
Lessons Learned from the Development of Mobile Applications for

Fall Detection
Ítalo Linhares, Rossana M. C. Andrade, Evilasio C. Júnior, Pedro Almir Oliveira,

Breno Oliveira and Paulo Aguilar

Group of Computer Networks,
Software Engineering and Systems (GREat)

Federal University of Ceará
Fortaleza, Ceará, Brazil

Email: {italoaraujo, evilasiojunior, pedromartins,
brenooliveira, pauloaguilar}@great.ufc.br, rossana@ufc.br

Abstract—Falls are the leading cause of older adults injuries and
solutions are needed to address this issue. One way to meet this is
by developing applications that use sensors embedded in devices
like smartphones and smartwatches. This paper presents our
experience in developing such applications and the lessons learned
during their development and evolution. First, we developed an
application called fAlert to identify a fall using data from a
smartphone’s accelerometer. However, the usage of this kind of
mobile device for detecting falls is not natural, because it needs to
be positioned at the level of the user’s chest. Then, we developed
a new app called WatchAlert, which runs in smartwatches. In
that case, we also created an algorithm that uses two sensors,
accelerometer and gyroscope, and later evolved it to use only the
accelerometer with better results. Moreover, we use first a fall
detection threshold algorithm in this solution. Next, we expanded
this strategy to use threshold and machine learning algorithms,
which were evaluated considering the accuracy, false negative,
and time criteria as well as their features. We believe that this
study can support the development of new systems and devices
for detecting falls. As future work, it would be interesting to
assess the related energy cost of the fall detection approaches
studied.

Keywords–Falls; Lessons; IoT Health; IS for healthcare.

I. INTRODUCTION

According to the World Health Organization (WHO), falls
are the leading cause of injuries in older adults. About 28-
35% of the people aged 65 years and over fall every year, and
this number increases when the person’s age is over 70 years
old, achieving 32-42% [1]. Also, falls cause 40% of all injury
deaths [1]. These facts represent alarming data, and an effort
is needed to decrease this number. One way to meet this need
is preventing or quickly identifying older adults falls.

There are many ways to detect falls, such as with sensors or
computer vision. In case of sensors, they can be embedded in
smartphones, smartwatches, and other devices like wearables
to monitor the vital signs and the activities performed by the
user [2]–[5]. Considering computer vision, we can use image
processing to identify if a person has fallen or if he/she is
performing another activity [6].

Although we can use computer vision, many users may
feel uncomfortable because their activities can be recorded to
be processed. Still, users may not trust data storage and the
permissions of those who will access the images. Then, we
perceive an impact on the usage of these systems related to
reliability issues, and we should use a way less invasive to
users, which can be using the sensors previously cited.

Based on this, we can find in the literature efforts to detect
a fall using sensors embedded in wearables devices such as
smartphones and smartwatches as in [2] [7]–[10] or mixing
data of wearables with other devices as in [11]. Examples
of sensors present in these devices that can help detect a
fall are the accelerometer and the gyroscope to check the
user movement, and the magnetometer that can aid in the
identification of the fall location.

Thus, we developed two applications and three thresholds-
based algorithms to detect a fall. The first solution developed
is the fAlert application [4], which runs in smartphones and
uses accelerometer and magnetometer sensors. As the device
should be situated in the user’s chest, its usage is not natural
to the older adult. So, we sought to evolve the solution using
smartwatches.

This solution is the WatchAlert application [5], which, in
the first version, was developed with two sensors, accelerom-
eter and gyroscope, to detect a fall. We continued looking for
improvements. Then, we observed that we could evolve the
algorithm to use only one sensor without causing a significant
reduction in its accuracy, which indicates how capable the
algorithm is to identify a real fall.

Considering our experience in the development of such
fall detection solutions, including the use of thresholds and
machine learning techniques, and service-oriented architecture,
we present the evolution of these algorithms, along with
the motivations to do this and the lessons learned in this
process. We consider as the main contribution of this paper
is to compile and discuss the top six lessons learned while
developing fall detection solutions to facilitate future research.
These lessons could guide the developers of the detection fall
solutions to avoid the same problems that we faced. Then,
this contribution can improve the Software Engineer area to
support the e-health solutions.

This paper is divided as follows: Section II discusses
related work. Section III shows the fAlert and WatchAlert
applications in addition to the fall detection algorithm versions.
Lessons learned are discussed in Section IV. Finally, Section
V brings conclusions and future directions.

II. RELATED WORK

As mentioned in the previous section, there are several
works focused on fall detection [12]. The significant public
health problem generated by falls, especially in the elderly
population, can justify this large number of papers. However,
it is tough to find papers with lessons learned about the

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

development of fall detection solutions. In general, each paper
focuses on presenting, in a particular way, its fall detection
approach and the results obtained with this model. Moreover,
the absence of standardization regarding sensors, algorithms,
and evaluation methods makes a comparison between these
works a hard task.

In our research, we find just a recent paper with lessons
learned related to fall detection systems [13], but there are
other works presenting fall detection applications similar to
those created throughout this research [14]–[17].

