
Flexibility of Modular and Accountable MLOps
Pipelines for Cyber Physical Systems

Philipp Ruf, Christoph Reich
Institute for Data Science, Cloud Computing and Security (IDACUS)

Hochschule Furtwangen University (HFU)
Furtwangen, Germany

email: {Philipp.Ruf, Christoph.Reich}@hs-furtwangen.de

Djaffar Ould-Abdeslam
IRIMAS

Université de Haute-Alsace (UHA)
Mulhouse, France

email: djaffar.ould-abdeslam@uha.fr

Abstract—Operations within a Cyber Physical System (CPS)
environment are naturally diverse and the resulting data sets
include complex relations between sensors of the shopfloor
devices setup, their configuration respectively. As Machine Learn-
ing (ML) can increase the success of industrial plants in a
variety of cases, like smart controlling, intrusion detection or
predictive maintenance, clarifying responsibilities and operations
for the whole lifecycle supports evaluating the potentially feasible
scenarios. In this work, the need for highly configurable and
flexible modules is demonstrated by depicting the complex
possibilities of extending simple Machine Learning Operations
(MLOps) pipelines with additional data sources, e.g., sensors. In
addition to the particular modules core functionality, arbitrary
evaluation logic or data structure specific anomaly detection can
be integrated into the pipeline. With the creation of audit-trails
for all operational modules, automated reports can be generated
for increasing the accountability of the different physical devices
and the data related processing. The concept is evaluated in the
context of the project Collaborative Smart Contracting Platform
for digital value-added Networks (KOSMoS), where a sensor
is part of an ML pipeline and audit trails are realized using
Blockchain (BC) technology.

Keywords—CPS; ML; MLOps; Deployment; Modularization.

I. INTRODUCTION

In a fast evolving and interconnected world of user-specific
needs, spontaneous demands on individually or rarely man-
ufactured goods and the time span of completing such an
order are new challenges to industrial operations. The fourth
industrial revolution, known as Industry 4.0 may be interpreted
as the integration of interconnected systems and Internet of
Things (IoT) in manufacturing [1]. Also known as CPS, this
trend focuses on the deep integration of physical artifacts
and informational entities [2], producing a huge amount of
operational data. As research in this field is ongoing and
concepts are refined continuously, topics like cobots (e.g., co-
operating robots), further personalization, bio-economy, green
computing and other sophisticated technology is summarized
as Industry 5.0 [3].

The usage of ML technology is always dependent on the
theoretical feasibility of a respective scenario, the operational
infrastructure, applied field devices and overall quality require-
ments. As production data originated within an organization’s
CPS plants, the dedicated combination of physical infrastruc-
ture and software is geared to the specific setup. While the

field of ML emerges in the CPS domain, many Artificial
Intelligence (AI)-driven use cases, as for example automated
traffic signaling systems or Wireless Sensor Network (WSN)
security and privacy enhancement, as outlined in [4], have been
implemented in real-world scenarios. Such smart environments
are also sometimes termed Artificial Intelligence of Things
(AIoT) [5].

As the solutions to the respective problems are often de-
picted in detail, most literature lacks of comparable integration
and management steps of devices in ML environments. It is
more common to apply well-known data sets for demonstra-
tion and evaluation purposes. Another aspect of related work is
executing ML operations on commercial infrastructure or ser-
vices, as in [6]. In this context, an organization’s data privacy
policies are often threatened or cannot be met. Engineering an
ML task results often in a static implementation and work
is carried out within a dedicated environment, comprising
specific hardware properties and libraries. Solving an ML
problem is not an atomic task, but consists of a pipeline which
can be interpreted as a domain-specific and integrated ML
platform [7], containing various sub-processes.

When performing maintenance in a CPS plant, both the
digital and physical shopfloor configuration must be tested
extensively before production can continue. By serving a
modular digital environment for CPS operations, an order-
specific configuration of shopfloor devices can be dynamically
deployed. The accountability and reliability of modules may
impact the decision of pipeline compositions, too. In the
case of on-demand manufacturing, many common tasks of
the devices in a production-line can be automated.The whole
pipeline must be held accountable, e.g., audit trails for each
involved module operation must be persisted. When consid-
ering the obstacles around creating even simple ML pipelines
[8], modularization of operations can improve stability and
reliability when environmental circumstances change.

