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Abstract—Skin lesion diagnosis is a challenging task even
for experimented dermatologists. By using a computer-assisted
diagnostic tool, misdiagnosed skin lesions are likely to decrease.
Deep neural networks have emerged in recent years due to the
increased computational power and their generalization capacity
for new data. The major drawback of training a network is that
it requires large amounts of data, often difficult to obtain. In
this work, we introduce a real-world dataset of single lesions
cases composed by clinical images, particularly challenging due
to image variations (scale, size, point of view, acquisition device)
and data imbalance. To tackle these challenges, we propose a
domain adaptation approach by pre-training on large, general,
datasets, such as ImageNet and fine-tuning on public datasets of
clinical dermatological images. This approach is also compared
with one where the target dataset is enriched with samples of
public datasets. The overall performance obtained for this real-
world dataset was not ideal, with F1-scores below 45%. However,
interesting conclusions could be drawn on how fine-tuning gen-
erally yields better aggregated results (marginal increase of F1-
score), although some specific categories benefit from increased
training samples in a merged dataset. These results pave the
way for new strategies towards the real-world application of skin
lesion classification models, moving forward from more controlled
settings, where results are typically impressive, however not yet
translatable into practice.

Index Terms—Skin Lesion Classification; Clinical Images;
Transfer Learning; Deep Learning

I. INTRODUCTION

There has been a growing interest in Telemedicine and other
Information and communications technology (ICT) solutions
to improve efficiency [1] and ease the burden on health
services, but a significant potential still lies unexplored. Major
advances in automatic risk assessment of skin lesions through
computer-processed imaging have been recently reported, but
most of this work has been conducted solemnly at an academic
level and mainly focused on specific parts of the problem.
There is a shortage of systems that convert the differently
acquired knowledge into reliable decision support tools. Cre-
ating an integrated tool with effective practical utility is, thus,
critical.

The last decades have seen great improvements concerning
computer vision applications for clinical decision support,
especially when Machine Learning, and more recently, Deep
Learning, came into the picture. In fact, Deep Learning ar-
chitectures have taken several computer vision tasks to new

heights, from which Convolutional Neural Networks (CNN)
stand out [2]. The main reason for the popularity of these
networks, compared to traditional methods, is that they au-
tomatically learn features from images of a specific domain,
without any explicit feature engineering. Another reason for
their success is the possibility to transfer knowledge acquired
for a specific task (resulting in a pre-trained model), to model a
different task [2]. Training a CNN [2] from scratch, where the
model weights are randomly initialized, requires large amounts
of images and repetitive adjustments to the network and its
parameters to avoid overfitting the training data [3]. For skin
lesion classification, large datasets are a difficult requirement
to meet, as the number of images in publicly available datasets
is small and expert annotations are expensive [4].

Transfer learning is an alternative to training from scratch
that allows to initialize the weights of the layers of a network
that we intend to train in a new domain, using weights from a
similar network previously trained on data from a different
domain. A common practice is to replace the final output
layers, where the model decision actually takes place, and
freeze all other layers. In this scenario, only the new layers are
trained with data from the new domain, keeping the weights
of the lower layers fixed (frozen) [5]. This technique is also
known as fine-tuning, since only the top layers are trained. In
general, the first layers in a CNN learn more generic features,
while the last layers learn more specific ones. If both the
previously learned and the new domains are similar, fine-
tuning the top few layers can be enough. However, if the
target domain is considerably different from the source domain
(learned by the pre-trained model), we may need to fine-tune
the lower layers as well.

In this work, we introduce a new real-world, challenging,
dermatological dataset and propose different approaches for
training a skin lesion classification model using Deep Neural
Networks (DNN) [2]. Firstly, different network architectures
are evaluated. Then, different fine-tuning strategies are com-
pared with a baseline where the target dataset is enriched with
samples from public datasets containing the same categories.
Results are presented and discussed, concerning the impact
of the training strategies in classifying individual skin lesion
classes, ending with major conclusions and drawing future
research lines.
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This work integrates a larger project, DermAI, that aims
to improve the existing Teledermatology processes between
Primary Care Units and Dermatology Services in the Por-
tuguese National Health Service (NHS) for skin lesions refer-
ral. Through the usage of Artificial Intelligence and Computer
Vision, we envision two major goals: a) to support doctors
in Primary Care Units through the development of a mobile
app that fosters image acquisition standardization [6] and
b) to assist dermatologists in the referral process to book
specialist consultations in the Hospital through the adequate
prioritization of cases. Improving dermatology consultations’
prioritization is particularly relevant in the Portuguese sce-
nario, due to the lack of specialists in the NHS and long
waiting lists for this type of consultation. In this research
we focus on the second goal of the project towards cases
prioritization, firstly on skin lesion classification.

