
TICE.Healthy Framework for Developing an Ecosystem of Applications in the

Domain of Informal Health

Pedro Catré, Jorge Dias

Faculty of Sciences and Technology

University of Coimbra

Coimbra, Portugal

catre@student.dei.uc.pt, jorge@deec.uc.pt

João Quintas, Alcides Marques

IPN Laboratory of Automatic and Systems and Laboratory

of Informatics and Systems

Instituto Pedro Nunes

Coimbra, Portugal

jquintas@ipn.pt, alcides.marques@ipn.pt

Abstract— This paper presents a platform being developed in a

large scale national project that aims to create an ecosystem of

services and applications where patients, relatives and

healthcare professionals can cooperate in day-to-day activities.

It will implement functionalities for managing medical, social

and context information, for integrating mobile devices,

remote control and sensors, with insurance of information

security.

Keywords-eHealth; informal healthcare; service-oriented

architecture; REST.

I. INTRODUCTION

TICE.Healthy – Health and Quality of Life Systems – is
a research and development project that represents a
collaborative effort to design and deploy innovative products
and applications in the fields of eHealth and Ageing-Well.
The main goal of this project is to create a web-based
platform, named eVida, designed to ensure a set of
services/features to support the creation of new products,
processes, services and applications [1], [2].

From a global perspective, the platform being developed
plays the central role within the project TICE.Healthy. Its
primary objectives are data acquisition and processing from
various collaborating entities (data providers – supply side)
so that it can be shared and used by service providers. The
eVida website can be consulted at [3], and a promotional
video demonstrating some of its features is available at [4].

It is true that we are now witnessing a proliferation of
eHealth platforms [5]; however, they are mainly focused on
offering a single service. eVida’s innovation comes precisely
from breaking free of this paradigm by allowing the creation
of an ecosystem of applications that can provide
complementing capabilities and whose value can potentially
supersede the sum of the benefits delivered by each
individual application.

This paper presents the architectural approach and a brief
description of the main modules comprising the eVida
platform.

The paper is organized as follows. Section II presents an
analysis of related work. Section III gives an overview of the
platform’s architecture. Section IV presents the main
modules that make up the platform. Section V describes the
Web Portal, more specifically: its purpose, the main features

it provides for developers, the types of applications that are
supported in the marketplace and a high-level view of its
architecture. Section VI provides conclusions for this paper.

II. STATE OF THE ART

This section analyses current market solutions that
present comparable functionalities to the ones required by
the eVida platform. Although this analysis includes eHealth
platforms it does not focus exclusively on that use case.

A. Commercial Web Portals

Google Health has been permanently discontinued since
it did not reach the initially expected product adoption.
However, it is still relevant since it was one of the primary
commercial platforms available providing personal health
records. This platform allowed users to persist, manage and
share the user’s health data with other users. It also provided
an API allowing the users to share data with external
applications that could provide several services like
scheduling appointments, processing health data, among
others [6].

Microsoft HealthVault is an XML-over-HTTP web
service exposing a set of XML-based methods that
developers can leverage to build applications that connect to
HealthVault. Also, a number of SDKs are available that
deliver platform-specific abstractions for working with
HealthVault [7]. It is worth noting that this platform is only
available in the United States of America and the United
Kingdom. Although Microsoft Health Vault supports an
ecosystem of other platforms and partner services to leverage
the user’s data, assuming the required permissions over the
data were granted, it lacks many important features.
Specifically, this platform does not integrate web
applications in a single place and it does not provide the final
user with a transparent and singular experience while using
the platform. In other words, HealthVault does not support
embedded applications, meaning each application runs
independently, outside of HealthVault and no mechanisms
are provided for inter-app communication. Furthermore, it
does not provide Single-Sign-On [8], which is a facility
through which a user logs in once and gains access to all
systems without being prompted to log in again at each of
them. In fact, in order to start using a new application the
user is taken to the service provider’s website where he

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

needs to register, sign-in and link the new account to the
HealthVault account.

iGoogle is a service provided by Google that consists of a
web portal that supports web feeds and web gadgets. The
gadgets are defined through an open custom specification
called Google Gadgets [9]. Both the development and use of
the applications is open to the public [10]. It works similarly
to other portals such as My Yahoo!, Netvibes and Pageflakes
[11].