The work in [13] presents challenges concerning the cre-
ation of a multimodal database for fall detection data. The data
acquisition system created obtains data from infrared sensors,
wearable sensors, cameras, and an ECG (electrocardiogram)
monitor. The authors state that the lessons learned are funda-
mental to database consolidation.

Different approaches use pre-processing data from the
accelerometer to select the best features for the fall detection
systems [15] [17]. These studies work with threshold-based
algorithms, but also use other strategies to achieve better re-
sults. In [15], the proposed system, besides the accelerometer,
utilize gyroscope and magnetometer in a secondary threshold
verification to achieve more accuracy. [17] uses optimization
algorithms (genetic algorithms, and simulated annealing) to set
thresholds.

Some researches advocate the use of machine learning
algorithms to detect falls. The system proposed in [14] presents
a fall detection solution that uses an accelerometer and Sup-
ported Vector Machines (SVM). The authors propose a data
pre-processing, combining features to find a better combination
for the SVM method. Moreover, the study confronts the
machine learning algorithm proposed with a threshold-based
solution, and, according to the authors, when the parameters of
falling and non-falling are very close, the results of the SVM
method are better than the threshold-based algorithm.

However, instead of using either approach, some authors
prefer to combine both thresholds and machine learning algo-
rithms in a fall detection solution. The work in [16] proposes
a design model to create a healthcare monitoring system
based on wearables. This model combines both threshold
and machine learning algorithms (decision tree, SVM, and k-
Nearest Neighbor) to detect a fall.

The study in [13] addresses the difficulties related to
building a fall database, which is important for fall detection
applications but does not address the process of developing
these applications. The papers [14]–[17] present different
approaches to create fall detection systems. Each approach
contributes to understanding the challenges and possible so-
lutions in the design and modeling processes of these systems.
However, there are other challenges during the development
process that the researches do not show.

In contrast, we believe that our work stands out for
presenting lessons learned, focusing on good practices for the
development of fall detection applications. In this article, we
discuss issues related to the design, modeling, and development
processes. Besides, we expose lessons learned for fall detec-
tion strategies based on thresholds and in machine-learning
techniques.

These lessons learned come from the experience of several
years in the study and development of fall detection applica-
tions. They can assist the process of developing new solutions

and patterns by indicating important steps to be followed and
difficulties common to the process of creating this type of
application.

III. EVOLUTION OF APPLICATIONS

A. fAlert
We show the first solution that we developed to detect a

fall. As said in the previous section, we propose an algorithm
to analyze the user acceleration with smartphone support. The
behavior was analyzed with an algorithm whose input is the
data collected from the accelerometer and the magnetometer.

As we saw previously, the accelerometer data allows the
calculation of acceleration and the comparison with the ac-
celeration of gravity. The collision with the floor can also be
calculated with the acceleration, but for the verification to be
correct in the fAlert algorithm, the time window is 1.5 seconds.

In sequence, the algorithm checks if the device is in a
position of 45 degrees about the floor. If the answer to this
verification is positive, the algorithm detects a fall, and it asks
the user if he/she is well. He/she has 25 seconds to answer,
and in negative case, fAlert sends a message to a caregiver.

We evaluated this algorithm considering only one daily ac-
tivity, the user laying, and some fall scenarios. We executed the
experiment 30 times with four combinations of the thresholds,
changing the value of detection of a collision with the floor.
As values for the thresholds, we have the threshold for free
fall equal to 0.2 times of the gravity acceleration (0.2G), and
the threshold to determine the collision equal to (1.5G). This
setting resulted in 93% of detected falls, and 67% of the daily
activities recognized.

B. WatchAlert
We developed the WatchAlert application to run in a

smartwatch, collecting data from the accelerometer and the
gyroscope in the first version and using only the accelerometer
in the second version.

1) Architectural Aspects: Although we know the device
constraints, we do not know what the impact in the appli-
cation is. When we started the development of WatchAlert,
we decided that the algorithm (collecting and processing)
should run entirely in the smartwatches. When we started the
software testing phase of this first version of the algorithm,
the application would break when it collected and processed
the data simultaneously.

A solution adopted by us was the code division to run
the collect task in the smartwatch and processing in the
smartphone connected with the smartwatch. With this division,
in the flow shown in Figure 1, the only activity performed in
the smartwatch is “Collect the data”.

With this problem solved, we can perform the tests in the
WatchAlert application, and we also verify that the collection
was not continuous, and it does not allow the need to define
services to run in the smartwatch to allow the collect.

2) First Version of the Algorithm: We defined an algorithm
based on [2], and we used the data from the accelerometer
and gyroscope, combining them to detect a fall. To do this,
the steps performed in the algorithm verify initially if the user
suffers a free fall from the analysis of the three axes of the
accelerometer according to (1). If the values obtained with the
calculation is lower than 5,3936, the first signal of a fall is
detected.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

Figure 1. Flow of the second version of WatchAlert algorithm.