In the work on hand, the combination of CPS, ML and
required quality aspects, is depicted by related work in Section
II. By clarifying MLOps principles with respect to CPS in
Section III, the foundation for discussing flexible ML pipelines
in Section IV is given. The work is concluded in Section V.

69Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

II. RELATED WORK AND STATE-OF-THE-ART

As AI-based systems become more and more part of mod-
ern society, there are also public competitions backed and
promoted by governments, e.g., as illustrated in [9]. In order
to assure the participation and success of such events, up-
to-date and user-friendly topics, as for example MLOps or
AutoML, enable non-technical interested parties. A compre-
hensive overview of ML algorithms and their applications in
real-world scenarios was given by Sarker in [10]. In outlining
the most common algorithms functionality and intended usage,
the importance of characteristics in data to be processed was
accentuated. The different phases of MLOps and responsibil-
ities of involved actors were clarified in [11]. With presenting
a comparable list of supportive tools, an overview of ML-
related environments, appropriate for different tasks was given.
Although the work on hand describes an accountable and
modular approach of defining MLOps pipelines, capable of
implementing a variety of real-world setups, only a theoretical
evaluation is performed and no involvement in public compe-
titions took place.

A. Machine Learning for IoT and CPS

The utilization of ML techniques on data originating from
industrial devices, e.g., mills, laser cutters, etc., has been
implemented within many organisations so far. Sharma et ala
[4] surveyed different efforts of ML with respect to IoT, e.g.,
different embedded devices and cloud-IoT platforms. Fei et al.
[12] gave a comparative overview of ML-enabled data stream
analytics. In the current literature for the most typical ML
applications in CPS (smart grid, intelligent transport systems
and smart manufacturing), various tasks and the respective
ML techniques are depicted including the algorithms time
complexity. In addition to basic ML techniques, incremental-
and online learning is overviewed by the authors. In [3],
use cases and further aspects of the Industry 5.0 paradigm
are clarified and an overview of technologies applied in the
field of CPS is presented. In general, this is a refinement,
and utilization of its predecessor, Industry 4.0, where inter-
connection of devices, humans and AI is extensively applied
to industrial processes and scenarios. A containerized AIoT
framework for enabling Continuous Integration, Continuous
Delivery (CI/CD) of ML models and their deployment on
highly configurable edge environments was shown by Raj
et al. in [5]. When presenting an air-quality control system
scenario in a distributed environment, e.g., conditions of
different rooms, the model drift at the respective edges and
a retraining with location-specific information was discussed.
As outlined in [13], when developing a CPS operation, Digital
Twin (DT)s are commonly applied in order to combine an
abstraction of physical assets with the industrial application.
Using a set of digital representations of a physical device,
e.g., a module pipeline, production lines can be abstracted and
actuated. Although there is an overlap with CPS operations,
no holistic view on possible scenarios or specific deployment
setups is considered in the work on hand. Rather, a bottom-up
approach for modularization and deployment of modules using

the KOSMoS framework is shown. As a management system
and synchronization among DTs are some of the biggest
challenges for the overall quality in a scenario [13], their
composition of well defined and evaluated pipeline modules
is one possible flexibility enhancement.