This paper is structured as follows: Section 1 presents the
motivation and objectives of this work; Section 2 summarizes
background and related work found on the literature; Section
3 provides an overview of the methodology including datasets
description, the network architectures studied as well as details
on network training; in Section 4, the results and discussion
are presented; and finally the conclusions and future work are
drawn in Section 5.

II. BACKGROUND AND RELATED WORK

In the last years, several approaches have been studied for
using transfer learning in clinical applications. An important
aspect of the works found in the literature on skin lesion
classification is that the authors use well-established CNN
architectures that have achieved excellent performance in large
publicly available datasets, such as the ImageNet dataset [7],
which consists of natural images of 1000 different categories.
Fine-tuning on these pre-trained networks has shown outstand-
ing results in new domains, even with smaller datasets [8] [9],
improving both the performance and training times. Lopez
et al. [10] proposed a method for skin lesion classification
based on dermoscopic images, using a VGG16 network [11]
trained for a binary malignant vs. benign classification task.
The first four convolutional layers were the result of pre-
training the network on ImageNet, whereas the remaining
layers were fully trained with new images from the ISIC 2016
dataset [12]. This fine-tuning achieved a sensitivity of 78.66%
and precision of 79.74%, which were significantly higher
than the top evaluation results for the ISIC 2016 challenge
(sensitivity of 50.70% and precision of 63.70%).

Gutman et al. [13] investigated the differences between
training a model from scratch, compared with transfer learning
and fine-tuning with application to dermatology domain, using
EDRA dataset [14]. The model selected was VGG-M [15] with
Support Vector Machine (SVM) as a classifier. For transfer
learning and fine-tuning, the models were first trained on the
Kaggle Retinopathy dataset [16] consisting of retinal images,
ImageNet, or both (initially on ImageNet followed by former).
The results showed that fine-tuning achieved better results than
relying on frozen feature extraction. The models fine-tuned on

Retinopathy, or both datasets, led to worse results than when
fine-tuning with just ImageNet.

Kawahara et al. [17] trained a linear classifier on features ex-
tracted from an AlexNet network [18] pre-trained on ImageNet
and fine-tuned on macroscopic images from the Dermofit
dataset [19], which classified 10 different skin lesions with
high accuracy.

Kawara et al. [20] further used two Inception-V3 [21] pre-
trained networks on ImageNet (one for clinical images and
one for dermoscopic images), for classification of diagnosis
and skin lesion attributes prediction on the EDRA dataset.
This work was extended by Nedelcu et al. [22], which
pre-trained the networks on the ISIC2019 [23]–[25] dataset
for dermoscopic images and Dermofit for clinical images,
improving the classification performance.

Mahbod et al. [26] presented an ensemble technique using
CNNs for skin lesion classification. The proposed method ex-
plores several CNN architectures (AlexNet, VGG16, ResNet-
18, and ResNet-101 [27]) pre-trained on ImageNet and fine-
tuned with dermoscopic images of skin lesions from the ISIC
2016 [12] and ISIC 2017 [23] datasets. Deep features are
extracted from different layers from the different models that
are then used to train an SVM. In addition, each pre-trained
model is fine-tuned several times with different configurations,
boosting the performance of a single architecture and the final
results.

In summary, transfer learning has been extensively shown
to improve results in different clinical domains, including skin
lesion classification. However, this is typically achieved by
pre-training in a large, general dataset such as ImageNet,
and then fine-tuned on the target dataset, often comprised of
dermoscopic images, or, less frequently, macroscopic images
but very well standardized in regards to image quality and
acquisition conditions. Our proposal to compare different
training strategies in a very challenging real-world macro-
scopic dataset tries to overcome these limitations, including an
experiment based on sequential fine-tuning resorting to other
datasets, as was done by Gutman et al. [13]. Unfortunately,
the results were worsened by using an intermediate dataset,
presumably because it was drawn from an entirely different
domain (retinal images).

III. METHODOLOGY

The main goal of this work is to perform skin lesion
classification in a new private dataset, DermAI, consisting
of macroscopic and anatomical images from single skin le-
sions, as shall be explained in Section III-A. Notwithstanding,
training a successful classification model from scratch on this
dataset is very challenging, especially considering the high
number of classes, with a relatively low amount of data for
each one (see Table I).

Thus, we explore the potential of fine-tuning on public
datasets of related skin lesions, EDRA and Dermofit, further
described in Section III-A, and assess how different combina-
tions of these datasets with different characteristics influence
the final performance.
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As an alternative to transfer learning, we studied the im-
pact of merging the available datasets in the classification
performance. Figure 1 illustrates this process, noting that,
because the classes considered in each dataset are different,
we match DermAI categories with samples in the public
datasets, discarding the unmatched categories from EDRA and
Dermofit.

