
Common Data Model for the Microservices of a
Radiopropagation Tool

Adrián Valledor
Computer Science Dept.
Universidad de Alcalá

Madrid, Spain
e-mail: adrian.valledor@uah.es

Marcos Barranquero
Computer Science Dept.
Universidad de Alcalá

Madrid, Spain
e-mail: marcos.barranquero@uah.es

Juan Casado
Software Engineer at Starleaf

Starleaf, Building 7
United Kingdowm

e-mail: juan.ballesteros@starleaf.com

Josefa Gómez
Computer Science Dept.
Universidad de Alcalá

Madrid, Spain
e-mail: josefa.gomezp@uah.es

Abdelhamid Tayebi
Computer Science Dept.

Universidad de Alcalá
Madrid, Spain

e-mail: hamid.tayebi@uah.es

Abstract—This paper presents the development and improve-
ment of a part of a Web simulation tool for radio propagation
of 2D and 3D geospatial data. In particular, a fraction of its
architecture, based on microservices, is shown. With our study,
we encountered the need to use a common data model that allows
the managment of the data throughout the tool. To solve this,
some of the possible solutions to this problem are presented,
such as the GraphQL Application Programming Interface (API)
or the use of REpresentational State Transfer (REST) APIs
and the use of Docker together with microservices. Finally, the
implementation of a model supported by geometry specifications
is provided as a solution and we conclude with the results
obtained together with future work plans.

Keywords—Microservices, radiopropagation tool, REST APIs,
data model, GraphQL.

I. INTRODUCTION

In recent years, there has been a need, either because of time
or because of the inability of maintenance during the software
lifecycle, to migrate from the old monolithic systems to current
microservices models. This is based on models in which the
application was a single atomic unit, but complex and difficult
to maintain and grow over time [1]. Therefore, nowadays
the Service Oriented Architecture (SOA) model stands out,
known for its great modularity and communication with other
models. With this also comes the need to establish correct
protocols for their communication with other models. At the
moment, a microservice can be defined as ”a small application
that can be deployed independently, scaled independently and
tested independently and that has a single responsibility” [1].
Despite all the benefits shown in the use of microservices,
they also brings some problems to the table. One of them
can be the inconsistency of the data model, since the mi-
croservices can be independent and, therefore, they may not
share the same specifications. In this case, the improvement
of a radio propagation simulation tool is being developed [2].
This Web simulation tool will allow the display of geospatial
data through an interactive map in 2D and in 3D urban

environments [3]. The tool uses several empirical and semi-
empirical models for the computation of radiopropagation. In
addition, it displays terrain-related information, e.g., height
values, population density, terrain type or any other raster input
that the algorithms may require. It also allows to represent and
visualize the simulation results on the map in 2D for empirical
methods or 3D for deterministic methods. Additionally, it
allows the optimization of antenna positioning, by means of
genetic algorithms, to provide the best coverage in a given
area. In particular, the solution adopted for the development of
this tool will be shown through the definition of a specification
structure adapted to this need.

The remainder of this paper is organized as follows: Section
II gives a short overview of work related to the idea to be
put forward. Section III shows the devised solution of the
specification structure as a data model. Section IV presents
another solution related to microservices and Docker. Section
V summarises the advantages and disadvantages of implement-
ing this model. Finally, Section VI concludes the article and
gives an outlook on future work.

II. STATE OF ART

Among the solutions that can be envisaged to solve the
problem of the shared data model are the following.

A. GraphQL

GraphQL is a query-based language, in a JavaScript Object
Notation (JSON) like format, for APIs and runtime that
checks existing data. It provides a complete description of
the data in its API, allowing users to request what they need
[4]. Among its highlights is that in addition to getting the
properties of a particular resource, it provides its references.
This allows for quick queries, even if it relies on more limited
network connections. Another point in favour is that it allows
continuous adaptation to the types of data we need, i.e., if we

61Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

need to add or remove specific fields, it would not be necessary
to modify the existing queries.

On the contrary, this is not a suitable solution for the data
model that is required for the simulation tool, as it may present
one of the following problems:

• Performance problems, allowing the user to execute im-
permissible queries.

• It presents excessive complexity to solve this problem,
making subsequent maintenance difficult.

