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Abstract—Dynamic Voltage/Frequency Scaling (DVFS) is a 

well-known technique that dynamically scales cores’ 

Voltage/Frequency (V/F) levels to save energy or minimize the 

application’s execution time in manycore systems. This paper 

proposes an optimization framework that provides a DVFS-

based cost- and energy-efficient methodology to balance time-

energy tradeoffs in manycore systems with Voltage/Frequency 

Island (VFI) architectures. The proposed methodology has two 

steps: 1) formulating a Mixed Integer Linear Programming 

(MILP) problem that populates islands through the task-to-

island assignments given that the islands are symmetric, 2) 

formulating an Integer Linear Programming (ILP) problem 

that computes the V/F levels of cores in each island per 

execution phase of parallel applications. The first step, which is 

performed at compile-time, considers the per execution phase 

computational characteristics of the tasks for islanding while 

the second step optimizes the V/F levels of formed islands at 

runtime. As solutions time of the proposed task-to-island 

assignment problem increases significantly with a large 

number of tasks or islands, this paper presents a fast heuristic 

that only requires a sorting procedure in its most time-

consuming step and obtains near-optimal solutions. The 

proposed framework’s energy efficiency is compared to an 

optimal, per-core islanding that establishes the best energy-

time solutions for the experimented applications. Using 

Energy-Delay Product as performance metric, experimental 

results show that the framework’s energy efficiency, at the 

worst case, is within 13% of the per-core DVFS. The results 

also show that this framework utilizes the idle times of low 

Central Processing Unit (CPU)-intensive benchmarks to 

increase energy saving with reasonable performance loss. 

Keywords-Manycore System; Task Partitioning; Dynamic 

Voltage-Frequency Scaling; Voltage-Frequency Islands; 

Optimization Framework; Energy Efficiency. 

I. INTRODUCTION 

Large-scale computer systems have become more 
pervasive by providing computing resources to solve 
complex applications. Parallel computing utilizes the 
multiprocessing aspect of the computing resources (e.g., 
CPU cores) to perform simultaneous computational 
processes (tasks) in order to increase the speed of the system. 
To strengthen the Operating System (OS) capability for 
running the user tasks in parallel, applications are 
instrumented by parallel programming techniques to take 
advantage of the increasing cores’ computing power, which 
are interconnected and used as shared resources within a 
single computer system. As the number of cores continues to 
scale in manycore systems, excessive energy consumption 

has become a primary concern for the system designers and 
devising effective energy-aware techniques that are 
sustainable with the applications’ computational demands is 
an important research area. 

The Dynamic Voltage and Frequency Scaling (DVFS) is 
a method for executing high performance applications on 
manycore systems while maintaining the system energy 
consumption below a user-defined energy budget [6]. There 
are three approaches to apply the DVFS for energy 
efficiency optimization in the manycore systems. (1) 
Running an application on a chip-wide DVFS, where a 
common Voltage/Frequency (V/F) level is assigned to all the 
cores [1]. This method does not scale with the varying 
applications’ computational demands. (2) In the per-core 
DVFS approach, the V/F level for each core is adjusted 
throughout the program execution, resulting in the best 
energy efficiency, but at the cost of hardware complexity and 
complicated system level control [2]. (3) As a compromise, a 
more flexible Voltage and Frequency Island (VFI) approach 
has been adopted, where cores in an island share the same 
V/F level, which may vary during the program execution 
based on the program characteristics [3]. 

Nowadays, large high performance computing 
applications have changing computational behavior during 
the applications runtime. Fixing the VFIs’ V/F levels for the 
entire application execution limits exploiting opportunities to 
speed up or down the islands speed to gain high performance 
or energy saving depending on the application characteristics 
[8]. To address this limitation, this work applies the DVFS 
on islands where each VFI’s V/F level can be configured 
individually during the program runtime. 

The traditional approach for islanding is to group cores 
executing similar tasks across the application’s execution 
phases (intervals) [14]. A more effective approach to 
perform the partitioning is to identify the similarities of tasks 
within the individual execution phases of the applications. 
This way, the system energy efficiency can be further 
improved by incorporating the tasks computational 
variations, across and within the execution phases, into the 
problem’s optimization objectives. 

The VFIs may have the same size or number of cores 
(symmetric) or may be asymmetric in size [4]. To simplify 
the task-to-island assignment problem, this paper assumes a 
symmetric system, where the VFIs sizes (the number of 
cores in a VFI that execute the assigned tasks) are the same. 

This paper presents a framework for optimizing the task-
to-island assignments (tasks partitioning) and the VFIs' V/F 
level assignments. Using this framework, this paper’s goal is 
to minimize the applications’ total execution times 
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(makespans) without exceeding user-defined energy 
budgets/limits. 