B. ML Quality and Deployment

The integration of trained ML models in preexisting logic
is always application-dependent and, therefore, different qual-
ity requirements exist. For example, it may be required to
deploy modules with consideration of certain restrictions or
properties like scalability and serverless execution. The de-
ployment of ML models as a nano-service was proposed
by Paraskevoulakou et al. [14], where hardware resources
were abstracted in order to provide a massive-scaleable ML-
Function as a Service (FaaS), using the Apache OpenWhisk
framework. Therefore, the same preprocessing pipeline of an
offline-trained model is applied to unseen input data and
forwarded via Representational State Transfer (REST) calls
until the pre-trained model is invoked. Dependent on the
technology stack of an operation or organization, such FaaS
strategies may be integrated within the underlying infras-
tructure system itself. An overview and comparison of four
open-source serveless platforms was given by Li et al. [15].
Mechanisms like the kubernets Horizontal Pod Autoscaler
(HPA) automate resource-based scaling of pods by interpreting
gathered metrics. On the other hand, stateful modules must be
implemented with respect to such environmental conditions.
A multi-target compiler for ML-model deployment was in-
troduced in [16], where Predictive Model Markup Language
(PMML)-compatible models are represented as a set of tem-
plates. These building blocks are applied in code generation
for efficient production execution on single- and multi Central
Processing Unit (CPU) and Graphics Processing Unit (GPU)
systems. With respect to quality management systems, var-
ious real-world examples were outlined by Lee et al. [17],
targeting the predictive maintenance in Industry 4.0. Amongst
others, external data and multiple sensors represent the benefit
of sensor fusion techniques. A comprehensive overview of
quality dimensions, e.g., intrinsic, contextual, accessible and
representational, with respect to Big Data was given in [18].
In addition to discussing data quality metrics for measuring
the dimensions, quality scores are proposed for evaluation.
A variety of quality attributes for microservice architectures
is described in [19]. Architectural design decisions must be
taken into consideration for classic requirements like the
scalability or availability of an application, too. Aspects of a
CPS demonstration cell were discussed in [20], where different
devices simulated a production line and the generated data was
used to predict the quality of a workpiece. While utilizing
different ML techniques for the various CPS parts, there were
challenges regarding the synchronizations and inconvenient
labeling procedures. As the work on hand focuses on the de-
ployment and interaction schemes of modularized ML pipeline
parts, no attention is given to framework details or cross
compilation. Due to the possible and likely fusion of datasets

70Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

originated from different sensors, difficulties can occur when
synchronizing events. As the data and modules implementation
quality is vital to the success of AIoT and CPS operations,
domain-specific quality dimensions and requirements must be
engineered beforehand.

III. ENVIRONMENTS OF ML PIPELINES FOR CPS
A. ML in Hierarchical CPS Environments

The physical and digital setup and configuration of a shop
floor is always specific to the CPS operations and architectures
are often presented in a high-level manner. In literature,
the commonality is often a top-down 1-to-n connection of
clouds, edges or fogs, CPS nodes, shopfloor devices and their
integrated sensors and actuators respectively. Using such a
basic depiction of an CPS constellation allows for clear and
simplistic (re-)design of an operations digital infrastructure.
Constant monitoring of the whole system on different levels
enables a holistic view of current and historical operations
[11]. As shown in Figure 1, the constellation of an organi-
zation’s CPS and the placement of ML-related modules is
driven by and dependent on domain- and scenario-specific
expert knowledge. As illustrated, the depicted phases of a
pipeline, which are clarified in the following, are impacted
by their respective locations within a CPS. As the MLOps
configuration is based on this CPS inventory, scenario-specific
decisions which impact the stability of the whole workflow
must be identified during project requirement engineering.
With respect to the overall architecture, antipatterns, e.g.,
as in [19], and technical ML depts, e.g., as in [8], must
be taken into consideration, too. In order to ensure usable
datasets for model training, the data management phase aims
for the fulfillment of different requirements, including domain
specific evaluation on raw data. A a basic data quality analysis
indicates the usability of a dataset version, where different
techniques, processes and metrics exist for structured, e.g.,
text, or unstructured data like images [11]. Triggering and
(re)configuring modules in an shopfloor environment, alarm-
ing for required maintenance or contribution to production
pipeline management decisions are possible effects. When
device-specific quality dimensions are identified, appropriate
metrics, as outlined in [18], can be configured with scenario-
specific attributes and indicate usable data and data to be
reevaluated, respectively. There are many technical solutions
to store versionable data, e.g., Data Version Control (DVC),
problem-specific databases, distributed file systems or Copy-
On-Write (COW) block devices, but dependent on the type of
data, amount, frequency and usage of versions from different
times, only a few of them will scale. Another aspect is
the tenant-specific access of data, privacy concerns and the
integration into existing digital environments. As the access to
problem-specific data versions is not trivial, a high-level access
or data stewardship support is appropriate for data-intense and
dynamic pipelines. Operations in the preprocessing phase, e.g.,
labeling or generating appropriate features, can be automated
to a certain extent, dependent on the underlying problem
and involved sensors. The configuration of ML architectures