Figure 2 illustrates the different fine-tuning strategies under
study. The baseline corresponds to training the model for
classifying the 13 different skin lesions in DermAI dataset with
weights trained from scratch. For the fine-tuning strategies,
we fine-tune the DermAI dataset by pre-training on: just
ImageNet (a); ImageNet, followed by EDRA (b); and finally,
ImageNet, followed by EDRA and then by Dermofit (c).
The next subsections describe the datasets used, the network
architecture and parameters used for training and validation.

Figure 1. Training strategy based on a merged dataset. The goal is to classify
the skin lesions available in DermAI. Thus, there is a previous mapping of
the classes from the EDRA and Dermofit datasets, where unmatched class
examples are dropped.

Figure 2. Training strategy based on transfer learning. The baseline considers
only the training of DermAI from scratch, and then fine-tuning on DermAI
is done sequentially and iteratively by pre-training on a) just ImageNet; b)
ImageNet followed by EDRA; c) ImageNet followed by Edra and Dermofit.

A. Datasets

1) DermAI: With a larger goal of building a prioritization
model for dermatological referrals, the authors had access
to retrospective data from the Portuguese National Health
System related to the referral requests from Local Health
Care Units for the first Dermatology Hospital consultation.
The cases correspond to requests that occurred between the
implementation of this referral procedure for dermatological

requests in 2013 to the end of February 2020, before the onset
of the COVID-19 pandemic in Portugal. Since this data is
retrospective it is not possible to publicly release it, due to
confidentiality questions and impossibility to get consent from
the patients.

After analyzing the available data, and together with a
group of dermatologists, it was decided to proceed with a
subset of 3430 cases corresponding to single lesions from 13
distinct differential diagnoses. The average age (and standard
deviation) of the individuals correspond to 55.75 ± 22.21,
and regarding the sex, there are 1422 Male cases, and 2042
Female instances. The distribution of cases in relation to the
differential diagnosis provided by dermatologists is presented
in Table I. Although teledermatology guidelines [28] recom-
mend the acquisition of macroscopic images, in practice this
is not always the case. Each case in the DermAI dataset
has an associated clinical image: close-up/macroscopic, or
anatomical. The dataset contains 3134 macroscopic images
and 296 anatomical ones, as described in Table I. The type
of images was selected by examining each type of image
by the authors. In particular cases such as in lesions present
in hands, arms, feet, or faces, it is difficult to differentiate
between the macroscopic and anatomic labels since they look
similar (close enough to evaluate the lesion, but wide enough
to distinguish the anatomical site). Thus, it was decided to
merge these modalities to train a DNN model. By merging
the datasets, the number of samples is increased, which is
beneficial for a smaller dataset such as this one.

Furthermore, as the authors had no access to biopsy results,
in order to have increased confidence in the data, the authors
have previously asked a set of dermatologists to review and
validate a considerable subset of the test set.

2) EDRA: This is a public dataset [14] [20] that contains
both clinical and dermoscopic images, as well as patient meta-
data. Clinical images are less standardized when compared
with dermoscopic ones, meaning they are taken at various
fields of view, and can also contain image artefacts such as
rulers or other markers. Patient metadata includes other types
of information, such as patient gender and lesion location.
The dataset contains a total of 1101 cases distributed into
5 different categories: Seborrheic Keratosis, Miscellaneous
(dermatofibroma, lentigo, melanosis, vascular lesion, miscel-
laneous), Nevus (blue, Clark, combined, congenital, dermal,
recurrent, reed), Basal Cell Carcinoma and Melanoma. These
classifications were assigned by a dermatologist, and the case
distribution can be observed in Table II, where, for the scope
of this work, only clinical images were considered. Moreover,
some examples are presented in Figure 3.

3) Dermofit: Another public dataset is the Dermofit digital
image database [19], which consists of 1300 high-quality color
skin lesion images taken with standard cameras. The lesions
belong to 10 different categories with 819 benign and 481
carcinogenic images, annotated in individual diagnostic classes
(Table II). This dataset contains only close-up/macroscopic
images and is the most standardized compared with the
previous datasets, as it can be observed in Figure 3.
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TABLE I
DERMAI DIFFERENTIAL DIAGNOSIS DATASET DISTRIBUTION.

Class Differential diagnosis Mac. Anat. Total
1 SebKer Seborrheic Keratosis 1125 61 1186
2 ActKer Actinic Keratosis 442 77 519
3 Nev Nevus, Non-neoplastic 561 57 618
4 MolCont Molluscum Contagiosum 50 21 71
5 Haem Haemangioma 66 4 70
6 UncNeop Neoplasm Unc. Behavior 233 13 246
7 Drmfib Dermatofibroma 135 6 141
8 SLent Solar Lentigo 45 3 48
9 PenFib Pendulum Fibroma 99 16 115
10 VWart Viral Warts 167 25 192
11 OtMalNeop Other Malignant Neoplasm 108 8 116
12 BCC Basal Cell Carcinoma 53 3 56
13 MM Malignant Melanoma 50 2 52

Total 3134 296 3430

Figure 3. Illustrative examples of lesions from DermAI, EDRA and Dermofit
datasets.