The framework proposed in this paper has the following 
contributions compared to our previous work [4], which also 
discussed a method for an energy-constrained, optimized 
makespan VFI-based system: 

 The VFIs’ V/F levels are dynamically changed per 
execution phase of the experimented applications. 

 The same V/F level can be assigned to different 
VFIs in each execution phase to achieve an overall 
better energy/time tradeoff. 

 To improve the system’s energy efficiency, 
application tasks, with similar computational 
characteristics, are assigned to the VFIs before 
applying DVFS. 

 This paper demonstrates the extent to which the 
energy efficiency is maximized considering the 
applications with different compute/memory 
intensive workloads. 

 Compared to [4], the proposed heuristic is faster and 
more scalable for larger applications or system sizes. 

This paper is structured as follows. Section II 
summarizes related works followed by our contributions. 
Section III describes a system model and a model for 
executing applications on the system. Section IV explains the 
proposed two-step framework. Section V and Section VI 
present experimental setup and the results, respectively. 
Section VII concludes this paper. 

II. RELATED WORK 

The multi/manycore processing is a form of parallel 
computing where a parallelized application uses the shared 
hardware resources (CPU cores) to simultaneously execute 
the applications’ threads and shorten the application runtime 
[5]. Increasing the number of cores in a chip may improve 
the application speedup but it overheats the chip due to the 
energy consumed by cores during the idle and busy periods. 
The DVFS is a well-known method that has been used to 
address this problem with two mainstream techniques. The 
per-core DVFS is a resource-demanding technique where a 
separate voltage regulator is allocated to each core to adjust 
its V/F level at runtime (lowering energy during idle periods 
and increasing it during compute phases). As a second 
method, the VFI-based systems provide a less complex and 
economical alternative where the V/F level of an island of 
cores is tuned by a single regulator. The VFI-based systems 
are cost-effective and provide reasonable energy saving 
opportunities with acceptable application execution delay 
[6][7]. The following summarizes the VFI-based works that 
are related to this paper. 

The VFIs’ V/F levels are determined either statically (at 
compile-time) or adjusted dynamically (at runtime) to 
account for the applications’ computational variations. For 
example, Duraisamy et al. [8] used the cores’ number of 
instructions per cycle and inter-core data transfers for per 
VFI static V/F level assignment, while Ogras et al. [9] used a 
feedback controller to dynamically adjust the V/F levels of a 

Network-on-Chip (NoC)-based VFI system using the 
occupancy levels of inter-VFI queues. 

In terms of VFIs formation, both the symmetric and 
asymmetric partitioning of cores has been deployed. David et 
al. [10] partitioned 24-tile Intel’s single-chip cloud computer 
into 6 VFIs, each one containing 4 tiles (symmetric). Jin et 
al. [11] used asymmetric VFIs whose sizes are reconfigured 
once by adding cores that were not assigned to the same VFI 
through multiple static optimizations of VFIs formation. 

The prior research works have solved one or both of the 
islanding and V/F level assignment problems. Ozen et al. 
[12] used two VFIs with corresponding fixed V/F levels in a 
NoC, where cores’ slack times were used to run the under-
loaded VFIs with lower V/F levels to minimize the energy 
consumption. Ogras et al. [13] performed the islanding and 
V/F level assignment iteratively by merging two VFIs, which 
resulted in reducing the system energy consumption while 
maintaining the performance constraints. 

The islanding and V/F level assignment problems have 
been solved by heuristics or linear programming-based (LP) 
techniques. Ghosh et al. [14] used ILOG CPLEX, an Integer 
LP-based technique, for determining the physical locations 
of cores on NoC-based VFIs and their respective V/F levels. 
Jin et al. [15] used a statistical heuristic that used the 
probability distributions of the tasks’ execution times and 
energy consumptions under different V/F levels. The VFIs’ 
V/F levels were determined such that tasks with large energy 
variations are assigned more slack and run with lower V/F 
level to maximize the energy saving. 

A number of works have addressed the task scheduling 
(or task assignment) when formulating energy efficiency 
objectives for systems with homogenous and heterogeneous 
compute nodes. Leung et al. [17] proposed a list scheduling 
algorithm to compute the tasks priorities, executed on NoC-
based equally-sized islands, based on the links 
communication delays. Chou et al. [18] devised an iterative 
task mapping heuristic that identified and grouped the 
neighboring idle cores of a NoC, with pre-defined V/F 
levels, for the application tasks assignment. Oxley et al. [19] 
analyzed the robustness of a set of heuristics, used for the 
static assignment of tasks to heterogeneous nodes, in terms 
of meeting makespan deadlines or energy budgets 
considering the stochastic tasks execution time. 

