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Abstract—Latest medical diagnostics, such as
genome sequencing, generate increasing amounts of
"big medical data". Healthcare providers and med-
ical experts are facing challenges outside of their
original field of expertise, such as data processing,
data analysis, or data interpretation. Specific software
tools optimized for the use by the target audience,
as well as systematic processes for data processing
and analysis in clinical and research environments are
still missing. Our work focuses on the integration of
data acquired from latest next-generation sequencing
technology, its systematic processing, and instant
analysis for researchers and clinicians in the course of
precision medicine. We share our research results on
developing specific software tools for drug response
analysis built on top of our distributed in-memory
computing platform for genome data processing. For
that, we present our technical foundations, as well as
process aspects of integrating and combining hetero-
geneous data sources, such as genome, patient, and
experiment data in the clinical routine.

Keywords-Drug Response Analysis; Genome Data
Analysis; Process Integration; In-Memory Database
Technology; Precision Medicine; Next-Generation Se-
quencing.

I. INTRODUCTION

The Human Genome (HG) project that was officially
launched in 1990 involved thousands of research insti-
tutes worldwide and required more than a decade to
sequence and decode the full HG [1]. Nowadays, Next-
Generation Sequencing (NGS) devices enable processing
of whole genome data within hours at reduced costs [2].
NGS is used to support precision medicine, which aims
at treating patients specifically based on individual dis-
positions, e.g., genetic or environmental factors [3].

The In-Memory Database (IMDB) technology has
proven to have major advances for analyzing big en-
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Figure 1. The optimized drug response analysis process involves
data in heterogeneous formats from different data sources.

terprise and medical data, e.g., to support researchers
and clinicians in evaluating best therapies for cancer
patients [4, |5, 6].

In this work, we present our findings of applying
IMDB technology to enable integration of experiment
results, real-time analysis, and prediction of drug re-
sponse in silico in course of precision medicine. We
introduce an integrated research process for oncologists
built upon our High-performance In-memory Genome
(HIG) cloud platform to reduce media breaks and to
improve the efficiency of drug response testing [7]. The
HIG platform provides services for processing of huge
amounts of high-throughput genome data in real-time.
In interdisciplinary teams we developed jointly with
cancer researchers a special purpose application to evalu-
ate results of conducted Xenograft experiments without
significant delay |4, I8]. depicts the optimized
research process and the involved data sources.

The rest of the paper is structured as follows: In
Section IIl, our work is set in context of related work
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Figure 2. Costs for next-generation sequencing and main memory
from 2001 to 2014 adapted from |[9, [10].

and in we introduce our applied research
methodology. We present the current drug response
process in [Section TVl and introduce optimized research
process in [Section VI In [Section VI we discuss our

contribution and our work concludes with an outlook

in [Section VII|

II. RELATED WORK

Figure 2|provides a comparison of costs for sequencing
and main memory modules. Both costs follow a steadily
declining trend, which facilitates the increasing use of
NGS for whole genome sequencing and IMDB technol-
ogy for its data analysis. Related work in the field of
genome data processing has increased in recent years.
However, work focusing on implementing end-to-end
processes is still rare. Thus, we focus on implementing
innovative processes, e.g., by tight integration of genome
data processing and statistical data analysis in course of
drug response analysis.

Sunl investigated gene regulations in prostate cancer
samples combining latest sequencing technology and
bioinformatics approaches. We agree that an integrated
data processing and analysis approach is also essential
for other application fields. Thus, we integrate various
heterogeneous data sources to enable multi-modal mod-
eling of diseases. Furthermore, we enable researchers for
the first time to perform data analysis a) in real-time
without any delay and b) without the need to involve
dedicated IT experts, e.g., to prepare analysis reports.