B. Merged Dataset

Given the unbalanced nature of the DermAI dataset, with
some of the underrepresented classes being available in public
datasets such as EDRA and Dermofit, we designed an exper-
iment where such categories would be enriched by samples
from those data sources. Examples of such classes, present
in both EDRA and Dermofit, that can be joined into Der-
mAI are Seborrheic Keratosis (SebKer), Nevus (Nev), Basal
Cell Carcinoma (BCC), and Malignant Melanoma (MM).
Additionally, from Dermofit we joined samples from Actinic
Keratosis (ActKer) and Haemangioma (Haem). Furthermore,
due to its low number of available samples, as well as its
typical prioritization assessment in referrals to specialists, we
considered examples from Pyogenic Granuloma into DermAI’s
class of Neoplasm of Uncertain Behavior (UncNeop), and
images from Interepithelial Carcinoma and Squamous Cell
Carcinoma into DermAI’s category of Other Malignant Neo-
plasms (OtMalNeop). From the EDRA dataset, we extracted
samples from the Miscellaneous class corresponding to Der-
matofibroma (Drmfib) and Solar Lentigo (SLent) categories.
The remaining classes in DermAI remained unchanged.

C. Network Architecture

Three different networks were studied, MobileNet-V2 [29],
ResNet50 [30] and EfficientNet-B3 [31]. The MobileNet-V2

TABLE II
EDRA AND DERMOFIT DIAGNOSIS DATASET DISTRIBUTION.

EDRA Dermofit

Diagnosis Total
Seborrheic Keratosis 45
Miscellaneous 97
Nevus 575
Basal Cell Carcinoma 42
Melanoma 252
Total 1101

Diagnosis Total
Seborrheic Keratosis 257
Actinic Keratosis 45
Melanocytic Nevus 331
Haemangioma 97
Pyogenic Granuloma 24
Dermatofibroma 65
Intraepithelial Carcinoma 78
Squamous Cell Carcinoma 88
Basal Cell Carcinoma 239
Malignant Melanoma 76
Total 1300

is one of the most adopted network for edge devices and
is based on an inverted residual structure where the shortcut
connections are between the thin bottleneck layers2 [29]. The
ResNet50 is a residual network where the residual blocks
make it easier to optimize, gaining accuracy from considerably
increased depth [30]. The EfficientNet is a group of networks
developed based on the network scaling (depths, width and
resolution) [31]. An analysis performed on scaling ResNet and
MobileNet networks has shown an increase on classification
prediction on ImageNet. Although EfficientNet-B3 [31] was
shown to surpass the other networks on ImageNet dataset,
we also assess their performance on DermAI dataset for skin
lesion classification.

On top of each architecture, a few layers are included for
the final prediction. A fully connected (dense) layer is applied
on top of the extracted feature map (EfficientNet-B3 10 ×
10× 1536, MobileNet-V2 10× 10× 1280, ResNet 10× 10×
2080), generating a number of channels related to the number
of classes to predict. For the DermAI dataset, the shape of
this layer is 10 × 10 × 13. For dimensionality reduction, the
Global Average Pooling method is applied (1×1×13) since is
known to reduce overfitting [32]. The final output is obtained
by using the softmax activation function.

The input of the network consists of images of size 300×
300. Since the images from the datasets have different shapes,
we resize the images to the desired shape using the nearest
neighbor method.

D. Network Training

The data is split into Train set and Test set with a ratio of
80:20 considering a stratified distribution of the classes.

The network is trained using the weights pre-trained on
ImageNet (or from scratch with random initialization). The
frozen block approach is adopted for better results [33]. Each
block is trained for 3 epochs using a learning rate of 10−4 for
the top layer and 10−5 for the rest of the blocks. Considering
the EfficientNet-B3 architecture, 7 blocks are used for training
(the classification block and other 6 modules). Adam is used as
an optimizer, and the considered loss is the categorical cross-
entropy.

A similar approach is followed for the MobileNet-V2
and ResNet50 networks (pre-trained on ImageNet), where
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TABLE III
AVERAGE METRICS SCORE FOR DIFFERENT NETWORKS, AFTER

PRE-TRAINING WITH IMAGENET (IN %).

Experiments Number of Average Weighted Macro
Parameters Accuracy F1 F1

MobileNet-V2 2.3M 14.43 15.91 9.59
ResNet50 23M 43.00 42.67 27.07
EfficientNet-B3 12M 42.71 44.04 28.65

the difference lies in the block mapping since the network
architectures are different. For ResNet50, the classification
block and 4 modules are considered, and for MobileNet-V2
the last 11 blocks. The blocks from MobileNet-V2 are grouped
because of the residual connections as: block A - block 16;
block B - block 13, 14, 15; block C - block 10, 11, 12; block
D - block 6, 7, 8, 9.