V A(ti) =

√
Ax

2(ti) +Ay
2(ti) +Az

2(ti) (1)

In sequence, the algorithm checks the user impact on the
floor looking for another evidence, also using (1), and the
result should be higher than 23,5359. This procedure is verified
considering the interval of 0.4 seconds after the free fall. The
third step of the algorithm, different from the previous steps,
uses the data from the gyroscope to determine the movement
performed by the user’s arm. The gyroscope data contains
three axes like the accelerometer, but the difference is that
it calculates the angle of rotation. If the user moves the arm
faster than 250◦/s in the interval between the free fall and the
impact, we have another sign of a fall. Equation (2) allows us
to know the angle of movement.

GS(ti) =

√
Gy

2(ti) +Gz
2(ti) (2)

Following the steps, we return to use the accelerometer
data to continue finding fall evidence. At this moment, the
algorithm calculates the standard deviation from the free fall
until the collision with the floor to verify if the resultant value
is similar to the standard deviation of a fall previously defined.

The last step that allows us to diagnose a fall is the user’s
state after a possible fall. We should consider three scenarios: i)
user is active; ii) user is inactive; and iii) user is partially active.
In the first situation, we have the user performing a movement
as clapping or jumping, and the accelerometer behavior is
like a new impact. If the user is inactive, he/she falls and
is immobile, needing fast support. Moreover, the last one, the
user maintains a movement, but differently from the active
state, he/she makes less abrupt movements.

To calculate this, we compare the result of the sum of the
acceleration determined by (3) for 1.5 seconds, starting in the
moment of the impact verified in the second step. If the result
is greater than 1274,86, the algorithm identifies a fall.

SAi =

N∑
j=1

[|Ax(j)|+ |Ay(j)|+ |Az(j)|] (3)

3) Second Version of the Algorithm: We observed the algo-
rithm described in Section III-B2 and performed an improve-
ment to use only the accelerometer data from smartwatches.

In comparison with the previous version of the algorithm, we
made two main changes: i) remove the gyroscope step; and ii)
changes in the equation of the last step to identify the fall.

The first change is motivated by the evolution of our
algorithm. About the second main difference, we performed it
based on the analysis during tests of the first version because
raw data can be too imprecise. To improve this, we use the
standard deviation considering the same time interval, 1.5
seconds after the possible collision with the floor.

As a consequence of all these improvements, we changed
thresholds used to determine a fall. We performed an exper-
iment to detect these new values with data collected (data
available in: https://bit.ly/31wNiiQ) using the LG Urbane
smartwatch and performed with five persons, whose profile
is described in Table I, and we found: i) in the first step, was
6.864655. ; ii) in the second step, was 29.41995; iii) in the
third step, was 9.80665; and iv) we change to 4.903325 in the
fourth step.

Figure 2. Overview of the third version of WatchAlert.

C. Machine Learning Algorithm
Both algorithms previously presented use thresholds-based

fall identification strategy. This strategy verifies the combina-
tion of a set of measurements that, when exceeding certain
thresholds, can characterize a possible fall event. Another

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

TABLE I. PROFILE OF PARTICIPANTS DURING DATA COLLECTION.

P1 P2 P3 P4 P5
Gender M M M M F

Age 28 30 23 20 20
Height 1.78m 1.72m 1.73m 1.83m 1.64m
Weight 70Kg 90kg 90Kg 82Kg 55Kg

strategy that can be used to detect falls is the usage of
supervised machine learning algorithms. We have used this
new approach to create the third version of WatchAlert. Figure
2 shows an overview of this version.

We evaluate the machine learning algorithms and obtained
more accuracy than threshold algorithms. However, it is impor-
tant to highlight that the usage of machine learning requires a
higher processing power than the strategy with thresholds. This
processing power can be unfeasible for some smartphones,
and we used the cloud to execute this algorithm. Considering
the message exchange, total data processing time, and latency,
we achieved a low response time to trigger the alarm, using
a simple WiFi internet connection and 4G. We believe that
response time is within an acceptable margin. Below, we detail
the selection and evaluation of the features and the machine
learning algorithm.

It is worth mentioning that in this third version of
WatchAlert, if the application is offline, it not stop working. In
this case, WatchAlert behaves as in its second version, using
the threshold approach that is less expensive for the mobile
device and also allows to identify possible falls with slightly
less accuracy than the Machine Learning approach.

1) Feature Selection: One of the first activities to create a
new machine learning model is to select the features that can
be used to characterize the relevant events. These features are
values based on treatments or calculations made on the raw
data, which we obtained from the smartwatch accelerometer.

TABLE II. FEATURES EQUATIONS.