Facebook Apps consist of applications hosted in an
external server that are accessed in Facebook in a page called
Canvas. Together, they provide functionality through APIs,
such as the Social Channels API that includes bookmarks,
notifications, News Feed stories and search [12]. Facebook
also offers an authentication system, called Facebook
Connect, as an alternative mechanism to the registration of a
user. In other words, Facebook Connect allows external
applications to support Facebook accounts [13].

LinkedIn supports applications that follow the
OpenSocial specification [14]. These applications can be
added to the user’s homepage and to his personal profile
[15].

Twitter does not support applications in the same way as
the previous examples. It offers a REST API that enables
third-party applications to interact with the majority of the
web site’s functionalities [16]. It also provides an
authorization and authentication mechanism that can be used
by external applications (similarly to Facebook Connect).
To that end, Twitter employs OAuth. The permissions that a
user can grant are granular enough that he can limit the
access to specific data and communication on his behalf.

Chrome Web Store allows the specification of
applications published as a compressed archive composed of
a manifest, HTML, CSS, and JavaScript files [17] or as a
pointer to an external server [18]. Neither type of application
is embedded in the Chrome Web Store. Also, the mechanism
for executing the applications is not interoperable; it’s
restricted to the Chrome browser.

Podio is a web system that supports collaborative work
for companies and provides extensibility through external
web applications. It allows the discovery and purchase of
applications similarly to the Chrome Web Store [19].

Table I presents a comparison of the functionalities of the
various commercial projects that were presented.

TABLE I. COMPARISON OF THE FUNCTIONALITIES OF THE

COMMERCIAL PROJECTS THAT WERE ANALYSED

E
m

b
ed

d
e
d

a
p

p
s

S
in

g
le

 s
ig

n
-o

n

G
ra

n
u

la
r

P
e
rm

is
si

o
n

s

C
o

n
si

st
e
n

t
U

I

C
r
o

ss
-

b
r
o

w
se

r

S
u

p
p

o
r
ts

 w
eb

a
p

p
s

S
u

p
p

o
r
ts

n
a

ti
v

e
 m

o
b

il
e

a
p

p
s

Google

Health
✗ ✗ ✗ ✗ ✓ ✓ ✓

Health

Vault
✗ ✗ ✓ ✗ ✓ ✓ ✓

iGoogle ✓ ✓ ✗ ✗ ✓ ✓ ✗

Facebook

Apps
✓ ✓ ✓ ✓ ✓ ✓ ✓

E
m

b
ed

d
e
d

a
p

p
s

S
in

g
le

 s
ig

n
-o

n

G
ra

n
u

la
r

P
e
rm

is
si

o
n

s

C
o

n
si

st
e
n

t
U

I

C
r
o

ss
-

b
r
o

w
se

r

S
u

p
p

o
r
ts

 w
eb

a
p

p
s

S
u

p
p

o
r
ts

n
a

ti
v

e
 m

o
b

il
e

a
p

p
s

LinkedIn

Apps
✓ ✓ ✓ ✓ ✓ ✓ ✗

Twitter
Apps

✗ ✓ ✓ ✗ ✓ ✓ ✓

Chrome

Web
Store

✗ ✗ ✓ ✗ ✗ ✓ ✗

Podio

App

Store
✓ ✓ ✗ ✓ ✓ ✓ ✓

eVida ✓ ✓ ✓ ✓ ✓ ✓ ✓

eVida already supports the most common features

provided by major web portals. However, it is an ongoing
project with many required functionalities still in
development, such as a payment system for the marketplace
and a fully featured interoperability module.

III. PLATFORM ARCHITECTURE OVERVIEW

The platform’s architecture is based on the design
principles of service-oriented architectures (SOA), because
of its distributed and extensible nature. This approach
increases the abstraction and encapsulation within the
system. The platform exposes a set of Representational State
Transfer (REST) services as the communication mechanism
with the data and service providers. Fig. 1 illustrates the
high-level architecture of the platform. Three main
components can be easily identified, which implement the
information and interaction channels for selling products and
health services: the database stores all the administrative
data, and configuration data of the platform; the backend
services provide security, interoperability and information
services; and the frontend is comprised by the platform’s
web portal, which exposes the tools to submit and publish
applications within the platform’s ecosystem.

Figure 1. The platform’s high-level architecture.

This platform implements functionalities to manage
medical, social and context information, for integrating
mobile devices, remote control and sensors, with insurance
of information security.