Rossello et all propose the use of Xenograft models as
data sources for preclinical models when primary tumor
samples are rare, e.g., for small cell lung cancer. They
share very detailed insights into their methodology using
state-of-the-art alignment and variant calling tools, such
as BWA, GATK, and snpEff [13, (14, [15]. However, they
still miss a tight integration of their genome sequencing
pipeline and their data analysis pipeline, which con-
sumed a major part of the their experimental time.
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Our contribution enables tight integration of various
experimental data, such as NGS tumor data, and their
real-time data analysis as described in [Section TV1

III. METHODOLOGY

In the course of this project, we followed the design
science methodology to improve the existing research
process with the help of software artifacts [16].

For that, we applied the Design Thinking (DT)
methodology, which proposes to work in interdisciplinary
teams [17]. The idea behind this proposal is that team
members from different disciplines, e.g., a software de-
veloper and a medical researcher, will have different
viewpoints on the same problem domain. Thus, if a
team is comprised of members from different disciplines
relevant to the problem at hand, chances that an im-
portant aspect is forgotten are minimized. Additionally,
an interdisciplinary team will not suffer from rivalry
between experts of the same field, instead all expertise
necessary to implement the solution is already available
in the team. Besides suggesting interdisciplinary team
compositions, DT provides a process framework as de-
picted in It asks for constant communication
between the developing team and the stakeholders and
targeted end users.

Following DT, we conducted user interviews with can-
cer researchers and physicians to document the existing
research process as described in [Section IVl Further-
more, we developed an optimized process by integrating
heterogeneous data sources and manual process steps
within a software prototype. Based on the obtained
insights, we iteratively extended software prototypes in
short development sprints, evaluated the functionality
either in workshops at the users’ sites or conducted
telephone interviews, while giving end users the chance
to use the software artifacts via screen sharing. Based on
the input from the workshops and interviews, the next
iteration was planned according to the scrum software
development methodology [18§].

IV. CURRENT DRUG RESPONSE ANALYSIS PROCESS

Nowadays, drug response analysis consists of a) con-
ducting drug experiments, e.g., in Xenograft models, and
b) the analysis of the obtained experiment results [19].
The following selected data sources are used for drug
response analysis as depicted in

« Patient Metadata is retrieved from Clinical Infor-
mation Systems (CISs) and contains specific patient
details, such as age, gender, and anamnesis. Its data
volume typically ranges from one to 100 MB exclud-
ing any diagnostic data, such as imaging data,

o Genome Data is obtained by sequencing resected
tumor material, e.g., with NGS devices. Its data
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Figure 3. Design thinking process as defined by the HPI School of
Design Thinking in Potsdam and Stanford adopted from [17].

volume is in the range of some 100 MB for panel
sequencing and up to 500 GB for NGS.

« Experiment Data is obtained by wet laboratory
assistants, e.g., documenting the individual drug
tests in Xenograft experiments. Its data volume is
in the range from 10 MB to 1 GB.

The time consumed in wet laboratories can range from
days to weeks depending on the conducted experiments.
Although the data analysis phase is assisted by use of
software, it still takes days up to weeks to perform com-
plex data analysis. The reasons are many-fold, e.g., the
absence of specific tools for flexible data analysis, tools
limited to a small set of data sources, and transformation
of relevant data.

Manual or semi-manual time-consuming process steps,
such as the use of Microsoft Excel for complex data
analysis, characterize all phases of the existing process.
From a software engineering perspective, we focus on all
process steps where digital data processing and analysis
is conducted. Thus, our work focuses on the data analysis
phase of the existing process to optimize the overall
research process.

V. ENABLING REAL-TIME DATA ANALYSIS

depicts a screenshot of our developed drug
response cloud application. It shows details of genetic

changes of a specific mama carcinoma tumor sample.
Our optimized research process is divided in the follow-
ing process steps:
« Computational biology performs data process-
ing, e.g., raw DNA,
e Clustering of tumor data enables real-time clas-
sification of results, and
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Figure 4. Screenshot of the drug response analysis cloud applica-
tion of the HIG project.

» Visual data exploration supports the interactive
testing and verification of research hypotheses.

A. Computational Biology

In the following, we share insights of our process
extensions focusing on processing of raw DNA data.