The research contributions of this paper include: 

 Formulating a MILP for the task-to-island 
assignment problem that forms the symmetric 
islands of tasks with similar computation behavior. 
In a sense, the proposed formulation aims at forming 
per execution phase islands based on measuring the 
tasks characteristics for each execution phase of the 
applications. 

 Formulating an ILP for the VFIs’ V/F level 
assignment problem that performs DVFS on the 
islands per execution phase in order to minimize the 
applications makespans under the user-defined 
energy budgets. 

 Proposing a fast and low-cost heuristic to solve the 
task-to-island assignment (tasks partitioning) 
problem. The experimental results show that when 
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using the heuristic for task-to-island assignments, the 
system energy efficiency, measured by the Energy-
Delay Product (EDP) metric, is, at worst, within 
13% of the optimal per-core DVFS across the 
experimented benchmarks. Furthermore, the results 
show that the proposed framework efficiently 
maximizes the energy saving of low CPU-intensive 
benchmarks. 

III. MANYCORE SYSTEM CONFIGURATION 

This section presents assumptions about the multiple-VFI 
manycore system setup and the execution model of 
applications running on this system. This section also 
explains an applications profiling strategy that provides the 
task-level application characteristics that are utilized by the 
VFI-based optimization framework to measure the energy-
performance tradeoff. 

A. VFI-based Manycore System Design 

This paper assumes an N-core manycore system C = 
{c1cN}, where cores are arranged in a √N √N mesh of 
homogenous cores. It is assumed that the system is 
partitioned into a fixed number of symmetric islands, I = 
{i1  iK} where there are Q = N/K cores per island. For 
example, Figure 1 shows a partitioned system with K = 3. 
Also, Q = 1 represents a manycore system with the most 
fine-grained islands. The cores in a VFI operate under a 
common V/F level, which is determined by the V/F level 
assignment step of the framework. These V/F levels are 
attained from a range of available CPU performance states: S 
= {s1sL} where s1 and sL correspond to the lowest and 
highest V/F levels, respectively. Any two VFIs may have the 
same or different V/F levels, which impact the system’s 
overall energy efficiency. Each core has a local non-unified 
L1 cache and all cores share a unified L2 cache. 
 
 
 
 
 
 
 
 
 

B. Application Execution Model 

This paper considers multithreaded applications chosen 
from benchmark suites, which will be explained in Section 
V, where each thread of execution runs on a particular core 
and is not re-assigned to another core during the application 
execution. The execution of these applications follows Single 
Program Multiple Data (SPMD) parallelization technique 
wherein the same program is split up among cores to 
perform tasks on different data. These benchmarks are 
developed and utilized in a shared memory system that 
facilitates inter-core/thread data exchange at runtime [16]. 
The execution runs, which are used to evaluate the 
optimization goals, encompass a unique section inside the 

benchmark’s source codes known as Region Of Interest 
(ROI). 

ROIs, representing the parallel sections of the 
applications, are divided into multiple tasks, according to the 
SPMD model, and are assigned to cores/threads for the 
parallel execution. Because of the changing workloads of the 
applications (benchmarks), the execution of the ROIs 
represents distinct application characteristics in the form of 
phases or execution windows during the runtime. During the 
applications execution, some of threads produce data while 
the others consume it. To ensure that the consumer threads 
obtain the correct data before executing the next phase of the 
applications, the benchmarks’ ROIs are instrumented by 
synchronization routines (such as barriers), which resolve, 
among the cores, data memory access delays within the 
phases, as well as data transfers across the phases of the 
applications. The execution of a number of instructions 
between two consecutive synchronization points defines a 
distinct computational phase of the benchmark, which are 
represented as the cores’ parallel tasks within that execution 
phase. Figure 2 shows an example of an application with P 
execution phases where within each phase gray portions 
show the computation periods of cores executing their tasks 
and black portions show the core’s idle periods. These 
periods, representing execution overheads, may be created 
by memory access delays (or data transfers) resulting in idle 
periods upon reaching synchronization points at the end of 
each phase. 

Task model 
An application consists of a set of tasks sets T = 

{T1  TP} defined over the P execution phases where Tj 
denotes a task set executed in phase j (1 ≤ j ≤ P) of the 
application. Each task set Tj is composed of tasks executed 
by cores in the corresponding application phase where τj,i 
denotes task i (1 ≤ i ≤ N) in phase j. Thus, it is assumed that 
each core executes one task in the application phase. As 
indicated above, the execution of a task set in the next phase 
is dependent on the completion of a task set in the previous 
phase. As such, the assignment of tasks to islands represents 
typical application task graphs, assuming a negligible/zero 
memory access delays between the dependent tasks (because 
the memory access delays for data transfers among the task 
sets are already accounted for in the tasks execution time). 