IV. PLATFORM MODULES

This section will briefly present the modules that make

up the platform.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

A. Mobile Devices, Remote Control and Sensors

The purpose of this module is to simplify the
development and integration of new and innovative services
for the provision of health care and communication. This
kind of services is often referred to as home care in assisted
environments and domotics (e.g., measuring biometric
signals and leveraging environmental sensors). This module
is also responsible for accessing services deployed in eVida
with mobile devices, following the technological trends of
accessing Internet services through smartphones and tablets.

The platform includes mechanisms for collecting and
transmitting data in real-time. For this purpose it provides a
Jabber/Extensible Messaging and Presence Protocol (XMPP)
[20] interface for gathering and sharing data on a continuous
basis. An example of usage of this infrastructure is the real-
time acquisition of sensor data.

B. Security

The security module aims to ensure that applications and
services that work on the platform are reliable in terms of
confidentiality, integrity and availability of information.
These three aspects are essential to ensure an acceptable
level of security and privacy of the user’s personal
information and data stored in the platform. This module’s
components will cover all logical layers of the platform,
from the access control of users and systems, to the use of
encryption in network protocols. Specifically, this module
will be responsible for the authentication – by verifying the
identity of the applications that interact with the platform
using the OAuth 1.0 or OAuth 2.0 protocol (eVida provides
both) – and authorization – by verifying data access
permissions.

The permissions module that was developed is flexible
due to the dynamic nature of our health data repository. In
the current integration it allows platform administrators to:

 Create roles with (Create, Read, Update and Delete)
permissions over archetypes, records and the
personal health record viewer application’s menus.

 Define permissions directly associated with users
and associate them with roles.

In the personal health data viewer application the user
can:

 Create and manage groups to whom he associates
permissions and users.

 Access other users’ personal health data with proper
authorization, limited to the permissions provided by
his roles and by the groups to which the data owner
has associated him with.

We chose to distinguish between role and group (this
concepts are not consistent across the literature [21]) and
implement both. In our system groups are a convenient
method for users to associate a name to a set of subjects and
permissions and use this name for access control. On the
other hand, roles are defined at the system level, by the
platform managers, as a collection of privileges required to
perform specific actions in the system.

The logical diagram of the permissions module is
presented in Fig. 2.

Figure 2. Logical diagram of the permissions module.

An agent can have several permissions over the same

resource defined in different ways. For example, he can be

associated to a profile and be part of a group that both

define permissions over the resource.

The permissions are defined as capabilities [22]. A

capability consists of an object the user must have in order

to execute a specific action over a resource. Each capability

has a resource id and operations a user can execute over a

resource. Fig. 3 illustrates this concept.

Figure 3. Conceptual representation of the use of capabilities in the

permissions module.

Alice can execute a Read operation over resource A, but

she cannot execute a write operation over the same resource.

To perform this validation the module uses binary masks,

the same mechanism used by the Unix file system [23]. This

technique consists of assigning a sequential number that is a

power of 2 to each type of action (permission). This way,

the set of permissions a user has over a resource is given by

the sum of all individual permissions. For example, if we

assign the following numbers to the actions:

 Read: 1 (2
0
)

 Write: 2 (2
1
)

 Edit: 4 (2
2
)

If an agent has Read and Write permissions over a

resource, then the set of permissions is given by the

disjunction of all the individual permissions (1):

 set = value(Read) OR value(Write) = 3

This technique enables efficient validations, since they

become basic logic operations like the one presented above.

It is also memory efficient, given that it only requires a 64

bits Long to store all the permissions a user has over a

resource.

C. Information and Interoperability

The information and interoperability module facilitates

the presentation of information to a large number of services

that wish to receive it in a particular format. Specifically,

there will be a medical information component, designed to

work with the Health Level 7 (HL7) versions 2.x and 3.0

and Digital Imaging and Communications in Medicine

(DICOM) standards to provide a comprehensive solution to

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

the needs of professional caregivers and a connection to

other legacy information systems. The components

comprising this module allow the development of new

services and products that can communicate using the same

syntax and semantics.

D. Personal Health Record

A Personal Health Record is a repository of clinical

information of an individual whose maintenance and

updating can be performed by himself or by his caregivers

[5]. This module is responsible for storing the platform’s

clinical data, which is made available through a REST

application programming interface (API). It also presents a

user interface where personal health data can be consulted in

a secure and private manner. The users will be able to share

parts of this data with family, friends, caregivers and service

providers.