To mitigate possible overfitting issues due to imbalanced
data, we considered stratified batches, where the batch size was
chosen to match the number of classes for each data set (5, 10,
and 13 for EDRA, Dermofit, and DermAI, respectively). This
results in oversampling of the classes with fewer examples.
Additionally, we augmented the training data using simple
techniques: rotation in the range of [1, 30] degrees, horizontal
flip, zooming in the range [0, 0.2], width shift in the range
[0, 0.1], and brightness in the range [0.2, 0.8].

IV. RESULTS AND DISCUSSION

The average metrics obtained for the three networks tested
(with weights from ImageNet and fine-tuned on DermAI
dataset) are presented in Table III. One can observe that
MobileNet-V2 is performing poorly, with the network fail-
ing to provide acceptable performances. The results obtained
using ResNet50 are similar to EfficientNet-B3, although more
parameters are used. EfficientNet-B3 uses approximately 12
million parameters, whereas the ResNet50 uses almost double
that number (23 million). Therefore, we chose to proceed with
the experiments considering the EfficientNet-B3 network.

Table IV summarizes the overall aggregated results for
the different considered approaches based on the chosen
EfficientNet-B3 network architecture: training from scratch
(o), using a merged version of the dataset (x), or different
fine-tuning strategies (a-c).

The first experiment was to train the target dataset (Der-
mAI) from scratch, to assess the importance of using pre-
trained weights, even in general domains like ImageNet. The
very poor results (Accuracy under 15% and F1-score macro
under 3%) confirm this, and although we do not show the
confusion matrix due to space constraints, it was observed a
clear bias towards classifying most samples as Nevus (Nev)
and Haemangioma (Haem), the second most and fourth least
represented classes.

On the other hand, using models pre-trained on ImageNet
drastically improved the results, even though these are still
under what is expected from a clinical decision support tool
in production. Comparing the averaged metrics, we can see
that using a merged version of the training dataset (merging

samples from EDRA and Dermofit into DermAI, where a
match could be found between classes), returned a slightly
lower accuracy and F1-score (weighted and macro) than when
fine-tuning is used, be it just on DermAI, or sequentially with
EDRA and Dermofit. Nonetheless, using a merged dataset
returned some interesting results for particular categories, as
can be seen in Table V. For instance, for the Haemangioma
class, this approach was the one correctly classifying more
samples, which may indicate that in some specific cases, there
are discriminative features that can be more easily learned in
the same learning process, although getting lost in the iterative
process of sequential fine-tuning.

The results for fine-tuning strategies (a), (b), and (c) can
be found on Tables VI to VIII. Through the analysis of the
previous metrics and confusion matrices (where the predicted
labels are on the abscissa and true labels are on the ordinate),
comparing the different fine-tuning strategies, interesting find-
ings can be highlighted for the individual categories of skin
lesions.

TABLE IV
AVERAGE METRICS SCORE FOR DIFFERENT EXPERIMENTS (IN %).

Experiments Aver. Weight. Macro
Acc. F1 F1

o) Training from scratch 14.28 5.52 2.53
x) Pre-train. ImageNet, merged Dataset 42.56 43.34 28.60
a) Pre-train. ImageNet 42.71 44.04 28.65
b) Pre-train. ImageNet and EDRA 43.73 44.17 30.09
c) Pre-train. ImageNet, EDRA, Dermofit 43.44 44.41 28.80

Regarding Seborrheic Keratosis (SebKer), which is the most
represented class in the DermAI dataset, we report an F1-
score of approximately 56% for pre-training on just ImageNet
(a) and marginally higher for fine-tuning on EDRA (b) and
additionally on Dermofit (c), with (b) and (c) revealing slightly
lower sensitivity and higher precision. This class is well
represented in the three considered datasets, and as expected,
its classification was improved through more fine-tuning, al-
though some misclassifications still happen, especially with
the categories of Actinic Keratosis (ActKer), Nevus (Nev),
and Neoplasm of Uncertain Behavior (UncNeop).

For the Actinic Keratosis (ActKer), also present in Dermofit
but not in EDRA, the model returned F1-scores of approx-
imately 52%, 56%, and 54% for strategies a), b) and c),
respectively. This increase is due to the increase in sensitivity
in strategies b) and c). This is especially interesting for b),
given that this category is absent from the EDRA dataset,
which might indicate that other categories from that dataset
may present similar features which help to discriminate Ac-
tinic Keratosis. Typical misclassifications of this class include
Seborrheic Keratosis (SebKer), Other Malignant Neoplasms
(OtMalNeop), and Neoplasm of Uncertain Behavior (Unc-
Neop).

