiguous and concise pat-
tern, so that database administrators have substantial
gains in abstraction, understanding.

e Presenting different types of relationships between
documents are defined as References and Embedded
documents.

e Assisting the recognition and arrangement of the ob-
jects, as well as its features and relationships with
other objects.

The following subsections present the concepts and graph-
ing to build a conceptual model for NoSQL document-oriented
databases.

A. Assumptions

Before starting the discussion about the approach of each
type of the conceptual modeling representation, it is important
to highlight some basic concepts about objects and relation-
ships in a document-oriented database:

e An object (or document) describes a collection of
records that have their properties organized in a key-
value structure.

e Information contained in an object is described by the
identifier (key) and the value associated with the key.

e Different types of relationships between documents
are defined as References and Embedded Docu-
ments.

e Because NoSQL is a non-relational data database, the
concepts of normalization, do not apply.

e In contrast, some concepts of relationships between
objects are similar to ER modeling, such as cardinality
(one-to-one, one-to-many, many-to-many).

B. Basic Visual Elements

The proposed solution for a conceptual modeling to the
NoSQL document-oriented databases has two basic concepts:
Document and Collections.

As noted previously, a document is usually represented by
the structure of a JSON object, and as many fields as needed
may be added to the document. For this proposed solution, a
document is represented by Figure 3.

<Document Name>

Figure 3. Graphical representation of a Document

It is also possible to store and organize the data as a
collection of documents with fields and default values for
each record. In this context, a collection of documents will
be represented by Figure 4.

The following section presents the definitions of the rela-
tionship types and degrees for the objects features.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

AN

<Documents Name>

Figure 4. Graphical representation of a Collection

C. Embedded Documents 1..1

This section proposes a model that represents the one-to-
one relationship for documents embedded in another docu-
ment. In this case, the proposal is to use the representation of
an individual document within another element that represents
a Document. In Figure 5, cardinality is also suggested to
specify the one-to-one relationship type.

<Document Name>

K

<Document Name>

Figure 5. One-to-one relationship for embedded documents

D. Embedded Documents 1..N

A one-to-many relationship in embedded documents is
represented by the Figure 6. This is the case when the notation
to represent the cardinality is the same used in UML [20] and
is placed in the upper right corner of the embedded documents.
According to the cardinality one-to-many the larger document
has embedded multiple documents within it.

<Document Name=>

<Documents Name=>

Figure 6. One-to-many relationship for embedded documents

E. References 1..1

A document can reference another, and in this case, one
must use an arrow directed to the referenced document, as
shown in Figure 7. One can see that the directed arrow
makes the left document references to the right document.
Furthermore, the cardinality of the relationship should be

65

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

specified above the arrow. The notation of cardinality is based
on UML [20].

1.1
<Document Name> | | <Document Name>

Figure 7. One-to-one relationship for documents referenced

F. References 1..N

In NoSQL, a document can reference multiple documents.
To represent this relationship one should use an arrow directed
to the referenced documents, as shown in Figure 8. The left
document references multiple documents on the right side,
by the directed arrow. Furthermore, the cardinality of the
relationship is represented by the notation “1..*” as in UML
[20].

<Document Name=> <Documents Name=

Figure 8. One-to-many relationship for documents referenced

G. Geographical Primitives

With the goal of increasing the capacity of semantic
representation of geographic space, the OMT-G [7] model
provides primitives to model the geometry of geographic data,
so it is possible to georeference documents using these prim-
itives, as shown in Figure 9. A conventional document differs
from a georeferenced document precisely by using primitive
geographics in the top right corner of the document. In this
case, a point is represented by a star, a line is represented by
a solid line and a polygon is represented by a square.

W - [

<Document Name= <Document Name= <Document Name=

Figure 9. Geographical primitives in documents

Association of the georeference documents is represented
by dashed lines [7], as shown in Figure 10. On the other

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

hand, the association of a conventional (not-georeferenced)
document with a geo-referenced document is displayed by
solid lines, as shown in Figure 11. In both cases, we decided
to use the same symbolism for relationship, dashed and solid
lines, similar to the OMT-G model [7].

N\

\

<Document Name> ... p~ <Document Name>

Figure 10. Spatial association

AN
&

<Document Name=> <Document Name=>

»

Figure 11. Simples association

Finally, Figure 12 shows the relationship between two
embedded georeferenced documents.

<Document Name>

Figure 12. Embedded Document With Georeferences

V. CASE STUDY

An example of data modeling is presented in this section
to illustrate the proposed model. This conceptual model is
based on the model presented in [21], which corresponds to
a collection of information about changes in land use over
the Brazilian biomes represented by points (latitude, longitude)
where the data was collected.