The tasks partitioning formulation considers the 
similarity of the tasks’ workloads in an execution phase to 
perform the task-to-island placements. The outcome of the 
task-to-island assignments guides the VFIs’ V/F level 
assignment formulation to improve the system’s energy 
efficiency by slowing down VFIs with lower workloads and 
speeding up the highly loaded VFIs. 
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Figure 1. A manycore system with three islands 
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Figure 2. Execution of a P-phase application with N tasks per phase 
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C. Application Profiling Methodology 

The optimization framework has a priori knowledge of 
the benchmarks/applications execution. The profiling data 
used for the static optimization of the task-to-island 
assignments and their V/F levels include the execution times, 
energy consumptions, and workloads of the task set for each 
execution phase of the benchmark collected at each possible 
V/F level. This paper uses a profiling strategy that runs the 
benchmark on the manycore system once per V/F level and 
collect the pertinent per phase execution time, energy usage, 
and workload information of all tasks in that phase. Here, the 
execution time corresponds to the computational period of a 
task in the execution phase before reaching the barrier (black 
portions in Figure 2). The energy consumption means the 
rate of the task power usage during its execution in the 
corresponding phase. The workload is defined as the ratio of 
the task’s busy (computation) cycles to the total cycles (the 
summation of the busy and idle cycles) in the execution 
phase. 

IV. TWO STEP TASK-TO-ISLAND ASSIGNMENT AND V/F 

LEVEL ASSIGNMENT TECHNIQUE 

The task-to-island assignment and V/F level assignment 
steps are formulated in this section. To reduce the 
computation time of solutions obtained by the optimization 
framework, this paper solves the above steps sequentially. 
The islanding step uses the tasks’ workloads to identify the 
groups (islands) of tasks with similar computational 
similarities per execution phase. The V/F level assignment 
step considers the execution time and energy usage of the 
islands under multiple V/F levels to make the best 
performance-energy tradeoff that minimizes the benchmarks 
makespan given an energy budget. 

A. Task-to-Island Assignment 

As mentioned above, partitioning the tasks among the 
islands is based on the similarity of tasks. To measure the 
degree of similarity among tasks, this formulation computes 
the percentage difference ratio between a task workload and 
the maximum workload in an island to which the task may 
be assigned. To find the maximum similarity among the 
tasks, this optimization step minimizes the ratio that 
indicates the wasted workload. 

The following are the problem’s objective and 
constraints: 

kijkkkki xzcFy
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IiF kk  0  (12) 
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The task-to-island assignment formulation aims at 
minimizing the wasted workloads of islands for every 
execution phase. The island’s maximum workload is not 
known before solving the above optimization problem. 
Therefore, the problem objective (the percentage wasted 
workload) becomes non-linear. The non-linear functions are 
typically linearized to obtain optimum solutions more 
efficiently. The non-linear curve of a function representing 
the island’s maximum workload, is linearized by a 
mathematical technique, known as the piece-wise linear 
function [19], which approximates the actual value of the 
non-linear function. For the linearization, this technique 
divides the function’s non-linear curve (such as the objective 
function in this paper) into multiple segments of straight 
lines that each can be represented by a linear function. 

Yj denotes the total wasted workload in execution phase j. 
yi,k is the wasted workload of task τj,i   Tj (1 ≤ i ≤ N) in 
island ik. ck is the approximation of island’s maximum 
workload. Fk approximates 1/ck. These approximations use 
Special Ordered Set (type 2) variables (SOS-2), zk,j, where 
each variable indicates how likely it is that a line segment, 
connected by two adjacent points (i.e., aj and aj+1), 
approximates ck or 1/ck. Technically, the SOS-2 variables 
transform the piece-wise linear functions to a form that can 
be used by linear programming methods to solve 
optimization problems. ti is the workload of task τj,i. xi,k 
shows where task τj,i is assigned to island ik. Q denotes the 
number of tasks assigned per island. r is the number of 
adjacent points that form the line segments. 

Constraint (1) minimizes the total amount of wasted 
workloads for a task set across all the islands. Constraint (2) 
computes the wasted workload if a task is assigned to an 
island. Constraints (3) and (4) approximate ck and 1/ck, 
respectively. Constraint (5) determines ck (the maximum 
workload of an island). Constraint (6) ensures that the 
island’s maximum workload is within the minimum and 
maximum values of tasks workload in an execution phase. 
Constraint (7) shows that a task is assigned to only one 
island. Constraint (8) indicates that all islands have an equal 
size. For all the SOS-2 variables defined in (10), only two of 
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them are non-zero. These non-zero variables, which have to 
be adjacent, indicate the two end points of a line segment. 