Measure Equation

Mean (V1 + V2 + V3 + ...Vn−1 + Vn)/n

Minimum (MIN) Min(V1, V2, V3, ...Vn−1, Vn)

Maximum (MAX) Max(V1, V2, V3, ...Vn−1, Vn)

Standard Deviation
(STD)

√∑n
i=1(Vi−Mean)2

n

RMS
√

1
n

(
V 2
1 + V 2

2 + V 2
3 + ...V 2

n−1 + V 2
n

)

Kurtosis
∑n

i=1(V1−Mean)4

(
∑n

i=1(V1−Mean)2)
2 − 3

As shown before, the (1) is used to combine the three axes
values of the accelerometer. Based on resulting value V A(ti)

for each measurements set during a given period, we calculate
the following features: mean, maximum, minimum, standard
deviation, RMS, and Kurtosis. Table II presents the equations
referring to the calculation each one of these features. In this
table, Vi is a value of (1) for measurement i, and n is the
measurement number.

These six features are used to represent the classes of
events that we want to detect (fall and no-fall). The choice of
these features was made based on the literature, since they are
widely used by several other surveys of fall detection solutions,
such as [18]. We emphasize that the evaluation process of
these features is essential to choose only the features that
collaborate with the result. Below, we present the machine
learning algorithms examined and the feature analysis.

2) Algorithms and Feature Evaluation: First, we performed
a correlation analysis among features to remove those that
were directly correlated. We understand that this correlation
depends on the data, but keep this behaviour among the
features can reduce the performance of the machine learning
classifiers. Thus, first it was applied the Shapiro-Wilk nor-
mality test [19]. At the 0.05 significance level, the data was
not significantly drawn from a normally distributed population.
Because our data have just ordinal fields and it is not normally
distributed, we decided to use the Spearman correlation [20].
Table III presents the results obtained using the OriginPro
Data Analysis and Graphing Software v9.1 [21]. Considering
these results, we noticed a high correction between RMS and
STD (0.76955), RMS and MEAN (0.88088), RMS, and MAX
(0.70221), MAX and STD (0.87859). Hence, we decided to
remove the Standard Deviation (STD) and Mean (MEAN)
features of this evaluation, keeping the Maximum (MAX)
because it is very relevant to the previously presented threshold
algorithm.

TABLE III. SPEARMAN CORRELATION.

STD MEAN MAX MIN RMS Kurtosis

STD 1 0.4575 0.87859 -0.74941 0.76955 -0.31087

MEAN 0.4575 1 0.4587 -0.00775 0.88088 -0.33049

MAX 0.87859 0.4587 1 -0.63796 0.70221 0.0596

MIN -0.74941 -0.00775 -0.63796 1 -0.3261 0.07504

RMS 0.76955 0.88088 0.70221 -0.3261 1 -0.40499

Kurtosis -0.31087 -0.33049 0.0596 0.07504 -0.40499 1

After feature selection, it was possible to evaluate the per-
formance of two algorithms: Support Vector Machines (SVM)
[22], and Random Forest [23]. We selected these algorithms
because some previous tests showed that they present better
results when compared with other algorithms such as MLP,
J48, Random Tree, and Naive Bayes. Furthermore, as many
works in the literature have already analyzed many classifiers
for the fall detection problem [24], we have decided to deepen
this analysis considering only these two algorithms. Regarding
SVM, we used three different kernels: Linear, Polynomial, and
Gaussian.

These algorithms - Random Forest and SVM - were
executed considering classifiers with attribute selection and
with attribute selection combined to cost-sensitive learning
[25]. For the Random Forest attribute selection, we used
Information Gain. SVM attribute selection was performed with
SVM Attribute Evaluation [26]. The cost matrix [[0, 5], [1, 0]]

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

used in the Cost-Sensitive Classifiers penalized five times more
the false negatives, i.e., cases in which a fall occurred and
the classifier labeled no-fall. Considering the negative impact
caused by falls, failure to detect a fall is extremely dangerous.

Regarding datasets, we used an original dataset with 359
no-fall instances and 67 fall instances. We understand that
this number of instances represents a small dataset, but it is
important to highlight the difficulty of getting large and real
data related to elderly falls. Thus, we argue that this dataset
can provide evidence about the feasibility of our approach.
So, considering feature correction analysis, we have created
a similar dataset, but without standard deviation (STD) and
mean (MEAN) features. Finally, due to the class unbalancing,
we have created a third version of the dataset applying the Syn-
thetic Minority Oversampling TEchnique (SMOTE) [27]. This
last dataset has 359 no-fall instances and 268 fall instances.
All experiments were performed on the WEKA data mining
software tool [28], and each classifier was executed 30 times.

Table IV presents the results considering accuracy, pre-
cision, recall, true positive rate (TPR), false-negative rate
(FNR), false-positive rate (FPR), true-negative rate (TNR),
elapsed time training (in seconds), and elapsed time testing (in
seconds). We were seeking for a classifier with high accuracy,
high recall, and low false-positive rate, because it is crucial to
classify data correctly (effect analyzed by accuracy), avoiding
the non-identification of a true fall (effect analyzed by recall),
and reducing the number of false fall events alarms (effect
analyzed by false-positive rate). The Equations (4), (5) and
(6) present how these metrics are calculated [29].