1) Open Reading Frame Detection in the In-Memory
Database: The detection of Open Reading Frames
(ORFs) builds the foundation of finding potential gene
locations within the genetic code @]

The detection of ORFs is two-fold as follows. In the
first phase, we search for start and end codons in all
possible reading frames, i.e., three reading frames per
strand of the double helix. In the second phase, pairs
of corresponding start and end codons within the same
reading frame are analyzed to identify ORFs with a
minimum length.

Within the first phase, we process the forward and
the backward strand in parallel. For example, when
searching for the start codon "ATG" on the forward
strand, we also search for the reserve-inverted triplet
"CAT" to detect the start codon on the backward strand.
The reading frame is determined by the position of the
first base of the codon modulo three on the forward
strand and by adding three for the position on the
backward strand. In addition to the reading frame, we
store the type and the position of the found codons.

In the second phase, we group the results from the first
phase by reading frame and search for a start followed
by its corresponding stop codon.

We implemented the ORF detection algorithms di-
rectly within IMDB. For that, we used the programming
languages SQLScript and L ﬂ2_1|, @] As a result, our
implementation can directly incorporate advances of in-
memory computing by performing all data processing
directly on top of the genome data stored within our HIG
platform without the need for data transformations.

2) Evaluation of Genetic Variants to Detect Func-
tional Changes in In-Memory Database: The detection
of functional changes is an essential step of genome
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NAME ABBREV POS BASE VARIANT

Alanine A 1G 1
Alanine A 2C 1
Alanine A 3A 1
Alanine A 3T 1
Alanine A 3C 1
Alanine A 3G 1
Arginine R 1A 2
Arginine R 1C 1
Arginine R 2G 1
Arginine R 2G 2
Arginine R 3A 1
Arginine R 3A 2
Arginine R 3T 1
Arginine R 3C 1
Arginine R 3G 1
Arginine R 3G 2

Figure 5. The columnar database implementation of the amino acid
coding sun [23].

data analysis. Each genetic variant needs to be analyzed
according to its potential impact on the Amino Acid
(AA) built from the genetic code. As a result, a potential
change in the product built from the AA is an indicator
for a genetic variant that describes a harmful mutation
within the DNA [23].

Our algorithm for processing of the genetic variants is
described in the following. Firstly, we check if a concrete
variant is located within the range of a known gene. For
that, we join the variant’s location consisting of chromo-
some and position with a database table containing a list
of known genes [24]. If the current location is outside of a
known gene range, we consider its impact as minor, since
the current medical knowledge about variants outside
the range of genes is very limited. However, once a
new gene is added to the list of known genes, it is
automatically analyzed.

If the variant is located on a gene, all splicing vari-
ants of the gene are analyzed in parallel to derive the
individual impact per splicing variant.

Each splicing variant consists of introns and ex-
ons [25]. Thus, the reading frame of the splicing variant is
determined by the codon of the genetic variant. This al-
lows us to identify the position of the changed nucleotide
within the affected codon. The codon of the variant and
corresponding codon of the reference genome are trans-
late into AAs using our database table implementing the
AA coding sun as depicted in [23].

An AA change is documented by the expected and
the detected AA followed including the position of the
affected triplet, e.g., S12Y donating an AA change of
Serine to Tyrosine at triplet location 12.

If the resulting AAs of the reference genome and the
variant differ, we refer to it as functional genetic change.

The reading frame around the variant remains the
same for all splicing variants of the gene. Thus, the
reading frame for a variant is only calculated once
independent of the number of splicing variants of the
concrete gene.
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Our algorithm can be applied to the forward and the
backward strand of the DNA. If a gene is located on the
backward strand of the DNA the list of exons needs to
be considered in the reverse order as well. However, all
other steps of the algorithm can be reused.

In our case, a specific version of the stored procedure
within the IMDB is executed to translate codons on the
corresponding strand.

B. Real-time Clustering of Tumor Data

In the following, we share our process extension for
automatic classification of processed research data.