Figure 3 shows an application running on a system with 2 
execution phases (P = 2) and 4 tasks per phase (|Tj| = 4, 1 ≤ j 
≤ 2) before (3(a)) and after (3(b)) applying the task-to-island 
assignment formulation. For two symmetric islands (K = 2), 
it is observed from 3(b) that in the first execution phase, i1 = 
{τ1,1, τ1,3} and i2 = {τ1,2, τ1,4} whereas for the second 
execution phase, i1 = {τ2,1, τ2,4} and i2 = {τ2,2, τ2,3}. For 
example, for the first phase in Figure 3, the wasted workload, 
Y1, is computed based on i1 and i2 where the task pair in each 
island has the most similar execution workloads. It should be 
noted in Figure 3 that i1 and i2 can be executed on any 
combination of 4 cores in each execution phase because 1) it 
is assumed that the system consists of homogenous cores, 
and 2) the islanding is performed independently per 
execution phase due to the synchronization of threads at the 
end of the phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. VFIs’ V/F Level Assignment 

The goal of islanding step, discussed above, is to separate 
the islands with different workloads using the tasks 
computational similarity. For a given V/F level, any two 
islands with different workloads may have different 
execution performance. Such performance gap among the 
islands is utilized by the V/F level assignment step to 
maximize the system energy saving while increasing the 
performance within the allocated energy budget. This is 
accomplished by slowing down islands with low workloads 
and speeding up the ones with high workloads. 

Running the islands (VFIs) under the fixed V/F level for 
the entire application execution may improve energy-
performance tradeoff for applications with steady workloads 
but it has poor performance outcomes for applications with 
changing workloads at runtime. The second step in the 
optimization framework addresses this concern by adjusting 
the islands’ V/F levels per execution phase of applications 
based on the workloads intensity of islands in the 
corresponding application phase. 

The following are the objective and constraints for 
formulating the V/F level assignment problem: 
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Where, ϴ is the makespan of application. ϴj is the 
execution time of phase j, which is determined by the 
maximum finish time among islands in that phase. dk,l,j and 
ek,l,j are the execution time and energy consumption of a core 
running a task, assigned to VFI ik, under V/F level l at the 
execution phase j, respectively. ak,l,j states whether the V/F 
level l is assigned to ik in phase j. EB constrains the system 
energy consumption for the application execution. 

The problem objective (16) minimizes the benchmark’s 
makespan, defined by the execution times of application 
phases. Constraint (17) determines the execution time of a 
phase. Constraint (18) affirms that only one V/F level is 
assigned to an island per execution phase. Constraint (19) 
ensures that the system’s energy consumption, computed by 
the energy usage of VFIs across all execution phases, does 
not exceed the user-defined energy budget. 

Figure 4 depicts an example of V/F level assignment step 
for the same application task sets shown in Figure 3. It is 
observed from Figure 4 that in the first execution phase, V/F 
levels s2 and s4 are assigned to i1 and i2, respectively. Since i1 
has a lower computational workload than i2 in the first phase, 
running it with the lower V/F level (s2) results in saving 
more energy while running i2 with the higher V/F level (s4) 
improves the performance. For the second execution phase, 
i1 and i2 have comparable workloads. Thus, s3 is assigned to 
both islands. 
 
 
 
 
 
 
 
 

C. Fast Heuristic for Task-to-Island Assignment 

The task-to-island assignment problem is an NP-hard 
problem due to its growing complexity when experimenting 
with larger task sets size or the number of islands per 
execution phase. To reduce the computation time of solving 
this problem, this section presents a fast, practical heuristic 
that only requires a sorting procedure in its most time-
consuming step. 

This heuristic performs the following two steps per 
application phase: 1) tasks are sorted in the increasing order 
of their execution workloads. In other words, the sorting 
procedure orders the tasks (i.e., from small to large tasks) 
based on their computational workloads. As mentioned in 
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Figure 3. Application task sets with N = 4 and K = 2 showing (a) 

default and (b) optimized tasks assingment 
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Figure 4. Per phase V/F levels assignment for islands i1 and i2 
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Section III-C, the execution workload refers to the task 
utilization measured over an application phase’s time span 
and is computed as the ratio of the core’s busy cycles to the 
total execution cycles. The utilization values do not 
significantly change when running cores/islands with 
different V/F levels at runtime. Therefore, this performance 
measure was chosen for the task-to-island assignments in 
each execution phase. 2) every Q = N/K consecutive sorted 
tasks are assigned to an island (N and K are number tasks and 
islands, respectively). The time complexity of step (1) 
increases with O(N  log(N)) in the best case while step (2) is 
performed in constant time. 