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The best result was obtained using a Random Forest
algorithm with Information Gain attribute selection, and con-
sidering the original dataset with SMOTE. We got 95.13%
of accuracy, 95.13% of recall and 5.20% of false-positive rate.
With these results, it is important to highlight that still remains
a gap for future studies regarding the improvement of accuracy
and recall, and the reduction of false-positive rate. In a real
context, with a lot of no-fall events, 5.20% of fall alerts in
regular situations can reduce users’ adherence to this kind of
monitoring. As in this work, we used only the default algorithm
parameters, these results can be improved considering a fine-
tuning of the parameters.

To conclude our analysis, we also checked the average time
spent by each classifier in training and testing. We observed
that the Random Forest time for both training and testing
activities was not the best. However, the values did not differ
much from the best results. In this case, the Random Forest
with Information Gain Attribute Selection takes 0.17 seconds
for training and 0.00175 seconds for testing. Because of this
evaluation, we decided to use a Random Forest classifier in
the WatchAlert third version.

IV. LESSONS LEARNED
We describe in this section the lessons learned during the

development of the applications fAlert and Watchalert in three
versions of algorithms and the features used in them. During
the development of the applications, we tested the algorithms
in two ways: i) offline, which is when we implement the
algorithm in a device not used to collect and detect a fall;
ii) online, which is the use of the algorithm in the real device
to monitor the user.

The first way, offline mode, is adequate when we
want to know the number of falls and daily activities
correctly identified based on the data that we collected using
smartwatches. However, we can know this information, but we
need to know how the algorithm runs in a real device and the
consequences of its use. Furthermore, with our data analysis
and considering both ways, we learned six lessons described
hereafter. These lessons are described with a generic problem
that we face, followed by the experienced situation and the
lesson learned during our work.

LL01: Use Flow-based Programming
• Problem: Considering the sending of batch data, one

problem occurs when the free-fall occurs in a batch,
and the impact with the floor and the user state are
in another. Then, the fall detection behavior can be
compromised and the emergence service or caregivers
cannot be contacted. How to deal with this situation?

• Experience: The problem was experienced during the
development of the first version of WatchAlert. The
accelerometer data from smartwatch was collected and
sent in batch to smartphone, and several times the fall
detection results was a daily activity, generating the
false-negative response. In our studies to detect the
cause of the problem, we identified that the batch
data compromised the results, because the free fall
was in different batch of the floor impact or the user
state. Then, we search for the best way to correct the
problem, and the solution found was the Flow-based
Programming.

• Lesson: Considering our experience, we suggest the
developers of the fall detection solutions use flow-
based programming because it allows the sequenced
data to avoid the improvement of the false-negative
rate. This strategy is especially important in these
situations because the fall detection solution deal with
real-time data and needs of the precise and correct
result to avoid the severe sequelae with the user.

LL02: Use Service-Oriented Architecture (SOA)
• Problem: As each device perform several actions, for

instance, the smartwatch collects the data and interact
with the user to receive the answer of the real status
or the smartphone, which gets the data, process it
and sends the message to caregivers or emergence
service, it is important to deal with this. How can
the developers of the fall detection solutions maintain
several functionalities without one impact in another?

• Experience: In the first version of WatchAlert, we
tried to run the code in sequence, according to the
fall detection steps. However, there is a problem when
the smartwatch continues collecting the data and wait
for the smartphone response; then, the fall detection

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

TABLE IV. TABLE WITH ACCURACY AND FALSE-NEGATIVE RATE OF EVALUATED CLASSIFIERS.

Dataset Classifier Classifier Detail Accuracy Precision Recall TPR FNR FPR TNR Time Training (s) Time Testing (s)

Original

Attribute Selected

Classifier

RandomForest (InfoGain) 93.85 93.94 93.85 93.85 6.15 25.09 74.91 0.11 0.00093

SVM (SVMAttributeEval) - Linear Kernel 93.46 93.70 93.46 93.46 6.54 20.24 79.76 0.20 0.00076

SVM (SVMAttributeEval) - RBF Kernel 91.27 91.21 91.27 91.27 8.73 41.42 58.58 0.06 0.00155

SVM (SVMAttributeEval) - Polynomial Kernel 87.21 90.33 87.21 87.21 12.79 23.06 76.94 53.49 0.00064

Cost Sensitive

Classifier

AttributeSelected (InfoGain): RandomForest 93.43 93.73 93.43 93.43 6.57 19.09 80.91 0.10 0.00078

AttributeSelected (SVMAttributeEval): SVM - Linear Kernel 88.83 91.34 88.83 88.83 11.17 15.76 84.24 0.41 0.00063

SVM - Linear Kernel 88.64 91.28 88.64 88.64 11.36 15.65 84.35 0.43 0.00203

SVM - Polynomial Kernel 83.10 88.71 83.10 83.10 16.90 20.75 79.25 53.59 0.00141

SVM - RBF Kernel 87.77 88.58 87.77 87.77 12.23 30.90 69.10 0.02 0.00173

Original -

(STD,

MEAN)

Attribute Selected

Classifier

RandomForest (InfoGain) 93.62 93.69 93.62 93.62 6.38 25.30 74.70 0.10 0.00093

SVM (SVMAttributeEval) - Linear Kernel 93.60 93.86 93.60 93.60 6.40 19.96 80.04 0.21 0.00096