The PHR is created over an application builder [24] that

was designed under the TICE.Healthy initiative. Using this

component it is possible to create related business/clinical

entities, design forms and views and deploy it as a full

application that can be dynamically extended and changed

without the need for a redeploy.

Fig. 4 presents the application builder and the PHR.

Figure 4. Static diagram of the Personal Health Record’s Modules.

Fig. 4 presents four modules that serve as a foundation

for the PHR application:

 The permissions module, that was previously
presented, handles the system’s authorization.

 The Entity Core is the layer that handles the
configurable clinical data repository. It provides an
internal API with business logic that enables
abstraction from the dynamic nature of the data
structure. It also provides a REST API for data
manipulation.

 Entity Views is responsible for interpreting the
configuration of templates and entities/archetypes in
order to generate interface elements. It uses Entity
Core to manipulate the data and the Permissions
Module to check authorizations for data
manipulation.

 Entity Viewer presents a dynamic application (the
PHR viewer) that can be configured through an
administration panel. This high-level module uses
the previously described modules, allowing platform
administrators to create and manage entities and
templates, create application menus, define their
content and manage permissions.

V. WEB PORTAL

The platform’s frontend includes a marketplace for
applications developed by third parties (including
applications developed under the scope of TICE.Healthy).

This Web Portal aggregates and integrates applications
and offers the final user a unified interface. Currently, the
platform provides mechanisms so:

 Developers can add and manage applications in the
platform.

 End users can use these applications in the platform
without the need to register and sign-in to each of the
applications, through a Single-Sign-On mechanism.

 Applications can make use of the platform’s REST
API and user data, given the necessary permissions.

 Applications can make use of the JavaScript APIs
for interacting with the portal, other applications and
users.

Furthermore, the platform allows the publication of web
applications that can take one of two formats: packaged apps
and hosted apps. In addition to the web applications, the
marketplace also offers support for mobile applications.

A. Packaged Apps

These applications execute entirely in the browser and
their business logic is programmed in JavaScript. They can
also make use of the new capabilities of browsers related to
HyperText Markup Language 5 (HTML5), such as working
in offline mode. These packaged applications consist of an
archive that follows the World Wide Web Consortium
(W3C) widgets specification. With this specification W3C
intends to standardize the way client-side web applications
are written, digitally signed, protected, compacted and
deployed independently of the platform [25].

Both the portal’s API and the web interface communicate
with a widgets server. Because the definition of the packaged
applications follows an open standard it was possible to
choose an open-source implementation to manage them.
Apache Wookie [26] was selected for that purpose.

The execution process of packaged apps is described in
Fig. 5.

Figure 5. The execution process of packaged apps.

When accessing a packaged app (1) the corresponding

view is executed which, in turn, will communicate through

the model with the widgets server. The widgets server

instantiates the widget and returns the application’s URL. At

that moment it is possible to present it to the user (3). While

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

it is being loaded, the resources required for the use of the

JavaScript APIs are fetched (4).

Although most packaged applications are highly

responsive, fast and interactive, they force the use of a

particular programming model which might not always be

adequate or desirable. In fact, programming the application

entirely in JavaScript can be restrictive in certain contexts.

To overcome this constraints the platform also supports

hosted applications.

B. Hosted Apps

This type of application is remotely accessible and

housed outside of the platform, being supported by its own

servers.

Among the choices available for including hosted

applications (such as inline JavaScript, content obtained

through asynchronous JavaScript and XML – AJAX calls,

iframes and script tags), we adopted the use of iframes with

additional capabilities, which allow the URL of the portal to

be updated as the user navigates in the application and make

the application sensitive to events, such as resizing the

screen and personalized messages. Also, the applications’

content is downloaded asynchronously, thus not affecting

the rendering of the portal page.

C. Comparison Between Hosted and Packaged Apps

Table II presents a comparison of the main

characteristics of the formats that have been described.