It should be mentioned that the assignment of tasks to 
islands implies that Q cores are allocated to the 
corresponding Q tasks assigned to an island because the 
application execution model (see Section III-B) assumes that 
a core executes only one task in each phase. 

D. Real-life Realization of VFI-based System 

The application of the proposed optimization framework 
in embedded systems is useful when multicore processors 
are designed to run specific applications many times given 
system configurations that are pre-optimized once at 
compile-time. To use this framework for such cases, the 
applications are first profiled using the profiling method 
explained in Section III-C. At compile-time, the islanding 
step assigns tasks to islands and the V/F level assignment 
step determines the VFIs’ V/F levels. The per VFI, per 
execution phase V/F levels are then stored in a look-up table 
to be used later at runtime when at the start of each execution 
phase the OS fetches the V/F levels from the table and uses 
special registers to communicate the V/Fs with DVFS 
controllers that tune the islands’ performance. 

V. EXPERIMENTAL SETUP 

To measure the energy efficiency of the proposed 
framework, General Execution-driven Multiprocessor 
simulator (GEM5) [20], a full-system simulator, is used to 
model 64 cores that are arranged as a 8х8 mesh structure of 
homogenous cores, where each core has 64KB L1 instruction 
and data caches and a shared 8MB L2 cache. All the 
benchmarks are run 4 times using the following V/F levels: 
s1: 0.5V/ 1.25GHz, s2: 0.667V/ 1.666GHz, s3: 0.834V/ 
2.083GHz, s4: 1.0V/ 2.5GHz, which are within a nominal 
range of states that provide stable performance and power 
data. The per execution phase task sets workload and 
execution time are collected as explained in Section III-C. To 
obtain the phases’ energy consumption, the GEM5’s 
performance outputs are fed to Multicore Power, Area, and 
Timing (McPAT) [21] that generates the energy 
consumption for the task sets. The time/energy overheads 
caused by V/F level switching are not incorporated in the 
optimization objectives and constraints because they are only 
about a few hundreds of nano seconds/Joules order of 
magnitude [6]. 

The proposed two-step optimization framework is tested 
on three benchmarks, namely Fast Fourier Transform (FFT), 
Lower and Upper triangular matrices (LU), and Cache-
Aware Annealing (CANNEL) [22][23]. These benchmarks 

are used in different application domains and represent 
applications with high or low CPU-intensiveness: the 
percentage of compute intensity of FFT, LU, and 
CANNEAL is 96%, 92%, and 85%, respectively where FFT 
and CANNEAL are high and low CPU-intensive 
benchmarks, respectively. 

Similar to [8], the 64-core system, used in this paper, is 
partitioned into 4 islands (K = 4) where each island has 16 
(Q = 16) tasks, whose assignments to islands are defined by 
the islanding formulation in Section IV-A. This 
configuration was chosen to assign sufficient tasks per island 
in each execution phase. 

The formulations, discussed in Section IV, are 
implemented with a modeling language, Algebraic Language 
for Mathematical Programming (AMPL) [24], which is used 
for modeling large-scale constrained optimization problems. 
To find solutions that make the best energy-performance 
tradeoff, Gurobi [25], a solver included in the AMPL 
software package, is used to solve the islanding and V/F 
level assignment problems. The heuristic is implemented and 
solved in MATLAB. All experiments for the symmetric VFI-
based system are conducted on a CentOS workstation with 
Intel dual Core x86, 3.3 GHz processor and 3.6 GB RAM. 
The time and energy usage of workstation’s physical cores 
when running AMPL/Gurobi are not included in the 
formulations since the problems are solved pre-runtime. 

VI. EXPERIMENTAL RESULTS 

The experimental results consist of four parts. The first 
part presents the performance (execution time) of 
benchmarks under the proposed VFI-based optimization 
framework compared to the optimal performance obtained 
by the per-core DVFS VFIs. The second part demonstrates 
the framework’s impact on system energy efficiency using 
two well known metrics. The third part explains the VFIs’ 
V/F level assignment outcomes. The fourth part discusses the 
optimality of heuristic islanding and VFIs’ V/F level 
assignments. 

Figure 5 and Figure 6 refer to the per-core DVFS as Fine-
Grained (FG) since K = N (K and N are the number of islands 
and tasks, respectively) and dynamically tuned VFI system 
as DCG (Dynamic Coarse-Grained) because the V/F levels 
of a group of cores are adjusted per execution phase. To 
constrain the energy budget, the MILP-based formulation 
considers three levels for EB (19): High (EB(H)), Medium 
(EB(M)), and Low (EB(L)), which correspond to 7.5%, 
22.5%, and 37.5% energy reductions from the benchmarks’ 
energy consumption when all cores run at the fastest V/F 
level (s4 in Section V). 