Concerning the Nevus class (Nev), the second most rep-
resented category in DermAI and present in the 3 datasets
(although EDRA comprises Melanocytic Nevus), the obtained
F1-score results were very similar for all fine-tuning strategies
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TABLE V
RESULTING METRICS WHEN PRE-TRAINING WITH IMAGENET AND

FINE-TUNING ON MERGED DATASET, AND CORRESPONDING CONFUSION
MATRIX.

Classes Sens. Prec. F1
1 SebKer 53.59 66.84 59.48
2 ActKer 63.46 57.89 60.55
3 Nev 18.55 56.10 27.88
4 MolCont 42.86 27.27 33.33
5 Haem 21.43 21.43 21.43
6 UncNeop 18.37 11.11 13.85
7 Drmfib 53.57 31.25 39.47
8 SLent 10.00 8.33 9.09
9 PenFib 43.48 33.33 37.74
10 VWart 66.67 38.81 49.06
11 OtMalNeop 26.09 16.22 20.00
12 BCC 0.00 0.00 0.00
13 MM 0.00 0.00 0.00

(47%, 47%, and 48%, for a), b), c), respectively). However,
looking at the sensitivity scores (44%, 46%, 48%), we can see
that fine-tuning with additional dermatological datasets where
examples of that class were present, considerably improved
this important metric. Misclassifications for this category are
biased towards Sebhorreic keratosis (SebKer), Neoplasm of
Uncertain Behavior (UncNeop), and Dermatofibroma (Drm-
fib).

Analyzing the Molluscum Contagiosum class (absent from
EDRA and Dermofit), we can observe F1-scores of approx-
imately 37%, 43% and 38% for strategies a), b) and c). As
for ActKer, fine-tuning with data with similar features, even
though for different skin lesion categories, helps to better
generalize when the number of samples is low, as is the case
for this class.

A challenging category is Haemangioma (Haem), given
the low amount of data. The F1-scores of 16%, 9% and
15% for strategies a), b), and c), does not support the ad-
vantage of using fine-tuning in this particular category, even
though it is also present in Dermofit. Analyzing the erroneous
classifications, these were more or less evenly distributed
among different classes, such as Nevus, Pendulum Fibroma,
Dermatofibroma, Sebhorreic Keratosis, and Viral Warts. To
better understand these results, we analyzed these images more
closely, concluding that, besides a low number of samples,

TABLE VI
RESULTING METRICS WHEN PRE-TRAINING WITH IMAGENET AND

FINE-TUNING ON DERMAI, AND CORRESPONDING CONFUSION MATRIX.

Classes Sens. Prec. F1
1 SebKer 49.79 63.78 55.92
2 ActKer 56.73 48.76 52.44
3 Nev 43.55 51.43 47.16
4 MolCont 35.71 38.46 37.04
5 Haem 14.29 18.18 16.00
6 UncNeop 16.33 11.27 13.33
7 Drmfib 42.86 38.71 40.68
8 SLent 0.00 0.00 0.00
9 PenFib 21.74 21.74 21.74
10 VWart 56.41 45.83 50.57
11 OtMalNeop 26.09 18.18 21.43
12 BCC 0.00 0.00 0.00
13 MM 20.00 13.33 16.00

they are very different amongst themselves (e.g., different
body regions), making the model task more difficult.

Regarding the Dermatofibroma (Drmfib) category, which
also exists in Dermofit and EDRA, the model returned F1-
scores of 41%, 36%, and 33% for the three fine-tuning
strategies (a), b), c), respectively). Although the differences
seem considerable, given the small number of test cases, this
translates to a difference of two correctly classified cases
between a) and b), and one case between a) and c). Most
misclassifications classify the samples as Nevus, and on a
lesser extent with Neoplasm of uncertain behavior.

For Solar Lentigo (SLent), which has very few samples
(under 50), and only exists in EDRA within the Miscellaneous
class, returned poor results, as can be seen by the F1-scores
of 0%, 17% and 0% for strategies a), b) and c), respectively.
Again, as the difference might seem considerable at first, this
corresponds to 0, 2, and 0 correctly classified samples in
the test set. This category is expectedly difficult due to its
low availability, with the model misclassifying these samples
mostly with Actinic and Seborrheic Keratoses.

Concerning Pendulum Fibroma (PendFib), a class only
present in DermAI, the results for F1-score for the fine-tuning
strategies a), b), c) were 22%, 26%, and 24%, respectively.
Even if only marginally, and given the low number of available
images, pre-training seems to improve the results, especially
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TABLE VII
RESULTING METRICS WHEN PRE-TRAINING WITH IMAGENET AND

FINE-TUNING ON EDRA AND DERMAI, AND CORRESPONDING
CONFUSION MATRIX.