• It has only one endpoint, making it difficult to use
caching.

• Difficult error handling regarding other structures such as
REST.

B. REST APIs

REST APIs represent a set of architectural principles that
fits the specific needs of each application as defined by Dr. Roy
Fielding et al. [5]. This provides a high level of flexibility and
freedom for development of a microservices architecture. In
addition, it must meet a number of requirements:

• Uniform interface: all requests must be the same, regard-
less of their origin.

• Decoupling of client-server, client and server applications
must be independent of each other.

• Without status: each application must contain all the
information necessary to process the query.

• Cacheability: resources must be able to be cached on the
client or server side.

• Layered architecture: calls and responses will pass
through different layers.

• Code on demand: in some cases responses may contain
executable code.

REST APIs operation is based on communication through
HTTP requests [6] that execute database functions, generally
CRUD (Create, Read, Update and Delete).

In conclusion, the use of both GraphQL and the REST
architecture is excessive or can become complex with respect
to the development that is desired in the long term. For
example, the need to provide a data model prior to GraphQL to
be able to start working with it or the need to develop a larger
architecture to be able to apply REST. For all these reasons,
a better solution is proposed, in this case, the development of
an own data model in the form of specifications.

III. MICROSERVICES WITH DOCKER

Another solution related to microservices is the use of
Docker [7]. In this case, a small Dockerfile is designed that
uses a couple of environment variables to define the port and
the action to be performed. In this case, the action will be to
launch one microservice or another depending on whether it
is involved in the operation or not.

One of the benefits of using this framework is the possibility
of implementing load balancing by launching or stopping
microservices depending on their need.

Another great benefit of using Docker is that it will allow
microservices to be scalable, easily upgradable and indepen-
dently deployable.

As it can be seen from the code in Figure 1 referring to
the Dockerfile, through this small development in Docker, it
is possible to load the microservices components and code
dynamically. That allows to have the same interfaces and
code for all of the microservices, and loading only the part
of the code relevant to that microservice encapsulated in one
container. For the case shown in Figure 1, it is used with
servers of different types depending on whether they are
necessary or not.

Fig. 1. Dockerfile to launch a microservice.

To denote which elements will be loaded into the container,
operating system environment variables with different values
common to servers, such as the port or server name, are used.
By reading these attributes in code, the code to be copied
into the container is determined, thus loading only what is
necessary for that microservice.

IV. SOLUTION SPECIFICATIONS

At this point, we propose an application with an architec-
ture divided into a front-end and a back-end. In the back-

62Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

end is the set of servers that provide the microservices.
The microservices, in turn, are responsible for providing the
necessary data both to show the users of the application
and to carry out internal operations, for example, obtaining
building heights, optimising antennas locations or calculating
the radiopropagation, among others. On the other hand, there is
a front-end in charge of representing graphically in the browser
the data collected from the servers in the form of geometries.
As can be guessed, a common data model is needed that is
recognised by both sides of this structure. In this way, through
a single model, the different parties involved can communicate
without the need to add extraneous elements or dependencies.

As a solution to the data model, it was decided to create a
common data type that will be used transversally across the
different microservices of the application and that has been
defined as ”Specification”. This Specification is based on the
common properties that all geometry is considered to have,
geometry being a fundamental structure in the application.
The Specification will have a similar structure to JSON type
files and is defined by the type of geometry it represents, as
well as the coordinates of the points that compose it. See,
for example, if one wishes to represent the geometry of a
rectangle, a specification will be generated in JSON format
indicating the type of geometry, in this case rectangle, together
with the coordinates of the four points that compose it. In
this way, this specification can be shared and recognised in
the same way in the different microservices that make up the
application.

V. ADVANTAGES AND DISADVANTAGES

Having seen some of the different alternatives available,
such as GraphQL or REST designs, together with the proposed
solution, a set of advantages and disadvantages about them can
be obtained.

The advantages include the following:
• Use of a common data model.
• No external dependencies.
• Easy to maintain structure.
• It provides a simple overview of the tool.
On the contrary, it has the following disadvantages:
• It does not have the possibility of being reusable in other

developments.
• It has too concrete a design focused on the current tool.