optimal hyperparameters cannot be derived from operational
data [21] and is problem-specific. The training processes are
deployed to more or less potent hardware, possibly executed
in parallel with respect to multiple versions or hyperparameter
configurations. The metrics and model training runs may
vary in requirements, as for example time constraints for the
training, the models execution time or accuracy demands.
With the definition of an applications access to the model,
e.g., the model’s inference, the problem-specific input data
can be evaluated by modules from the training pipeline. A
complete flow from sensing data to the usage of a resulting
model is depicted and formalized by expert knowledge. As the
environmental quality of each sensor, device, node, edge or
cloud system is of relevance to the compliance with defined
Key Performance Indicator (KPI)s, constant monitoring and
quality assessment of the systems must be assured. With
enough computation power, CPS nodes, edge devices or cloud
environments are capable of data preprocessing tasks. As the
training of ML models often requires Graphics Processing
Unit (GPU) resources, more powerful edge devices and cloud
environments are attractive locations. The model integration,
inference respectively, can be enabled within CPS devices,
nodes, edges or the cloud. Training a model on CPS devices
data and applying the resulting ML implementation requires
domain-specific knowledge of various shopfloor configurations
in the first place. The dynamic deployment of ML tasks in CPS
is based on the concatenation of containers, respective KPIs
and an association with data structures of the actual shopfloor
devices.

B. Generic composition of Modules

The declaration of an ML pipeline, e.g., a module com-
position, is comparable to creating a Directed Acyclic Graph
(DAG) of predefined functions. In general, a module receives
some kind of information, executes its dedicated process-
ing and finally produces an output to be interpreted by its
successor. Therefore, the actual module logic simply has to
utilize such interfaces in order to serve as a composable and
exchangeable part of the system. As a pipeline module tackles
a specific problem, results can be treated as independent parts
of the overall solution. When splitting the functionality of
an application into an appropriate number of modules, their
composition may enable more flexible, diverse and reliable
operations. As every ML-related task fits best to a specific
algorithm, as overviewed in [10] and [4], the granularity of
a module is impacted by the respective scenario. Although
a specific module implementation structure and its overall
purpose depends on the problem on hand, common inter-
faces and communication patterns for interaction within the
pipelines enhance the overall structure and configuration. As
the design of the phases modules may require automated
scaling, deployment strategies and applied technologies differ.
Although autoscaling features are present in Kubernetes-based
serverless platforms, as shown in [15], e.g., comparing Nuclio,
OpenFAAS, KNative and Kubeless, the overall communication
and management patterns must still be defined. When interact-

71Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 1. ML Tasks in CPS driven by formalized Expert Knowledge

ing with foreign systems, e.g., interfacing shopfloor devices or
digital enterprise services, the respective module environment
must be able to securely communicate with its counterparts
in the first place. Especially, when a module is the origin
of a pipeline, the data source is either produced by code,
read from existing data structures or received via a foreign
system by applying specific libraries. In addition to passive
operations like reading a file from disk or pulling data from
an endpoint, a module may be asynchronously triggered by a
foreign system or an alien pipelines module respectively, or
impact the environment by actuation. In contrast, a module
input represents a connection to a specific storage, which
enables the usage of previously persisted and task-related data.
As the operations within a pipeline are often based on data
science operations, common functionality like treating data to
be persisted or read as DataFrame is viable. Such utilization
will enhance convenience when applying the information
within a subsequent module. When task-specific operations are
designed in a generic way, whole modules may also be more
flexible due to their parameterization. The module output, e.g.,
the persistence of module results in a task specific storage,
can range from primitive datatypes to high-level objects, byte-
code or trained models. By ensuring module accountability,
each module instance can be audited separately. The logs can
be of any kind and may also relate to custom operations
for preceding modules in a specific pipeline setup. When
consequently applying such logging patterns, the significance
of task-specific audit-trails can be increased. Also, different
parts of the module evaluation can be automatically executed
when specified circumstances are met. They may strike when
receiving data or as early as during their configuration with
respect to fellow pipeline modules. Therefore, it is vital to the
success of a module that metrics, parameters and custom tests
are present for each implemented operation. Treating the var-
ious containers as independent standalone applications allows
for implementing the whole learning pipeline as a dynamic and
exchangeable configuration. The scheduling and deployment
of tasks can also be carried out with respect to priorities and
quality demands, as well as hardware requirements or modules

in a pipeline. With executing the trained model version, an
ecosystem of various monitoring hooks and mechanisms for
assuring the specified KPIs is implied. Depending on the
overall application goals, assertions of the declared ML tasks
quality metrics influence the systems decision of automatically
retaining the utilized model or performing actuation actions on
the shop floor, respectively.