There is a large body of research that use (meta) 
heuristics, greedy, and machine learning techniques for 
assigning tasks to cores and determining the cores’ V/F 
levels to obtain the best objective values [26]. Instead of 
comparing the proposed framework performance to such a 
wide range of existing techniques in the literature, it is 
compared to the per-core DVFS, which is considered as the 
most energy-efficient method in high performance 
computing platforms. Moreover, the degree to which the 
VFI-based system’s energy efficiency is close to the per-core 
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DVFS indicates how close the proposed framework’s 
outcomes are to the optimal solutions. 

A. Execution Time Comparison 

The ILP-based formulation minimizes the performance 
(16) of running symmetric coarse-grained islands under the 
energy budget levels. Figure 5 evaluates DCG vs. FG 
performance (execution time) relative to the non-DVFS 
baseline, when all cores operate at the fastest V/F level (s4), 
using the following criteria: 

1) Energy Budget 
Intuitively, decreasing the energy budget increases the 

benchmarks execution times because the islands are slowed 
down to consume less energy below the energy budgets. 
Interestingly, for EB(H) in Figure 5, the performance of 
DCG is comparable to FG. The reason is that for EB(H) the 
execution time of islands with high workloads dominate the 
execution time of under-loaded ones. Thus, scaling up the 

V/F levels of highly loaded islands in DCG improves the 
system performance while slowing down the under-loaded 
islands not only has a negligible impact on the overall 
benchmark execution time but also increases energy saving. 
By further decreasing the energy budget, the highly loaded 
islands have to run slower, resulting in a noticeable 
execution time increase for EB(M) and EB(L). 

2) Benchmarks CPU-intensiveness 
Regarding the impact of benchmarks CPU intensity on 

DCG, Figure 5 shows that for CANNEAL the system 
performance penalty stays below 18% across the energy 
budgets. This is due to the low CPU-intensiveness of 
CANNEAL whose execution time is not degraded by 
lowering the energy budget. As such, for CANNEAL, the 
DCG performance is closer to FG compared to FFT and LU. 
Since LU has low CPU-intensiveness in some phases, it is 
observed from Figure 5 that in EB(H) DCG performance is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
close to FG. Clearly, for a CPU-intensive benchmark like 
FFT, DCG has the poorest performance when the VFIs run 
slower in the lower energy budgets. 

B. Energy Efficiency Metrics Comparison 

Besides measuring the framework impact on application 
performance, the following metrics are used to evaluate the 
system energy efficiency: 1) Energy-Delay Product (EDP) 
and 2) Instructions Per Second, per Watt (IPS

2
/Watt) [27]. 

The former measures the amount of energy saving obtained 
despite performance loss while the latter specifies the 
amount of throughput gained in exchange for consuming 
power for running a number of instructions in a time period 
(e.g., execution phase in the application model). Lower 
values for EDP and higher values for IPS

2
/Watt are 

desirable. 

Figure 6 shows the framework impact on EDP and 
IPS

2
/Watt resulting from the application of the FG and DCG 

configurations normalized to the corresponding EDP and 
IPS

2
/Watt of non-DVFS for the same benchmarks. 

Figure 6 suggests that CANNEAL, compared to FFT and 
LU, obtains the best (lowest) EDP across the energy budget. 
Especially, in EB(H), DCG utilizes the CANNEAL’s 
memory access times to maximize energy saving without 
losing performance while, as a CPU-intensive benchmark, 
most of the FFT’s execution run consists of floating-point 
instructions, which provide less opportunity for energy 
saving and cause the EDPs of FG and DCG to be close to 
one another in EB(H). For LU, compared to FFT and 
CANNEAL, the EDP gap between FG and DCG is larger, 
which can be explained by the LU’s workload variations 
across its execution phases. Overall, the average EDP 
improvements of DCG, compared to non-DVFS, are within 

 
Figure 5. Execution time of Fine-Grained (FG) and Dynamic Coarse-Grained (DCG) system configurations over High (H), Medium (M), and Low (L) 

Energy Budgets (EB). The execution times are normalized to non-DVFS baseline. 

 
Figure 6. EDP and IPS2/Watt of Fine-Grained (FG) and Dynamic Coarse-Grained (DCG) system configurations over High (H), Medium (M), and Low (L) 

Energy Budgets (EB). The EDP and IPS2/Watt are normalized to non-DVFS baseline. 
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1%, 5%, and 13% of the best EDP improvements obtained 
by FG for FFT, CANNEAL, and LU, respectively. 