TABLE II. COMPARISON BEWTEEN HOSTED AND PACKAGED

APPLICATIONS

Criteria Hosted App Packaged App

Hosting

Responsibility of

the developer
In the platform

Technological
paradigm

Any language and
technology

JavaScript

executed in the

browser

Server Mandatory Optional

Communication
with the portal

and other

applications

Supported with

limitationsa
Supported

Data
persistence

Responsibility of
the developer

Supported

The communication is processed in a secure manner in

recent browsers, however, the fallback that takes place in

older browsers (Internet Explorer ≤ 7, Mozilla Firefox ≤

2.0, Safari ≤ 3.2, Opera ≤ 9) is unsafe, so it cannot be used

to transmit sensitive data.
It is also worth mentioning that, from the platform’s

perspective, it is better to have a packaged application since
it provides a more seamless integration and, typically, a more
responsive feel to its users. In terms of managing the
applications it is also easier for administrators to control
packaged applications because whenever a developer makes
a change he needs to resubmit the application for approval.
On the other hand, hosted applications can be changed
without going through this process, thus requiring periodical

verifications to make sure they still abide by the platform’s
terms and policies.

D. Isolated Environments

The portal’s domain is different from the domains that
serve both the hosted and packaged applications. This adds
security since the browsers restrict the interaction between
frames in which the domain, port or protocol differ.
However, what is gained in security is lost in interaction
capabilities. In the case of packaged apps that can execute
JavaScript code using shared objects a different solution is
required. In those cases, the Google Caja [27] web service is
applied, which is a compiler for making third-party HTML,
CSS and JavaScript safe for embedding, that follows the
Object Capabilities [28] security model. This allows the
isolation of the execution of the code so that the application
integrated in the portal can only manipulate certain objects.

E. General Objectives of the JavaScript APIs

Each type of application (hosted and packaged) has its
own technical specificities and associated scripts to
guarantee the correct access to the APIs. In the case of
hosted applications, the developer needs to import the script
manually.

Presently, the developed APIs are:

 Inter-App Communication – offers mechanisms for
communicating through a Publish-Subscribe model.
A producer (application) can share data publicly (all
users) or privately (across browser sessions of one
user). Only private channels require user login. In
both the public and private channels if the producer
decides to share data he can specify which are the
authorized receivers (based on their application IDs)
or he can share the data with everyone (any
application can become a subscriber). In the public
channels the user (who may or may not be logged in)
is prompted to authorize or reject the channel when
the application tries to perform its registration. In the
private channels the user can have his sessions
initiated in multiple browsers and devices and he is
prompted to authorize or reject the channel the
application tries to subscribe.

 Remote Communication & Debugging – set of
functions that facilitate the debugging process
allowing asynchronous communication with external
resources.

 Widget Properties – allows access to the properties
that define the application, such as metadata
included in the applications configuration file and
properties related to the execution of the application
in the portal (i.e., the language setting for the user in
the portal). This API follows the Widget Interface
specification defined by the W3C and is partially
implemented by Apache Wookie.

 Widget Extensions – offers methods that extend the
abilities of the applications. One of the most
important methods allows the application to know if
the user is logged in.

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

 Widget Preferences – supports the manipulation of a
data persistence area unique to the application
instance. The application can use this to store
customizable configurations that are specific to a
user. This API follows the Widget Interface
specification defined by W3C and is implemented by
Apache Wookie.

 Wookie Utilities – Helper functions that enable the
dynamic update of the web page with content from
external sources like servers or the user’s input. This
API is implemented by the Direct Web Remoting
library [29].

You can learn more about these APIs at [30].

F. Inter-App Communication API

In order to support communication through private
channels, a flow was defined that would guarantee the
authenticity of the user. Inspired by the way the web Pusher
service provides a similar mechanism [31], the following
process was defined (Fig. 6):

Figure 6. Protection mechanism for private communication channels.

Firstly, the user needs to be authenticated in the portal in
order to use the private channels. The user’s session key is
generated during the login process. As soon as the user
executes the first web app, a connection to the events server
is established. That connection is uniquely identified by its
session id. Afterwards, when a private channel is subscribed,
the user’s session key allows the identification of the user
(provided that the session key is valid).

G. Remote Storage

eVida’s users and developers are encouraged to store their
data in the platform’s repository but are also free to choose
other options. To illustrate one alternative to eVida’s
developers an example packaged app [32], that enables the
user to store their data at a place of their choice, was created.
This example uses the remoteStorage.js library [33], a client
side implementation of the remoteStorage specification [34].
This approach can have several advantages from both the
users’ and developers’ perspectives. From a user’s

perspective he can effectively own is data and have
everything in one place. He can setup a storage account with
a provider he trusts or, ultimately, setup his own storage
server and the data will always be with him regardless of his
location or the status of the applications he uses (i.e.,
sometimes companies shutdown their services and users may
lose their data). From the developers point of view they can
develop their web app without worrying about hosting or
even developing a backend since the users will connect their
own backend at runtime.