IV. FLEXIBLE PIPELINES FOR ML IN CPS
A. Exemplary Deployment and Accountability with KOSMoS

Depending on the complexity of data and the algorithms ap-
plied during processing, the optimal deployment technologies
and techniques, the DAG of modules and the persistence of
data varies. In the context of the KOSMoS project, a frame-
work for the server-side management of client-side ecosystems
was designed with respect to the CPS and shopfloor environ-
ments. By creating containers for each dedicated module, a
communication protocol for interaction among them and defin-
ing a storage procedure, pipelines are depicted as JavaScript
Object Notation (JSON) objects. As shown in Figure 2,
a global platform (upper part) allows for the configuration
of modules for pipelines which are applied in the digital
environment of a system (bottom right part) and relates to
a physical shopfloor (bottom left part). In such a KOSMoS
setup, accountability of executed module operations, as well
as significant device behaviour can be realized by provid-
ing pipeline- and tenant-specific access to the cloud-based
BC technology. On the other hand, regular events can be
transmitted to the BC as a hash, e.g., representing a interval
of sensor data. Later on, the hashes can be compared to
the respective data versions intervals at the pipelines local
environments storage. There is a n-to-n relation between
sensors and ML pipeline modules, as well as for modules
among themselves. Basically, one or more sensors from one
or more devices are configured with one or more pipeline
modules. Therefore, sensor- and data-fusion is possible and
likely to occur in CPS scenarios. When an applications infers
a shopfloor-related AI-based model, automated actuation may
occur at physical machines. As one promising area of CPS

72Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 2. Accountable module Deployment with KOSMoS

is the human-robot coworking [3], the utilization of Human
Machine Interface (HMI) can enhance productivity. When
Machine to Machine (M2M) communication takes place on
the shopfloor, authorized devices may reconfigure a production
line’s parameters, or interfere in dangerous situations. This is
similar to another aspect of KOSMoS, where the possibility
of cross-tenant cooperation is realized.

B. Simple Pipelines

In the following, a simple ML scenario is described, where
the structure of each separate module comprises overall con-
figuration parameters, as well as the interfaces described in
Section III-B. In Figure 3, a temperature sensor is the origin of
environmental data and the depicted ML pipeline implements
the prediction of labels for the environment’s next interval.
Therein, every communication must be taken into consider-
ation during evaluation of a module (e.g., Foreign System
interaction, Configuration, input, Logging and Results). In the
following, the assumption is that data quality requirements
for this problem are known and an algorithm takes care of
automated labeling of the sensors intervals. Therefore, the
various preprocessing operations can be completely automated
and a well-formalized timeseries data structure arises. Another
aspect of this pipeline construction technique is the indepen-
dence and dynamicity of module instances, enabling a high
degree of interoperability and exchangeability of modules.
The implementation of preprocessing device data and the
model training will presumably differ for each type of ML
task and requires the respective domain knowledge as well as
software engineering and data-science capabilities. As implied
in Figure 2, the digital shopfloor environment is capable of
actuating the same devices from which data is already sensed.
In controlling and reconfiguring physical surroundings, spe-
cific circumstances will require an adjustment of preexisting
pipeline modules, too. The generic implementation of modules
and asynchronous communication patterns allow for specific
databases which are used for persisting a module’s result
and receiving the preceding outcomes, respectively. In the

following, each module involved in the mentioned scenario
is described.

a) Receive Sensor Temperature: In order to utilize CPS
data, a reference to the respective devices has to be a declared
for initially loading the correct data into the pipeline. When as-
suming a shopfloor device comprises primitive communication
mechanisms, direct access to data via Universal Asynchronous
Receiver / Transmitter (UART), Inter-Integrated Circuit (I2C),
Serial BUS or other technologies is probable. As in the context
of a CPS, industry standards for communication with such
devices like Simens S7 or Open Platform Communications
Unified Architecture (OPC-UA) are more likely to occur
and many libraries and communication models, e.g., pull vs.
subscribe, exist. When deciding for a specific communication
protocol, as OPC-UA was chosen for this example, various
technology-specific parameters, e.g., how to connect to the
specific machine in order to retrieve the required data, must be
set. On the other hand, the received data and the data versions
respectively, must be persisted within the task-specific storage
and annotated with metadata related to this specific data
version, e.g., module runtime, possible anomalies, and others.
In addition to persisting task-specific operations, the logging
of the operational context, e.g., the OPC-UA servers statistics
for the respective interval, enhances the accountability and
debugging of this specific module configuration.