1) Tumor Data Association Rules: Association Rules
Mining (ARM) requires a set S of item sets S; as its
data basis: S = {S1,..., S }. Every item set S; consists
of several items 4; from the list I of distinct items:
I = {i1,...,in}. These item sets are processed to detect
reliable rules of type: A= B where AcIABcl. A
is called prior whereas B is called posterior.

In our use case, items are all distinct variants found
in the library of available tumors. Item sets correspond
to the set of variants found for one tumor together
with respective drug response classes determined by
Xenograft experiments. In the context of our current
work, we only focus on functional changes. The goal in
our use case are rules of type A = B, where A is a set
of functional changes and B is a specific drug response
class. We investigate the impact of single functional
changes on drug responses to limit the problem space,
i.e., we restrict |A| = 1.

Two important measures for association rules are
support and confidence. Support supp(A) represents the
relative frequency of A € I in all items sets S as defined

by [Equation T
. |{SZ|S1 eSAAC SZH

supp(A) 5] (1)
_ supp(A U B)
conf(A= B) = ~supp(A) (2)

Confidence conf(A = B) is the relation of the number
of item sets where A and B occur to the number of items
sets where only A can be found defined by

Support defines how important a found rule is, with
respect to all data, while confidence shows how reli-
able it is. We applied the Apriori algorithm for ARM
by using the PAL integrated in the IMDB and by
using the implementation provided by the R package
arules |26, 27, 28].

For tumor classification, either the Tumor/Control
(T/C) value or the RECIST value can be used. There-
fore, cancer researchers can decide individually per anal-
ysis run. In the remainder of this paper, we investigate
both measures.
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In order to use Apriori ARM for classification, we need
to add drug response classes to each item set. Possible
classes are Partial Response (PR), Stable Disease (SD),
and Partial Disease (PD). The thresholds, by which a
drug response is classified in one of the classes, can be
adapted individually.

C. Visual Data FExploration

We developed specific visualizations to enable re-
searchers to work a) interactively with the data instead
of having statically generated charts and b) with com-
monly used graphical representations.

In the following, we share details about our extensions
for interactive exploration of tumor data.

1) Real-time Classification of Tumor Experiment Data
with Support Vector Machines: Classifying tumor data
can be used to identify similarity measures in an un-
sorted set of data. Thus, an automatic classification of
tumor data can be used to generate hypotheses, e.g., to
identify new tumors subtypes.

Our implementation builds on Support Vector Ma-
chine (SVM) as machine learning algorithm. SVM is
available in many popular statistical frameworks, such as
R [26]. To leverage the complete performance advance of
in-memory computing, we built on the implementation
directly integrated within our IMDB as part of the
Predictive Analysis Library (PAL). Since the algorithm
can directly access experiment data without the need
to export/import data. It improves the existing process
by eliminating media breaks. Furthermore, the SVM im-
plementation within the IMDB incorporates technology
advances and performs faster than the aforementioned
implementations, e.g., due to reduced disk I/0.

Our tumor classification algorithm incorporates the
steps configuration, preparation, and execution.

Configuration Stage: During configuration stage,
the researcher is guided through a web page to configure
relevant SVM parameters, e.g., drugs to predict and
experiment data to be used as training data.

The result of a SVM prediction depends on the criteria
selected during the configuration phase, e.g., a concrete
Tumor/Control (T/C) or a RECIST value for a specific
pharmaceutical based on the selected tumor attributes.
SVM uses a regression mode also known as Support Vec-
tor Regression (SVR) to estimate correlation between
attributes of the train data and applies these correlations
to the data points to predict [29].

In addition to prediction of concrete values, we focus
on classification of data in response classes as introduced
in [Section V-BIl For our concrete use-case, we classified
values from 0.0 to 0.7 as PR, representing a reduction in
tumor growth by administering the drug, 0.7 to 1.2 is as
SD, which represents no significant change, and values
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greater than 1.2 as PD, representing a negative response
and thus growth of the tumor.