Classes Sens. Prec. F1
1 SebKer 47.68 69.75 56.64
2 ActKer 67.31 47.30 55.56
3 Nev 45.97 48.31 47.11
4 MolCont 42.86 42.86 42.86
5 Haem 7.14 11.11 8.70
6 UncNeop 4.08 5.13 4.55
7 Drmfib 50.00 28.00 35.90
8 SLent 20.00 15.38 17.39
9 PenFib 26.09 25.00 25.53
10 VWart 53.85 42.86 47.73
11 OtMalNeop 17.39 12.50 14.55
12 BCC 9.09 6.25 7.41
13 MM 30.00 25.00 27.27

on sensitivity (22% in a) to 26% in b)). Misclassifications for
this class do not reveal a clear trend, spanning several different
categories.

The category of Viral Warts (VWart) is also present only
in DermAI. The F1-score results of 51%, 48%, and 53% for
strategies a), b), c), respectively reveal that this is one of the
best-classified categories, and even though Dermofit does not
present this category, pre-training with this dataset marginally
improves the performance, especially regarding the precision
( 53%). Most misclassifications fall in the categories of Nevus,
and Seborrheic and Actinic Keratoses, the most represented
classes, which might support this observed bias, even though
class-balancing methods were explored.

The category representing Neoplasm of Uncertain Behavior
(UncNeop), as the name suggests, shows a higher variability
within its samples. Thus, it is expected that this class is
more challenging to classify, which is reflected in lower
F1-scores of 13%, 5%, and 14% for fine-tuning strategies
a), b), c), respectively. The drop for strategy b) might be
a reflection of the under-representation of categories with
similar features in the EDRA dataset. We recall that we have
included the Pyogenic Granuloma cases into this category
due to its low number of available samples and its clinical
manifestations resulting in highly variable prioritization in case
of referral, which is consistent with the UncNeop category.

TABLE VIII
RESULTING METRICS WHEN PRE-TRAINING WITH IMAGENET AND

FINE-TUNING ON EDRA, DERMOFIT, AND DERMAI, AS WELL AS THE
CORRESPONDING CONFUSION MATRIX.

Classes Sens. Prec. F1
1 SebKer 48.95 66.29 56.31
2 ActKer 60.58 49.22 54.31
3 Nev 47.58 47.97 47.77
4 MolCont 28.57 57.14 38.10
5 Haem 14.29 16.67 15.38
6 UncNeop 16.33 11.76 13.68
7 Drmfib 46.43 25.49 32.91
8 SLent 0.00 0.00 0.00
9 PenFib 21.74 26.32 23.81
10 VWart 53.85 52.50 53.16
11 OtMalNeop 17.39 13.33 15.09
12 BCC 0.00 0.00 0.00
13 MM 30.00 20.00 24.00

Since Dermofit also considers some examples of Pyogenic
Granuloma, this might explain the marginal improvement of
strategy c). Regarding misclassifications, these are mostly
distributed among Seborrheic and Actinic Keratoses, Nevus,
and Other Malignant Neoplasms, which is understandable as
these are some of the classes with more diversity in their
clinical manifestations.

Moving from the benign classes to the malignant ones,
we start with Other Malignant Neoplasms (OtMalNeop), a
broader category that includes the Intraepithelial Carcinoma
and Squamous Cell Carcinoma, both present in the Dermofit
dataset. Given the high case diversity, not supported by a
sufficient number of data samples, lower results are somewhat
expected, as observed in the F1-scores of approximately 21%,
15%, and 15% for the strategies a), b), and c), respectively. The
drop in performance when pre-training with different datasets
suggest that even though some of the learned features may
be more general, this does not always imply better robustness
for more naturally diverse categories, which can benefit from
learning more freely on the available specific samples. Not
surprisingly, both from a clinical perspective and due to their
representativity in the dataset, most misclassifications fall in
the Actinic and Sebhorreic Keratoses classes.

For Basal Cell Carcinoma (BCC), a class that is present
in the three datasets, although with a low number of samples
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in EDRA and DermAI, the model was only able to correctly
classify one sample using fine-tuning strategy b) and none for
the remaining strategies. BCC can have different biological
and clinical manifestations [34], which by itself makes this
class more complex to classify, especially with a lower sam-
ple availability. Nonetheless, the results motivated a deeper
analysis of the corresponding images, and it was concluded
that, for the DermAI dataset, the vast majority of examples
in this class were anatomical images (mostly faces), whereas
the images on EDRA and Dermofit were macroscopic images,
centered on a single lesion. This mismatch between datasets,
and even between partitions (train and test sets), together with
the anticipated complexity, explains the poor performance for
this category.