b) Temperature Data Quality: When handling domain-
specific hardware such as a temperature sensor, the respective
datasheet most certainly clarifies circumstances in which the
product works best. By performing checks for anticipated
behavior of the dataset, basic data quality assessment can be
carried out. In separating the domain-specific checks from
well-formatted dataset versions, spontaneous exchanges or
additional assertions related to scenario-specific quality assur-
ance are made possible. Naturally, the access to previously
sensed and persisted task-specific data, e.g., referencing the
former modules output, must be configured in order to fulfill
the processing of this module. In addition, by defining value
ranges as well as other sensor-, scenario-, or domain-specific
completeness indicators, a basic data quality assessment can be
implemented. Additionally, techniques for repairing obvious
outliers or anomalies in a dataset version may help in creating
more reliable operations. In addition to creating an evaluated
version of previously sensed data ready for preprocessing,
various module-specific pieces of information, e.g., the jus-
tification of the data quality assessment, occurred anomalies,
etc., allow for a more fine-grained monitoring, reporting and
accountability.

c) Temperature Data Preprocessing: As the preprocess-
ing of a dataset determines the ability of being used during ML
model creation, the data structure originating from preceding
modules must be interpretable, appropriate for the specific
scenario, and allow for (semi)automated feature generation
or engineering. When data cannot automatically be labeled
and unsupervised learning is not an option, a lambda-like
architectures can be applied. Therein, the base-knowledge,
e.g., training-, test- and validation-dataset is extended with new

73Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 3. Module Pipeline Example for Temperature Label Prediction

sample-sets, whenever manual processing, e.g., boxing specific
areas in images, is done. Either this event may trigger the re-
training of a previously trained model or activate a transfer-
learning process. A manual start of the learning process or
periodically executed training runs are also viable options.
The sensed temperature data is up to this point ensured to
correspond to a certain pattern. Therefore, a simple labeling
script which determines if a period is to be treated as OK
or not, can be easily formalized and applied to the current
base-knowledge. In addition to the persistence of the labeled
timescale selections, module-internal statistics and justification
of the labeling outcome can help in up-to-date decisions
regarding a pipeline. For example, it can be asserted if a
module’s version, algorithm and the selected parameter are
feasible for the utilization with a specific kind of data version.

d) Next Interval Label Prediction Training: Within this
crucial step, the cleansed and ready-to-use dataframes are
separated into test-, training- and validation-datasets and pro-
cessed by the modules ML framework, e.g., generate the actual
ML model. The feasibility within a scenario dependents on
the module’s implementation, its configuration of the learning
architecture and feasible hyperparameters, as well as quality
metrics for determining the model’s performance with respect
to the problem at hand. As the applied ML technologies and
libraries impact the implementation complexity and required
resources, this kind of module is most likely to be adjusted
over time in order to reach the best performing outcome.
This is also one of the modules where it is feasible to utilize
AutoML functionality in parallel with hand-selected ML archi-
tectures and their hyperparameters, respectively. In addition to
generating a model with the capability of forecasting labels
for the next interval, the accuracy of a model and other

technology-, custom-, domain- or quality-specific evaluation
outcomes are versioned alongside.

e) Model Usage by Application: Once there is a suit-
able model available within the task-specific repository, its
integration into the overall application takes place. According
to whether the application itself is required to be recompiled
for utilization of the new model or an additional independent
lightweight execution environment module is created for its
inference on demand, dynamic deployment of the up-to-date
versions is possible. When referring to on-the-fly exchange-
ability, either the DevOps pipeline states how to dynamically
use a model version or the application itself provides ’online’-
configuration possibilities, e.g., changing a REST endpoint
and other parameters. In addition to the model’s specific ML-
framework libraries, the logic for preprocessing or referencing
the input parameters, e.g., data used for predictions, must
be available to the module. When providing the module
via REST, many additional parameters like listening ports,
key material for transport encryption, allowed routes, e.g.,
calling modules and applications and other custom application-
specific configurations must be defined. In addition to the
model’s usage and basic statistics, domain-specific information
and inference results may be persisted in the dedicated task-
specific repositories. Based on these events, it is possible to
generate additional insights, or process information within a
novel pipeline’s modules.