SVM in classification mode calculates class member-
ship probabilities instead of drug efficiency values [30)].

Preparation Stage: Input and output tables are
created, training data is selected, and the database
procedure is prepared to process SVM model during
preparation stage.

The input database table for SVM is constructed
according to the chosen tumor attributes, with each
column representing a specific tumor attribute. A table
record in the input table represents all relevant data for
a single tumor entity based on the configured attributes.

Ezecution Stage: The train formula in the R proce-
dure is “drug .7, telling R that the drug column of the
data frame is the depending variable, whereas the rest
are deciding variables, indicated by a dot. SVM decides
whether to perform classification or prediction by inves-
tigating the dependable variable in the SVM training
formula, i.e., if a numeric value is encountered, SVM will
run in regression mode otherwise in classification mode.

The execution of SVM for multiple drugs is done by
running preparation and execution stages individually
per drug isolated from each run ensuring that no side
effects influence the SVM algorithm.

2) Clustered Heat Map using Hierarchical Clustering:
Hierarchical clustering is a clustering method that builds
a hierarchy of clusters from the given data by iteratively
merging the closest data points to one cluster (ag-
glomerative hierarchical clustering). In order to identify
the clusters that should be combined, the clustering
algorithm needs a measure of dissimilarity between sets
of observations. shows a clustered heat map
based on a hierarchical clustering algorithm. For hier-
archical clustering, the measure is formed by combining
an appropriate metric for distance calculation between
data points and a linkage criterion for calculating the
distance between merged data points [31].

We used row- and column-wise vectors, the Euclidean
distance function as distance metric, and single link
clustering to create the heat map.

The result of any hierarchical clustering is a dendro-
gram, i.e., a binary tree with data points as leaves. It
represents the clustered data points and the nested clus-
ters at certain similarity levels as depicted in
The dendrogram is used to rearrange / reorder the heat
map and identify positions for adding cluster gaps to
the heat map. For example, rearranging rows in the heat
map according to the clustering result can be done by
traversing the dendrogram tree and leveraging the order
of the leaves, which are by our definition the row vectors.
Thus, similar rows will be side by side or at least close
to each other.
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Figure 6. Clustered heat map using hierarchical clustering comparing mutation count, a subset of genes, and tumor samples.
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Figure 7. Dendrogram tree as the result of applying hierarchical
clustering. Cluster borders are the turning points in the tree that
split up in two clusters denoted as black nodes.

VI. EVALUATION AND DISCUSSION

With the help of oncologists, we have been able to
verify that our introduced research process improves
their daily work. We focused primarily on improving
aspects of data processing and analysis to create an
integrated and reproducible research process. The incor-
porated IMDB technology provides a data integration
platform, which minimizes the need for additional third-
party tools. As a result, we were able to reduce media
breaks, provide flexible and individual real-time analysis
of acquired data, and establish a single source of truth,
which holds all acquired data and enables a consistent
and iterative research process.

In the following, the advantages and enhancement of
our proposed research process are summarized:
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« Integration of heterogeneous data sources,

« Elimination of media breaks and improved process-
ing time,

« Automated data processing by integration of algo-
rithms for computational biology,

« Flexible data analysis built on latest in-memory
technology, and

« Interactive graphical data exploration enabling di-
rect verification of research hypotheses.

VII. CONCLUSION AND OUTLOOK

In our contribution, we shared details about our
proposed research process for drug response analysis.
We incorporated latest in-memory technology as the
key enabler for real-time analysis and exploration of
experiment data and the integration of various data
sources. We outlined the applicability of our HIG plat-
form for processing of genome data and the specific
drug response analysis application to optimize existing
research processes in this specific field of cancer therapy.
Furthermore, we shared detailed insights in our applied
research methodology, which involved experts from in-
terdisciplinary teams.

Our future work will focus on applying the research
process to additional fields of cancer research in course of
precision medicine. Furthermore, we will investigate how
a huge library of tumor samples can be used as training
data to create more stable prediction models to discover
new medical insights.
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