Thus, the document “Location” is the document containing
georeferenced data such as latitude, longitude and the col-
lection site. A star is used as a geographical point primitive
for this document in the upper right corner of the document
representing the collection points, as illustrated in Figure 13.

The document “Actual type use” describes the type of real
land use (cropland, pasture, secondary forest, etc). While the

66

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Land use Changes

Land treatment

@
2 o N
Management W
™

g

LA Location

Actual type use

Figure 13. Modeling use case

document “Management” describes the type of land manage-
ment carried out (burning, fertilizing, planting). The document
“Land treatment” describes information relating to the treat-
ment of land (accidental fire, prescribed fire, not burned, etc.).
Finally, the document “Land Use Changes” presents infor-
mation as species involved, predominant vegetation, removal
technique.

Figure 13 shows the relationship between the documents
“management” and “Actual type use” in which the cardinality
is zero-to-many, which means that a document "Management”
may contain zero or more documents of the type “Actual
type use”. Similarly, Figure 13 shows the relationship between
the documents “Land treatment” and “Management” whose
cardinality is also zero-to-many, meaning that a document
“Land treatment” may contain zero or more documents of the
type, "Management”.

The document “Land use changes” and “Land treatment”
have a cardinality of zero-to-many, which means that a doc-
ument of “Land use changes” may contain zero or more
documents of the type, "Land treatment”.

Finally the document ”Land use changes” reference to the
document “Location” with a cardinality of one to one, means
that a document ”Land use changes” can be associated with
one location only.

A. Implementation

Considering that the focus of our work is data modeling
for NoSQL database, including spatial data features, we have a
small range of NoSQL databases to work with. Although some
databases provide extensions for geospatial data, as in Cas-
sandra [22], JBoss Infinispan [23] and ArangoDB [24], only
Couchbase [25] and MongoDB [2], both documented-oriented
databases, offer good documentation for data modeling. The
Couchbase spatial data feature is introduced as an experiment
and it is not officially provided by the tool yet [26]. And
although Couchbase supports many features, we decided to
use MongoDB because it provides an excellent documentation
and native mechanisms and indexes for geospatial information.

The MongoDB is a document-oriented and open-source
database management system [27]. MongoDB uses a BSON

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

format that is a binary representation of a JSON file. In Mon-
goDB, data is represented as pairs of name-value elements. A
field-value’s pair consists of the name of the field and its value,
and is always separated by a ”:” character. In the Figure 14,
the document “Location” is represented as a BSON’s format

document.

Document Location

{
_id : 12003,
Site : "Embrapa Cerrados”,
site_area : 4891,
municipality_geocodigo: 53,
coordinates_got_at: “SP",
decimal_latitude: -15.95,
decimal_longitude: -47.88

}

Figure 14. BSON format representation of document Location

The biomes graphic elements and their spatial references
were acquired in digital file format, known as Shape. The prac-
tical reference of this research entails installing, configuring
and creating a schema in MongoDB database, which is re-
sponsible for hosting documents containing JSON collections,
and storing the spatial data of Brazilian biomes. The MongoDB
transactions are structured and based on a JSON format file,
and the scripts created for this research follow this pattern. We
created database scripts to enter and access data of the biomes
location. Furthermore, it was necessary to index the geospatial
columns to improve the performance of the queries operations
and to provide data for the tools that are responsible for
showing data graphically. The operations to insert and return
data from a MongoDB document follow a specific syntax,
and the result is an object in JSON format. Considering the
correct installation and database configuration, and the proper
data entry, the Quantum GIS tool [28], associated with add-
ons, is used for graphical representation of data. Two levels
of QGIS layers were added. One to represent the Brazilian
map and the second containing data collections of Brazilian
biomes, which were stored in MongoDB format documents.
This representation was possible due to the use of components
responsible for integrating Quantum GIS and MongoDB.

The graphical representation result by Quantum GIS is
shown in Figure 15. The points represent the geographic
location of the samples.

VI. CONCLUSION AND FUTURE WORK

In contrast to relational database management systems,
NoSQL databases are designed to be schema-less and flexible.
Therefore, the challenge of this work was to introduce a data
modeling standard for NoSQL document-oriented databases,
in contrast to the original idea for NoSQL databeses. The
objective was to build compact, clear and intuitive diagrams
for conceptual data modeling for NoSQL databases. While the
current studies propose generic techniques and do not define a
specific modeling engine to NoSQL database, our idea was to
present a graphical model for any NoSQL document-oriented
database. Moreover, while other studies describe techniques
based on UML Diagram Class and JSON format, for example,
as a modeling solution, we have proposed a new approach

67

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 15. Plotting data in QGIS

to solve the conceptual data modeling issue for NoSQL
document-oriented databases, including spatial data references.