C. Dynamic and Extensible Pipelines

As outlined previously, any generated data version can be
applied to any module. By reusing pipelines up to a specific
point, new scenarios, versions of scenarios or experiments
are configurable with minimum effort, e.g., implementing a

74Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

new module while considering accountability guarantees. As
imaginable, the possibilities and complexity for configuring an
MLOps pipeline rise when there are multiple origins of data,
e.g., available sensors. When an additional sensor becomes
available on the shopfloor, the respective data management-
and preprocessing-modules must be implemented while re-
specting the overall scenario’s quality requirements [17] and
demands on data quality [18]. In order to train a new model
based on the combined sensor sources, existing workflows can
be extended. This is similar to when a sensor is replaced by a
different type, but proved parts of the workflow can be reused.
On the other hand, a dedicated pipeline results in a sensor-
specific model which can be combined with other existing
models in the application phases. Also, attention should be
payed to the many pitfalls of the sensor-data fusions data
management and preprocessing phases, like scenario-specific
requirements or timestamp synchronization, as in [20]. De-
pendent on the overall technology stack, existing management
systems, as in [15], can be used as automated deployment
manager, too. While the preexisting modules of a pipeline can
transparently continue to process dedicated data versions and
serving resulting information, additional pipelines, pipeline
variants or module configurations can be defined for other
scenarios. With ensuring the regular productive workflow and
being able to experiment with potential improvements, the uti-
lization of modules comprising Automated Machine Learning
(AutoML) functionality becomes a promising aspect.

V. CONCLUSION

In this work, an approach of a flexible, module-based
and accountability-enhanced pipeline definition for MLOps-
conform implementation was described. In addition to clarify
requirements to CPS-related module interactions, details on
operations and persistence strategies were exemplary depicted
and benefits of formalizing ML scenarios were highlighted.
The different devices on a shopfloor can be rearranged,
replaced or used in a novel way, which is why the possi-
bility of dynamic updates to existing pipelines was briefly
discussed. As the resulting dynamic pipelines may involve
complex relations and dedicated meaning within a CPS, it is a
challenge to provide accurate monitoring of each component.
Although management frameworks for such distributed digital
environments exist, hardware restrictions and threats to oper-
ations, e.g., bottlenecks or deadlocks, must be considered and
modules should be adjusted accordingly. In future work, the
integration of AutoML capabilities and an assertion of most
feasible frameworks for different types of tasks are promising
topics. Another aspect of using such a flexible structure is
the possibility of evaluating quality attributes of pipeline
compositions with respect to specific scenarios beforehand,
due to using simulators for environments and device data.

ACKNOWLEDGEMENT

This work is funded by the Federal Ministry of Ed-
ucation and Research (BMBF) under reference number
02P17D022 and supervised by Projektträger Karlsruhe

(PTKA), Germany. The content was developed within the
research project KOSMoS - (https://www.hs-furtwangen.de/
en/research/forschungsprojekte/kosmos/).

REFERENCES

[1] J. Lee, “Smart Factory Systems,” Informatik-Spektrum, vol. 38, no. 3,
pp. 230–235, jun 2015.

[2] S. Wang, J. Wan, D. Li, and C. Zhang, “Implementing smart factory
of industrie 4.0: An outlook,” Int. J. Distrib. Sen. Netw., vol. 2016,
pp. 7:7–7:7, Jan. 2016, accessed: 24.06.2022. [Online]. Available:
https://doi.org/10.1155/2016/3159805

[3] B. Chander, S. Pal, D. De, and R. Buyya, “Artificial intelligence-
based internet of things for industry 5.0,” in Artificial Intelligence-based
Internet of Things Systems. Springer, 2022, pp. 3–45.

[4] K. Sharma and R. Nandal, “A literature study on machine learning fusion
with iot,” in 2019 3rd International Conference on Trends in Electronics
and Informatics (ICOEI), 2019, pp. 1440–1445.

[5] E. Raj, D. Buffoni, M. Westerlund, and K. Ahola, “Edge mlops: An
automation framework for aiot applications,” in 2021 IEEE International
Conference on Cloud Engineering (IC2E), 2021, pp. 191–200.