SVM (SVMAttributeEval) - RBF Kernel 89.86 90.05 89.86 89.86 10.14 49.71 50.29 0.05 0.00184

SVM (SVMAttributeEval) - Polynomial Kernel 80.23 86.47 80.23 80.23 19.77 30.09 69.91 53.51 0.00047

Cost Sensitive

Classifier

AttributeSelected (InfoGain): RandomForest 92.49 93.05 92.49 92.49 7.51 19.03 80.97 0.10 0.00047

AttributeSelected (SVMAttributeEval): SVM - Linear Kernel 89.06 91.55 89.06 89.06 10.94 15.57 84.43 0.34 0.00143

SVM - Linear Kernel 88.92 91.47 88.92 88.92 11.08 15.48 84.52 0.42 0.00126

SVM - Polynomial Kernel 64.50 82.20 64.50 64.50 35.50 29.73 70.27 53.43 0.00124

SVM - RBF Kernel 87.28 87.51 87.28 87.28 12.72 36.57 63.43 0.02 0.00156

Original +

SMOTE

Attribute Selected

Classifier

RandomForest (InfoGain) 95.13 95.27 95.13 95.13 4.87 5.20 94.80 0.17 0.00175

SVM (SVMAttributeEval) - Linear Kernel 88.47 88.72 88.47 88.47 11.53 12.35 87.65 0.31 0.00110

SVM (SVMAttributeEval) - RBF Kernel 92.09 92.33 92.09 92.09 7.91 8.19 91.81 0.06 0.00277

SVM (SVMAttributeEval) - Polynomial Kernel 88.49 88.98 88.49 88.49 11.51 11.81 88.19 36.29 0.00189

Cost Sensitive

Classifier

AttributeSelected (InfoGain): RandomForest 93.11 93.65 93.11 93.11 6.89 5.97 94.03 0.15 0.00064

AttributeSelected (SVMAttributeEval): SVM - Linear Kernel 76.48 81.66 76.48 76.48 23.52 19.45 80.55 0.33 0.00139

SVM - Linear Kernel 76.40 81.54 76.40 76.40 23.60 19.56 80.44 0.29 0.00295

SVM - Polynomial Kernel 87.52 88.60 87.52 87.52 12.48 11.45 88.55 35.51 0.00109

SVM - RBF Kernel 89.81 91.26 89.81 89.81 10.19 8.43 91.57 0.03 0.00281

was impacted, leading to a false-negative situation. To
solve this, we tried to put services in the smartwatch,
even with hardware constraints, and it works. The
services were to collect data, communicate with the
user, and connect with the smartphone. We perform
the same with a smartphone to avoid any problem like
a smartwatch, and the WatchAlert works well.

• Lesson: The lesson learned was that we should de-
velop an application using Service-Oriented Archi-
tecture [30], dividing each functionality in service.
For instance, we can run the data collection and
check the user‘s health in the smartwatch. This avoids
the increase of the false-negative rates, turning the
application more accurate.

LL03: Divide the code in different devices
• Problem: Wearables devices have constraint hard-

ware, which allows the use of a few services and
algorithms. Then, these devices cannot collect and
process the data and call the user’s caregivers. How
we deal with this situation without to impact on the
result?

• Experience: We note a problem with functionalities
and the accuracy of the algorithms when we use only
the smartwatch. As we deal with an IoT solution, we
consider dividing the algorithms in different devices
of the way that the smartwatch collects the data, sends
them to the smartphone, which goal is to process it,
and returns the result to the smartwatch. Furthermore,
we also divide the code between the smartphone and
Cloud to improve the detection and use of Machine
Learning algorithms. Then, the problem was solved,
and we do not suffer any impact with the time of fall

detection.
• Lesson: The lesson learned with the experienced sit-

uation was the division of the code between different
devices according to each hardware configuration.
This strategy is possible due to the IoT solutions,
which are composed of several devices and sensors
with different configurations. Then, with this lesson,
the developers of fall detection applications can better
use the devices and do not suffer any impact on
the accuracy of the algorithm neither in any other
important service of the application.

LL04: Use offline methods of fall detection integrated
with ML algorithms
• Problem: Health applications are critical, and the

information should always be available. However, if
the application uses only algorithms in the cloud, the
solution can have a problem when the connectivity
with the Internet and the service is inaccessible. Then,
how can we assure the high availability of the service
and a self-adaptive detection model?

• Experience: We tried to use a cloud-based solution to
execute our ML approach, but this strategy is affected
by network problems. Considering the criticality of
this type of application, it is also essential to use
an offline method to ensure service availability even
with network problems. This way, we can guarantee
a seamless service that evolves using new data even
without internet connectivity. As smartwatches are
frequently associated with a smartphone, the con-
nection is Bluetooth, and it continues even with a
problem with an Internet connection, which allows us
to maintain the service.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

• Lesson: If you want to use ML algorithms for fall de-
tection, it should be in a cloud, and it is crucial to have
an alternative method, until threshold algorithm, that
does not depend on Internet access. Thus, we suggest
putting at least another algorithm in the smartphone to
run in the situations of Internet problems. Therefore,
it is possible to ensure high service availability even
that the application lost the internet connection.