Future work includes: verifying our model for other

NoSQL database classifications, such as key-value and col-
umn; many-to-many relationship for embedded and reference
documents is not covered and adjacency, connectivity, and
other topological spatial concepts. These points were not
developed in the present model proposed in this article.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

(111

[12]

Copyright (c) IARIA, 2015.

REFERENCES
R. Elmasri and S. Navathe, Fundamentals of Database Systems. Pear-
son Addison Wesley, 2010.
MongoDB. Document database. [Online]. Available:

http://www.mongodb.org/ [retrieved: Jun., 2014]

J. Partner, A. Vukotic, and N. Watt, Neo4j in Action. O’Reilly Media,
2013.

D. Borthakur et al., “Apache hadoop goes realtime at facebook,” in
Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, 2011, pp. 1071-1080.

F. Chang et al., “Bigtable: A distributed storage system for structured
data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2,
2008, p. 4.

R. F. Lans, Introduction to SQL: mastering the relational database
language. Addison-Wesley Professional, 2006.

K. A. Borges, C. A. Davis, and A. H. Laender, “Omt-g: an object-
oriented data model for geographic applications,” Geolnformatica,
vol. 5, no. 3, 2001, pp. 221-260.

J. L. De Oliveira, F. Pires, and C. B. Medeiros, “An environment
for modeling and design of geographic applications,” Geolnformatica,
vol. 1, no. 1, 1997, pp. 29-58.

S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, and S. Sarkar, “Data
models in geographic information systems,” Communications of the
ACM, vol. 40, no. 4, 1997, pp. 103-111.

G. Kosters, B.-U. Pagel, and H.-W. Six, “Gis-application development
with geoooa,” International Journal of Geographical Information Sci-
ence, vol. 11, no. 4, 1997, pp. 307-335.

Y. Bédard, C. Caron, Z. Maamar, B. Moulin, and D. Valliere, “Adapting
data models for the design of spatio-temporal databases,” Computers,
Environment and Urban Systems, vol. 20, no. 1, 1996, pp. 19-41.

G. Abrantes and R. Carapuca, “Explicit representation of data that de-
pend on topological relationships and control over data consistency,” in

Fifth European Conference and Exhibition on Geographical Information
Systems—EGIS/MARI, vol. 94, no. 19917, 1994, pp. 869-877.

ISBN: 978-1-61208-383-4

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H. Scalable. Nosql data modeling techniques. [Online].
Available: http://highlyscalable.wordpress.com/2012/03/01/nosql-data-
modeling-techniques/ [retrieved: Jun., 2014]

R. Arora and R. R. Aggarwal, “Modeling and querying data in mon-
godb,” International Journal of Scientific and Engineering Research
(IJSER 2013), vol. 4, no. 7, Jul. 2013, pp. 141-144.

K. Banker, MongoDB in action. Manning Publications Co., 2011.

D. Crockford, RFC 4627 (Informational) The application json Media
Type for JavaScript Object Notation (JSON). IETF (Internet Engineer-
ing Task Force), 2006.

S. J. Pramod, “Nosql distilled: A brief guide to the emerging world of
polyglot persistence/pramod j. sadalage, martin fowler,” 2012.

MongoDB. Data modeling introduction. [Online]. Available:
http://docs.mongodb.org/manual/core/data-modeling-introduction/ [re-
trieved: Jun., 2014]

CouchDB. Modeling entity relationships in couchdb. [Online].
Available: http://wiki.apache.org/couchdb/ [retrieved: Jul., 2014]

G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling lan-
guage user guide. Pearson Education India, 2005.

H. V. Olivera and M. Holanda, “A gis web with integration of sheet
and soil databases of the brazilian cerrado,” in Information Systems and
Technologies (CISTI), 2012 7th Iberian Conference on. IEEE, 2012,
pp. 1-6.
Cassandra.
Available:
Dec., 2014]
J. Infinispan. Get started. [Online].
http://infinispan.org/documentation/ [retrieved: Dec., 2014]
AragonDB. Documentation. [Online]. Available:
https://www.arangodb.com/documentation [retrieved: Dec., 2014]
Couchbase. Introduction. [Online]. Available:
http://docs.couchbase.com/admin/admin/Couchbase-intro.html
[retrieved: Jun., 2014]

Writing geospatial views. [Online]. Available:
http://docs.couchbase.com/admin/admin/Views/views-geospatial.html
[retrieved: Dec., 2014]

MongoDB. The mongodb 2.6 manual. [Online].
http://docs.mongodb.org/manual/ [retrieved: Jun., 2014]

Cassandra documentation from datastax. [Online].
http://wiki.apache.org/cassandra/GettingStarted [retrieved:

Available:

Available:

QGIS. A geographic information system free and open source.
[Online]. Available: http://www.qgis.org/ [retrieved: Jun., 2014]

68