H. High-Level View of the Portal and its Connections With

Other Entities

Fig. 7 presents the high-level view of the static
perspective of the web portal with the representation of the
connections to external entities.

Figure 7. High-level view of the portal’s architecure and connections with

other modules and external entities.

Note that although the final user only accesses the link to
the web interface, in practice, his browser communicates
internally in a direct manner with the events, widgets and
isolated environment servers, as well as with external
applications. The connection established with the events
server uses web sockets, or AJAX requests in case web
sockets are not supported by the user’s browser. The
applications communicate with the portal using the
postMessage method, which allows the communication
between frames of an HTML page through JavaScript (thus
not involving network requests).

VI. CONCLUSION

In summary, TICE.Healthy provides the infrastructure
and support for an ecosystem of smart and innovative
Information and Communications Technology (ICT)
services, applications and products for the eHealth and
Ageing-Well market. It provisions the developers and the
solution providers with basic platform services, such as:
authentication and authorization mechanisms, a repository
for personal health data, flexible sensor integration and many
more. In this manner, TICE.Healthy helps to create an
ecosystem of interoperable hardware and software products
with greater joint benefit for the end user.

This paper also presented a web portal that operates as
information and interaction channel for selling products and

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

health services. This channel is used to process the exploring
of applications and integrate them by allowing them to work
around the same context and use common mechanisms. Each
user is able to associate his profile with applications
provided by the platform, which is responsible for sharing
his context and assures a transparent, uniform and consistent
user experience.

ACKNOWLEDGMENT

The TICE.Healthy project is co-financed by the
European Community Fund through COMPETE - Programa
Operacional Factores de Competitividade.

Jorge Manuel Miranda Dias is on sabbatical leave at
Khalifa University of Science, Technology and Research
(KUSTAR), Abu Dhabi, UAE.

REFERENCES

[1] “TICE.Healthy Candidatura - SISTEMA DE INCENTIVOS À
INVESTIGAÇÃO E DESENVOLVIMENTO TECNOLÓGICO -
PROJECTOS DE I&DT EMPRESAS MOBILIZADORES,”
unpublished

[2] “TICE Healthy - We develop products and services for the health
market, catalyzing the consortium companies and other partners to
create web-based services.” [Online]. Available:
https://www.evida.pt/. [Accessed: 20-Sept-2013].

[3] “eVida.” [Online]. Available: https://www.evida.pt/. [Accessed: 13-
Sept-2013].

[4] Instituto Pedro Nunes, “DEMO TICE.Healthy,” 2013. [Online].
Available:
http://www.youtube.com/watch?v=fwHnHbcpVHY&feature=youtu.b
e. [Accessed: 20-Sept-2013].

[5] C. Ogbuji, K. Gomadam and C. Petrie, “Web Technology and
Architecture for Personal Health Records,” IEEE Internet Computing,
Jul. 2011, vol. 15, pp. 10-13, doi:10.1109/MIC.2011.99

[6] A. Sunyaev, D. Chornyi, C. Mauro and H. Krcmar, “Evaluation
Framework for Personal Health Records: Microsoft HealthVault Vs.
Google Health,” 43rd Hawaii International Conference on System
Sciences, IEEE Press, Jan. 2010, pp. 1-10,
doi:10.1109/HICSS.2010.192.

[7] Microsoft, “HealthVault Developer Center,” 2013. [Online].
Available: http://msdn.microsoft.com/en-us/healthvault/jj127014.
[Accessed: 20-Sept-2013].

[8] Microsoft, “Developer Network – Authentication, Authorization, and
Single Sign-In,” 2013. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ff803610.aspx. [Accessed:
20-Sept-2013].

[9] E. Mills, “Welcome to iGoogle,” 2007. [Online]. Available:
http://www.google.com/ig/adde?moduleurl=www.google.com/ig/mod
ules/education.xml&source=thed. [Accessed: 20-Sept-2013].

[10] A. Chitu, “The New iGoogle, Publicly Launched,” 2008. [Online].
Available: http://googlesystem.blogspot.pt/2008/10/new-igoogle-
publicly-launched.html. [Accessed: 20-Sept-2013].