[6] P. Singh, Machine Learning Deployment Using Kubernetes. Berkeley,
CA: Apress, 2021, pp. 127–146, accessed: 24.06.2022. [Online].
Available: https://doi.org/10.1007/978-1-4842-6546-8 5

[7] H. E, K. Zhou, and M. Song, “Spark-based machine learning pipeline
construction method,” in 2019 International Conference on Machine
Learning and Data Engineering (iCMLDE), 2019, pp. 1–6.

[8] e. a. Sculley, D, “Hidden technical debt in machine learning systems,”
NIPS, pp. 2494–2502, 01 2015.

[9] E. J. Maier, “Advancing artificial intelligence and machine learning
in the us government through improved public competitions,” arXiv
preprint arXiv:2112.01275, 2021.

[10] I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN Computer Science, vol. 2, no. 3, pp. 1–21, 2021.

[11] P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, “Demystifying
mlops and presenting a recipe for the selection of open-source tools,”
Applied Sciences, vol. 11, no. 19, 2021, accessed: 24.06.2022. [Online].
Available: https://www.mdpi.com/2076-3417/11/19/8861

[12] X. F. et al., “Cps data streams analytics based on machine
learning for cloud and fog computing: A survey,” Future Generation
Computer Systems, vol. 90, pp. 435–450, 2019, accessed: 24.06.2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X17330613

[13] M. W. Hoffmann, S. Malakuti, S. Grüner, S. Finster, J. Gebhardt,
R. Tan, T. Schindler, and T. Gamer, “Developing industrial cps: A multi-
disciplinary challenge,” Sensors, vol. 21, no. 6, p. 1991, 2021.

[14] E. Paraskevoulakou and D. Kyriazis, “Leveraging the serverless
paradigm for realizing machine learning pipelines across the edge-cloud
continuum,” in 2021 24th Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN). IEEE, 2021, pp. 110–117.

[15] J. Li, S. G. Kulkarni, K. K. Ramakrishnan, and D. Li, “Analyzing
open-source serverless platforms: Characteristics and performance,”
CoRR, vol. abs/2106.03601, 2021, accessed: 24.06.2022. [Online].
Available: https://arxiv.org/abs/2106.03601

[16] O. Castro-Lopez and I. F. Vega-Lopez, “Multi-target compiler for the
deployment of machine learning models,” in 2019 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), 2019,
pp. 280–281.

[17] S. M. Lee, D. Lee, and Y. S. Kim, “The quality management ecosystem
for predictive maintenance in the industry 4.0 era,” International Journal
of Quality Innovation, vol. 5, no. 1, pp. 1–11, 2019.

[18] I. Taleb, M. A. Serhani, and R. Dssouli, “Big data quality: A survey,”
in 2018 IEEE International Congress on Big Data (BigData Congress).
IEEE, 2018, pp. 166–173.

[19] T. Schirgi and E. Brenner, “Quality assurance for microservice archi-
tectures,” in 2021 IEEE 12th International Conference on Software
Engineering and Service Science (ICSESS). IEEE, 2021, pp. 76–80.

[20] P. e. a. Burggräf, “Predictive analytics in quality assurance for assembly
processes: lessons learned from a case study at an industry 4.0 demon-
stration cell,” Procedia CIRP, vol. 104, pp. 641–646, 2021.

[21] P. Janardhanan, “Project repositories for machine learning with tensor-
flow,” Procedia Computer Science, vol. 171, pp. 188–196, 2020.

75Copyright (c) IARIA, 2022. ISBN: 978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

https://www.hs-furtwangen.de/en/research/forschungsprojekte/kosmos/
https://www.hs-furtwangen.de/en/research/forschungsprojekte/kosmos/
https://doi.org/10.1155/2016/3159805
https://doi.org/10.1007/978-1-4842-6546-8_5
https://www.mdpi.com/2076-3417/11/19/8861
https://www.sciencedirect.com/science/article/pii/S0167739X17330613
https://www.sciencedirect.com/science/article/pii/S0167739X17330613
https://arxiv.org/abs/2106.03601

	Introduction
	Related Work and State-of-the-Art
	Machine Learning for IoT and CPS
	ML Quality and Deployment

	Environments of ML Pipelines for CPS
	ML in Hierarchical CPS Environments
	Generic composition of Modules

	Flexible Pipelines for ML in CPS
	Exemplary Deployment and Accountability with KOSMoS
	Simple Pipelines
	Dynamic and Extensible Pipelines

	Conclusion
	References