LL05: Analysis and Selection of the best features for the
ML algorithm
• Problem: When using machine learning for fall detec-

tion, we can use several features and not all features
contribute to improve the result. Moreover, the greater
the number of features may consequently make the
algorithm processing slower. Then, how can we select
better features for the machine learning algorithm?

• Experience: We use a set of features as an input
of ML algorithms as root mean square, mean, max,
and min values. However, we note that the results
could be improved. In the first step to detect the best
improvement, we analyzed the correlation between
features used, which showed us the need to change
the features selected and demonstrated in the Section
about ML algorithms. Consequently, when we execute
the ML algorithms, the results were improved, and the
processing time was shorter.

• Lesson: For best results with the ML algorithms,
the features used must be selected using specific
techniques for this analysis considering the application
scenario. We recommend using correlation analysis
and attribute analysis algorithms, such as Informa-
tion Gain and SVM Attribute Evaluation. In the fall
detection scenario, we suggest using the maximum,
minimum values, RMS, and kurtosis, when use only
accelerometer data.

LL06: Choose the most suitable ML algorithm
• Problem: Many times, we see works that use ML

algorithms for fall detection but do not explain the
chosen. However, some factors impact the algorithm
results, e.g., the feature type, the amount of data,
and how this data is organized. Then, what algorithm
should we choose?

• Experience: Firstly, we choose the ML algorithms for
fall detection apps based on literature, but we decide to
test other ML algorithms when we change the features.
To our surprise, the results were different from the
literature knowledge and the tree-based algorithms,
like Random Forest, which is not most used as the
best algorithm for detection fall scenario considering
the accelerometer data that we have. Then, for each
situation, several algorithms should be tested.

• Lesson: Choose the ML algorithm for your fall detec-
tion applications based on the data available. In the fall
detection scenario, we suggest at least evaluate vari-
ations of SVM algorithm and tree-based algorithms
when work with only the accelerometer data.

V. CONCLUSION
This paper discusses issues related to the development of

mobile fall detection applications. We presented two applica-
tions and three algorithms developed by the GREat research

group. Throughout this process, we have built up a good
experience on this topic. Thus, it was possible to describe the
six main lessons learned about fall detection by smartphones
and smartwatches.

In short, we observed that the usage of flow-based program-
ming and Service-Oriented Architecture (SOA) could assist
in the development of fall detection applications due to a
significant amount of data that needs to be processed and to
keep the data capture service independent of handling them.
Also, due to the smartwatches hardware restrictions, it is
crucial to delegate to the smartphone the processing of data.
Finally, for cases that involve cloud-based machine learning
approaches, it is essential to have an alternative method that
does not depend on Internet access.

In the scenario of fall detection using accelerometer data,
we observe that maximum and minimum values, RMS and
kurtosis are the most important features. In sequence, on
the contrary to the literature, we identified that the Random
Forest is better than SVM considering the machine learning
algorithms found in the literature.

Thus, we believe that by following these guidelines, it is
possible to create a robust, seamless, and easy-to-maintain
fall detection service using sensors present on smartphones or
smartwatches. As future work, we intend to evaluate the battery
and latency, and comparing the thresholds and the machine
learning algorithms.

ACKNOWLEDGMENT
The authors would like to thank CNPQ for the Productivity

Scholarship of Rossana Maria de Castro Andrade DT-2 (No

315543 / 2018-3) and Coordination of Improvement of Higher
Level Personnel - Brazil (CAPES) that provided to the Evilasio
Costa Junior a Ph.D. scholarship.

REFERENCES
[1] World Health Organization, “Global re-

port on falls prevention in older age,”
https://www.who.int/ageing/publications/Falls_prevention7March.pdf,
2007, [retrieved: October, 2017].

[2] S.-L. Hsieh, C.-C. Chen, S.-H. Wu, and T.-W. Yue, “A wrist-worn fall
detection system using accelerometers and gyroscopes,” in Networking,
Sensing and Control (ICNSC), 2014 IEEE 11th International Confer-
ence on. IEEE, 2014, pp. 518–523.

[3] P. Kostopoulos, T. Nunes, K. Salvi, M. Deriaz, and J. Torrent, “F2d:
A fall detection system tested with real data from daily life of elderly
people,” in 2015 17th International Conference on E-health Networking,
Application Services (HealthCom), Oct 2015, pp. 397–403.

[4] L. S. Piva, A. B. Ferreira, R. B. Braga, and R. Andrade, “falert: An
android system for monitoring falls in people with special care,” in
Workshop on Tools and Applications of the 20th Brazilian Symposium
on Multimedia and Web Systems, 2014.