VI. CONCLUSION

This work proposed the implementation of a common data
model for radiopropagation tool. To do so, other models
such as GrapQL or REST architectures have been discussed,
reaching the conclusion of defining the Specification model,
achieving a model recognised by the whole structure of its
system. Moreover, it can be seen how beneficial it is for a
framework like this tool the importance of maintaining an
architecture through microservices.

The use of microservices has allowed the elimination of
external dependencies, as well as the possibility of reusing
them in the future and ensuring better maintenance over time.

Plus, it adds modularization to the project, providing scalabil-
ity and load balance between the front-end and the back-end.
Parallel to the implementation of the microservices, it was
necessary to use or develop a correct data model common to
all of them in order to allow efficient communication. Along
with this, current alternatives to this data model have been
considered, but they do not fit with the situation of the tool
being developed, either because of their size or because of
future dependencies.

Once this problem has been solved, we propose as future
work, the improvement of the user interface, as well as the
relationship of this with the different libraries that allow the
representation of maps in the browser. In addition, we intend
to make use of the specifications designed in the data model,
so that everything is communicated and perfectly integrated
in the tool. The mentioned improvement will be based on the
use of the OpenLayers [8] library, which allows maps to be
represented in a browser and different operations to be carried
out. Together with it, the React [9] framework will be used to
transmit through forms, the coordinates that are intended to be
represented on the map, which in turn will be represented by
the data model of the specifications presented in this article.
In this way, the data will be kept accessible throughout the
entire structure of the tool.

ACKNOWLEDGEMENT

This work was supported by the program “Programa de
Estı́mulo a la Investigación de Jóvenes Investigadores” of
Vice rectorate for Research and Knowledge Transfer of the
University of Alcala and by the Comunidad de Madrid (Spain)
through project CM/JIN/2021-033.

REFERENCES

[1] J. Thönes, ”Microservices,” in IEEE Software, vol. 32, no. 1, pp. 116-
116, Jan.-Feb. 2015, doi: 10.1109/MS.2015.11.

[2] A. Tayebi, J. Gomez, F. Saez de Adana, O. Gutierrez, and M. Fernandez
de Sevilla, ”Development of a Web-Based Simulation Tool to Estimate
the Path Loss in Outdoor Environments using OpenStreetMaps [Wireless
Corner],” IEEE Antennas and Propagation Magazine, vol. 61, no. 1, pp.
123-129, Feb. 2019, doi: 10.1109/MAP.2018.2883088.

[3] F. Saez De Adana, J. Gómez, A. Tayebi, and J. Casado, ”Applications
of Geographic Information Systems for Wireless Network Planning”,
Artech, 2020.

[4] GraphQL — A query language for your API. [Online]. Available from:
http://www.Graphql.org. June, 2022.

[5] R. Fielding and R. Taylor, ”Principled design of the modern Web archi-
tecture”. ACM transactions on Internet technology, 2(2), pp.115–150,
2002, doi: 10.1145/514183.514185.

[6] J. Gómez, A. Tayebi, and J. Casado, “On the use of Websockets
to maintain temporal states in stateless applications”, in The 15th
International Conference on Internet and Web Applications and Services
ICIW 2020, pp. 21-24.

[7] X. Wan, X. Guan, T. Wang, G. Bai, and B. Choi, ”Application de-
ployment using Microservice and Docker containers: Framework and
optimization”. Journal of Network and Computer Applications, 119,
pp.97-109, 2018, doi: 10.1016/j.jnca.2018.07.003.

[8] O. Zabala-Romero, E. Chassignet, J. Zabala-Hidalgo, P. Velissariou,
H. Pandav, and A. Meyer-Baese, “OWGIS 2.0: Open source Java
application that builds web GIS interfaces for desktop and mobile
devices”, SIGSPATIAL’14: Proceedings of the 22sn ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems, 2014, pp. 311-320, doi:10.1145/2666310.2666381.

63Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

[9] C. M. Novac, O. C. Novac, R. M. Sferle, M. I. Gordan, G. Bujdoso,
and C. M. Dindelegan, ”Comparative study of some applications made
in the Vue.js and React.js frameworks”. 16th International Conference
on Engineering of Modern Electric Systems (EMES), 2021, pp. 1-4, doi:
10.1109/EMES52337.2021.9484149.

64Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