IPS
2
/Watt is inversely proportional to EDP. Thus, the 

relative energy efficiency of FG and DCG in terms of 
IPS

2
/Watt is similar to EDP. Figure 6 specifies finer scaling 

range for the IPS
2
/Watt axis compared to EDP to show a 

clearer difference between the energy-efficient solutions 
obtained by these two configurations across the energy 
budgets. Of note, in Figure 6, the upper bound limit of EDP 
axis is set to 1 to show the EDP improvements against the 
non-DVFS baseline across the studied benchmarks. 

C. VFIs’ V/F Levels 

As mentioned in Section IV-B, the V/F assignment step 
tunes the VFIs performance to increase the system energy 
saving by lowering the V/F levels of less loaded islands and 
increasing the V/Fs for the heavily loaded ones. The extent 
to which the islands V/F levels are scaled up or down, 
depends on the overall characteristics of benchmarks. 

Table I shows the V/F states distribution among all 
islands and across all the execution phases of FFT, LU, and 
CANNEAL at the high energy budget (EB(H)). This table 
suggests that the highest V/F level (s4) constitutes the largest 
percentage of assignments for FFT and LU (68% for FFT 
and 61% for LU). This observation matches the high CPU-
intensiveness of these benchmarks having highly loaded 
islands and their V/F states are scaled up to maximize the 
performance. On the other hand, for CANNEAL, a lower 
V/F state (s3) is assigned to 65% of islands, which again 
corroborates with the low CPU-intensiveness of CANNEAL 
since lowering V/F levels for such benchmarks saves energy 
without significant performance loss. Table I also shows that 
for LU s1 and s2 are used for the V/F assignment. That’s 
because some execution phases of LU have less amount of 
computation, which are utilized by the V/F level 
optimization step for slowing down the VFIs and saving 
energy. 
 
 
 
 
 

D. Optimality Analysis of Solutions obtained by Heuristic 

and ILP-based Formulation 

Section IV-C explained a heuristic for the MILP-based 
formulation of islanding problem. To find out the extent to 
which the heuristic solutions are close to optimal, the MILP-
based formulation, which provides optimal solutions, is 
solved for a number of execution phases of the experimented 
benchmarks. To solve the associated problems, the heuristic 
task-to-island assignments (Section IV-C), are used as initial 
solutions. For larger problems size, the experiments are run 
for a week after which it was observed that the differences of 
solver’s objective values (1) were negligible (less than a 
percent) compared to the objective values obtained by the 
heuristic and used as the initial seeds to solve the MILP-
based formulation. Considering such minimal difference, the 
islands, obtained by the MILP-based formulation and 

heuristic, were found to be identical, indicating that the 
proposed heuristic performs optimally to solve the islanding 
problem. For N = 64, K = 4, and r = 10 used for Section IV-
A, the MILP-based formulation has 560 variables and 644 
constraints per application’s execution phase. 

The computation complexity of solving ILP-based V/F 
level assignment problem (Section IV-B) depends on the 
number of islands (K), number of V/F levels (L), and number 
of execution phases (P). To solve the V/F level assignment 
problem for DCG (coarse-grained VFIs), K = 4, L = 4, and P 
is set to 8, 15, and 31 for FFT, LU, and CANNEAL, 
respectively. Using the above parameter values, the ILP-
based problems are optimally solved within a minute, from 
which the associated performance and energy efficiency 
results are obtained as shown in Figure 5 and Figure 6. 

VII. CONCLUSION 

This paper presented a framework that optimizes the 
tasks partitioning and VFIs’ V/F levels to minimize the 
benchmarks makespan without exceeding the user-defined 
allocated energy budget. Furthermore, this paper proposed a 
fast, low-cost heuristic that has optimal performance for the 
experimented problems sizes. The energy efficiency of the 
coarse-grained VFI-based system was compared to the 
optimal per-core DVFS on multiple benchmarks and with 
different energy budgets. While using multiple VFIs lowers 
the manufacturing and operating costs of manycore chips, 
the results showed that the VFI system’s EDP, at the worst 
case, was within 13% of the EDP obtained by the per-core 
DVFS. The results also showed that the proposed framework 
gains greater EDP improvements for benchmarks with low 
CPU-intensive workloads. 

According to [28], it is estimated that data centers in the 
U.S. are expected to consume electricity up to 73 billion 
kilowatt-hours per year from 2014 to 2020, which cost the 
American businesses $6 billion annually. Based on this 
report, the most efficient technologies and management 
practices will save energy up to 40% in 2020. Considering 
the system configuration used in this paper, the proposed 
framework saves more than 30% of energy in EB(L). Even if 
this framework reduces energy by 5% when it is deployed on 
larger system sizes, it will have a big economic impact on the 
energy costs of the future high performance computing. 
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