[5] R. L. Almeida, A. A. Macedo, Í. L. de Araújo, P. A. Aguilar, and
R. M. Andrade, “Watchalert: An evolution of the falert app for detecting
falls on smartwatches,” in Extended Proceedings of the XXII Brazilian
Symposium on Multimedia and Web Systems. SBC, 2016, pp. 124–
127.

[6] R. Cucchiara, A. Prati, and R. Vezzani, “A multi-camera vision system
for fall detection and alarm generation,” Expert Systems, vol. 24, no. 5,
2007, pp. 334–345.

[7] I. L. de Araújo, L. Dourado, L. Fernandes, R. M. d. C. Andrade, and
P. A. C. Aguilar, “An algorithm for fall detection using data from
smartwatch,” in 2018 13th Annual Conference on System of Systems
Engineering (SoSE), June 2018, pp. 124–131.

[8] A. Ramachandran, A. R., P. Pahwa, and A. K. R., “Machine learning-
based techniques for fall detection in geriatric healthcare systems,”
in 2018 9th International Conference on Information Technology in
Medicine and Education (ITME), Oct 2018, pp. 232–237.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

[9] D. Ajerla, S. Mahfuz, F. Zulkernine, and R. C. Pryss, “A real-time
patient monitoring framework for fall detection,” Wireless Communi-
cations and Mobile Computing, vol. 2019, jan 2019, p. 13.

[10] F. Hussain, F. Hussain, M. Ehatisham-ul Haq, and M. A. Azam,
“Activity-aware fall detection and recognition based on wearable sen-
sors,” IEEE Sensors Journal, vol. 19, no. 12, 2019, pp. 4528–4536.

[11] R. Jansi and R. Amutha, “Detection of fall for the elderly in an indoor
environment using a tri-axial accelerometer and kinect depth data,”
Multidimensional Systems and Signal Processing, 2020, pp. 1–19.

[12] N. Noury et al., “Fall detection-principles and methods,” in 2007 29th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, 2007, pp. 1663–1666.

[13] C. J. Peñafort-Asturiano, N. Santiago, J. P. Núñez-Martínez, H. Ponce,
and L. Martínez-Villaseñor, “Challenges in data acquisition systems:
lessons learned from fall detection to nanosensors,” in 2018 Nanotech-
nology for Instrumentation and Measurement (NANOfIM). IEEE,
2018, pp. 1–8.

[14] S.-H. Liu and W.-C. Cheng, “Fall detection with the support vector
machine during scripted and continuous unscripted activities,” Sensors,
vol. 12, no. 9, 2012, pp. 12 301–12 316.

[15] B. Andò, S. Baglio, C. O. Lombardo, and V. Marletta, “A multisensor
data-fusion approach for adl and fall classification,” IEEE Transactions
on Instrumentation and Measurement, vol. 65, no. 9, 2016, pp. 1960–
1967.

[16] D. Dziak, B. Jachimczyk, and W. Kulesza, “Iot-based information sys-
tem for healthcare application: design methodology approach,” Applied
Sciences, vol. 7, no. 6, 2017, p. 596.

[17] S. Khojasteh, J. Villar, C. Chira, V. González, and E. De La Cal,
“Improving fall detection using an on-wrist wearable accelerometer,”
Sensors, vol. 18, no. 5, 2018, p. 1350.

[18] N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Automatic fall
monitoring: a review,” Sensors, vol. 14, no. 7, 2014, pp. 12 900–12 936.

[19] A. Ghasemi and S. Zahediasl, “Normality tests for statistical analysis: a
guide for non-statisticians,” International journal of endocrinology and
metabolism, vol. 10, no. 2, 2012, p. 486.

[20] C. Wissler, “The spearman correlation formula,” Science, vol. 22, no.
558, 1905, pp. 309–311.

[21] OriginLab, “Origin: Data analysis and graphing software,”
https://www.originlab.com/Origin, October 2020, (Accessed on
10/23/2020).

[22] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their applications,
vol. 13, no. 4, 1998, pp. 18–28.

[23] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001,
pp. 5–32.

[24] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The Journal of Machine Learning Research, vol. 15, no. 1, 2014, pp.
3133–3181.

[25] N. Thai-Nghe, Z. Gantner, and L. Schmidt-Thieme, “Cost-sensitive
learning methods for imbalanced data,” in The 2010 International joint
conference on neural networks (IJCNN). IEEE, 2010, pp. 1–8.

[26] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine Learning,
vol. 46, 2002, pp. 389–422.

[27] N. V. C. et. al., “Synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, vol. 16, 2002, pp. 321–357.

[28] M. Hall et al., “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, 2009, pp. 10–18.

[29] C.-Y. Hsieh, K.-C. Liu, C.-N. Huang, W.-C. Chu, and C.-T. Chan,
“Novel hierarchical fall detection algorithm using a multiphase fall
model,” Sensors, vol. 17, no. 2, 2017, p. 307.

[30] N. M. Josuttis, SOA in practice: the art of distributed system design.
" O’Reilly Media, Inc.", 2007.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-817-4

GLOBAL HEALTH 2020 : The Ninth International Conference on Global Health Challenges