Finally, regarding the Malignant Melanoma (MM) class, it
has examples in the three datasets, although more represented
in EDRA. The classification performance resulted in F1-scores
of 16%, 27%, and 24% for fine-tuning strategies a), b), and c),
respectively. However, in absolute terms, given the low number
of test samples (10), this corresponds to 2, 3, and 3 correctly
classified instances. In terms of sensitivity, the values were
20%, 30%, and 30%, which hints at the positive impact of
fine-tuning for this category where sensitivity is key. The low
performance is mostly believed to be due low representation
of this class, with only around 40 cases for training. As
expected, also from a clinical point-of-view, misclassifications
were biased towards Sebhorreic Keratosis and Nevus.

V. CONCLUSION AND FUTURE WORK

The last decades have witnessed significant progress in
what concerns computer-aided diagnosis for several domains,
namely dermatology and skin lesion classification. However,
most breakthroughs are limited to well-controlled environ-
ments, with data acquired in very specific conditions, putting
almost all effort in model development and improvements
thereof. Despite all the impressive results found in the litera-
ture, most systems rely on non-standard acquisition equipment,
handled by professionals whose focus is far from ensuring data
quality and standardization.

To address this gap in real-world applications, this paper
proposes different strategies for training a real-world image
dataset for skin lesion classification, comprised of retrospec-
tive data from the Portuguese National Health System - Der-
mAI. It presents 13 different differential diagnostic categories
and its images are very diverse concerning the acquisition
settings, the field-of-view, and overall quality, making it a
challenging dataset, especially when compared to publicly
available ones, as EDRA and Dermofit.

Different methodologies for training a Deep Neural Network
on this unbalanced dataset were studied. First, we evalu-
ated different network architectures with available pre-trained
weights on ImageNet to assess with which one to proceed
for the following experiments: MobileNet-v2, Resnet50 and
EfficientNet-B3. Considering the trade-off between trainable
parameters (model complexity) and performance (based on F1-
score), we chose to proceed with the EfficientNet-B3.

Following, a model was trained from scratch, using only
DermAI image samples. Unsurprisingly, these results were
very poor (Accuracy of 14% and macro F1-score of 3%),
with the model overfitting for two of the classes: Nevus and
Haemangioma. A different, straightforward approach, relied
on merging samples from common classes in the public skin
lesion datasets into DermAI. In opposition, we also propose
a sequential fine-tuning pipeline where the target dataset is
fine-tuned after pre-training the model iteratively with other
datasets, from larger and more general sets (ImageNet) to
smaller, similar domain, ones, like EDRA and Dermofit. One
of the first conclusions is that pre-training, even with datasets
as general as ImageNet, have a significant impact on the model
performance (Accuracy over 40% and macro F1-scores over
28%), even though the results reflect the complexity of the
DermAI dataset.

When comparing the use of a merged dataset (using com-
mon skin lesion classes) with the use of sequential fine-tuning,
the conclusions are less clear. In general, sequential fine-
tuning returns marginally higher aggregated results (a marginal
increase of macro F1-score), although some specific categories
benefit from increased training samples in the same learning
step. This is especially evident for classes where the images
show significant differences between the datasets (e.g., Hae-
mangioma or Pendulum Fibroma), since the first pre-training
might lead the learning process away from extracting features
that are more discriminative for categories only represented
in the target dataset. On the other hand, other categories
may benefit from such an iterative learning process, where
features learned in other datasets help to generalize examples
in the target dataset (e.g., Nevus and Malignant Melanoma).
Moreover, although the averaged metrics favor a pre-training
on EDRA and not including Dermofit, for some categories
the latter shows to be beneficial, such as for Haemangioma,
Neoplasm of Uncertain Behavior, and Viral Warts.

Our results highlight the challenges of a real-world applica-
tion of skin lesion classification models, highly dependent on
the available data, especially concerning its amount, quality,
and diversity. One major conclusion is that high-quality, low-
cost, and portable acquisition systems assume paramount
importance in building good training sets. Furthermore, as
disease cases are hard to get, in order to explore existing
data, data-centric techniques should be explored in future
work to improve results. These may include simply other
aspect-ratio preserving resizing methods, or more interestingly,
lesion segmentation methods to help the model focus on the
most critical regions of the image without removing all of
the, also important, surrounding context. Additionally, the
use of neural activation maps or other related explainable
methods could help analyse specific errors that may inspire
further image preprocessing steps. Concerning data merging
versus sequential fine-tuning, this work opens the door for
future research on exploring both approaches simultaneously.
It is possible to merge common classes (especially if that
category’s image variance is high) and follow with a sequential
fine-tuning process for missing or not-shared classes. Further
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future work considers including meta-data in the classification
models and investigating joint training of multiple tasks related
to skin lesion classification since parameter-sharing could be a
good alternative to sequential pre-training. Finally, hierarchical
classification can also be explored in future experiments,
where different layers are considered towards improving the
final classification. For example, one can first classify a sample
into Benign, Malignant, or Uncertain categories and then into
the corresponding final differential diagnosis based on the first
decision.
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