[11] J. Price, “The Battle For Your Browser’s Homepage: iGoogle vs.
Netvibes vs. Pageflakes,” 2010. [Online]. Available:
http://www.maketecheasier.com/igoogle-vs-netvibes-vs-
pageflakes/2010/07/20. [Accessed: 20-Sept-2013].

[12] Facebook, “Apps on Facebook.com — Facebook Developers,”
[Online]. Available:
https://developers.facebook.com/docs/guides/canvas/. [Accessed: 20-
Sept-2013].

[13] Facebook, “Apps on Facebook.com — Facebook Developers,”
[Online]. Available:
https://developers.facebook.com/docs/guides/web/. [Accessed: 20-
Sept-2013].

[14] OpenSocial, “OpenSocial,” 2011. [Online]. Available:
http://opensocial.org/. [Accessed: 20-Sept-2013].

[15] LinkedIn, “LinkedIn Apps - LinkedIn Learning Center,” [Online].
Available: http://learn.linkedin.com/apps/. [Accessed: 20-Sept-2013].

[16] Twitter, “REST API Resources | Twitter Developers,” [Online].
Available: https://dev.twitter.com/docs/api. [Accessed: 20-Sept-
2013].

[17] Google, “Packaged Apps - Google Chrome Extensions - Google
Code,” [Online]. Available:
http://developer.chrome.com/extensions/apps.html. [Accessed: 20-
Sept-2013].

[18] Google, “Hosted Apps - Installable Web Apps - Google Code,”
[Online]. Available:
https://developers.google.com/chrome/apps/docs/developers_guide.
[Accessed: 20-Sept-2013].

[19] Podio, “Podio App Store | Podio,” [Online]. Available:
https://podio.com/store. [Accessed: 20-Sept-2013].

[20] P. Saint-Andre, “Jabber.org.” [Online]. Available:
http://www.jabber.org/. [Accessed: 20-Sept-2012].

[21] T. Ryutov, and C. Neuman, “Representation and Evaluation of
Security Policies for Distributed System Services, in Proceedings of
the DARPA Information Survivability Conference and Exposition,”
Hilton Head, SC., Jan. 2000.

[22] P. Laskov, “Introduction to Computer Security: Access Control and
Authorization,” 2005. [Online]. Available: http://www.ra.cs.uni-
tuebingen.de/lehre/ss11/introsec/08-unix.pdf. [Accessed: 20-Sept-
2013].

[23] K. Oldfield, “Introduction to Unix file permissions,” 2003. [Online].
Available: http://oldfield.wattle.id.au/luv/permissions.html.
[Accessed: 20-Sept-2013].

[24] P. Catré, A. Marques, J. Quintas, and D. Jorge, “TICE-Healthy: A
Dynamic Extensible Personal Health Record,” in HEALTHINF2013,
Feb. 2013.

[25] L. Haan, A. Vagner, and Y. Naudet, “Palette web portal
specification,” unpublished.

[26] The Apache Software Foundation, “Apache Wookie (Incubating).”
[Online]. Available: http://incubator.apache.org/wookie/. [Accessed:
20-Sept-2013].

[27] “Google Caja.” [Online]. Available:
https://developers.google.com/caja/. [Accessed: 20-Sept-2013].

[28] “Object-capability model.” [Online]. Available:
http://en.wikipedia.org/wiki/Object-capability_model. [Accessed: 20-
Sept-2013].

[29] “Direct Web Remoting.” [Online]. Available:
http://directwebremoting.org/dwr/documentation/browser/util/.
[Accessed: 20-Sept-2013].

[30] “EVIDA JavaScript APIs.” [Online]. Available:
https://developer.evida.pt/js-api/template.html#comm-api/en.
[Accessed: 20-Sept-2013].

[31] Pusher, “Authenticating users — Pusher,” 2012. [Online]. Available:
http://pusher.com/docs/authenticating_users. [Accessed: 20-Sept-
2013].

[32] “nunoar/remoteStorage.js.” [Online]. Available:
https://github.com/nunoar/remotestorage.js. [Accessed: 20-Sept-
2013].

[33] “remotestorage.js JavaScript client library to connect to a
remoteStorage server.” [Online]. Available:
https://github.com/remotestorage/remotestorage.js. [Accessed: 20-
Sept-2013].

[34] “remoteStorage An open protocol for per-user storage.” [Online].
Available: http://remotestorage.io/. [Accessed: 20-Sept-2013].

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges

