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Abstract— Efficient Controllability Problems (ECP) for Large 
Complex Networked System (LCNS) often involve solving a 
succession of convex optimization problems, with varied 
approaches to optimally resolve each problem. In various 
cases, even when the input set is specifically 
designed/architected to segue to a convex paradigm, the 
resultant output set may still turn out to be nonconvex. 
Further processing is necessary to reach the desired convex 
paradigm, such as via certain relaxation techniques. However, 
the involved transformation, during the processing, may result 
in further nonconvex optimization problems, thereby 
highlighting the need/opportunity to utilize an Enhanced 
Robust Convex Relaxation (ERCR) framework. In this paper, 
we illuminate how leveraging such an ERCR framework, to 
discern how the involved LCNS’s topological structure, 
facilitates or prevents the diffusion of control signals and/or 
augmented control signals, which in turn informs the 
computations related to an accelerant amalgam and numerical 
stability paradigm for effectively leveraging a set of 
control/driver nodes to influence yet another set of 
control/driver nodes so as to steer the LCNS to a target state, if 
a decoupled and sequenced control strategy is utilized. The 
numerical stability paradigm employed by the ERCR 
framework is, potentially, of scientific gain and shows promise 
in contending with certain round-off errors, thereby better 
facilitating the transformation of certain uncontrollable cases 
into controllable cases, if temporal networks are considered. 
For those paradigms, wherein the Bak–Tang–Wiesenfeld 
(BTW) sandpile cascading effect is a potentiality, this 
facilitation may be quite significant. 

Keywords-Cyber-physical systems; cyber-physical power 
system; large complex networked systems; temporal networks; 
supply chain vulnerability; efficient controllability;  strong 
controllability; control signal energy cost; robust convex 
relaxation; accelerant amalgam; numerical stability; neural 
network; controllability Gramian; Gramian submatrices. 

I. INTRODUCTION 
Interest in the controllability problem of complex 

networks is burgeoning. Some studies have posited that 
while control of a substantive portion of the nodes may be 
ideal in the cases of some smaller networks, controlling a 
smaller subset of nodes may be more practical for larger, 
more complex networks. Accordingly, various studies have 
examined the problem set of influencing or controlling Large 

Complex Networked Systems (LCNS) with limited external 
Control Signals (CS) [1], which is often referred to as the 
Network Controllability Problem (NCP) [2]. Along this vein, 
other works have tackled the problem of selecting the 
smallest number of CS to ensure controllability of such 
LCNS [3]. Yet, the solving of such Minimum Controllability 
Problems (MCP) is just one step [4]. A further step involves 
solving related Efficient Controllability Problems (ECP), 
which focus on minimizing both the number of control nodes 
needed, as well as minimizing the control signal energy 
needed. However, these ECP have been shown to exhibit 
Non-deterministic Polynomial-time Hardness (NP-
Hardness). Various approximation algorithms and heuristical 
approaches have been utilized to achieve sub-optimal 
solutions to these NP-Hard ECPs [1]. To aggravate matters, 
these sub-optimal approaches tend to falter further when 
elevated notions of specific (e.g., output) controllability 
[5][6] are contended with, and, practically speaking, actual 
controllability is difficult to achieve (as contrasted to merely 
mathematical controllability [7]). 

More robust approaches have been proposed for tackling 
the NP-Hard ECPs as well as the issue of actual 
controllability. Various works have focused on augmenting 
the set of input CS on “properly chosen” control or “driver 
nodes” [6], which connotes the paradigm of certain nodes 
within the network having the potential of control authority 
to drive [8]. Yet, even if the control/driver nodes are 
“properly chosen” ¾ and even if the LCNS is controllable 
(putting aside the issue of mathematical versus actual 
controllability) ¾ via the chosen control/driver nodes, the 
Control Signal Energy Cost (CSEC) that those nodes require 
may be “unrealistically large” [8]; in other words, “if the 
number of control signals is small, the energy cost demanded 
… could be prohibitively high” [9]. There is yet another 
issue; a substantive portion of the studies are focused upon 
linear systems because, at least over short time scales, 
continuous nonlinear systems are approximated as linear 
[10]; for this reason, the involved networks are approximated 
and assumed to have n-dimensional Linear Time-Invariant 
(LTI) dynamics [2]. To further the discussion regarding 
practicality, just as a prohibitively high CSEC would not be 
practical, controllability over only short time scales would be 
comparably impractical (e.g., the inability to exert control at 
a desired time, as the window of control may have already 
passed). This further extends the problem, as temporal 
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considerations are at play, into the realm of Temporal 
Problems (TPs); moreover, as the temporal duration is 
uncertain, the problem is that of TP with uncertainty (TPU) 
[11]. Not only does the controllability need to persist over a 
sufficiently long time scale or reasonable extended period of 
time, the actual ability to control, when desired, needs to 
occur in a finite period of time (i.e., immediately or As Soon 
As Possible — ASAP). Hence, it seems that the revised 
optimality problem becomes one of ascertaining the 
sufficient number of input CS to steer a minimal number of 
control/driver nodes at a reasonable energy cost (CSECOPT), 
over an extended period of time (TPUOPT) (as contrasted to 
TPUmax), but which can be activated and effectuated within a 
finite period of time (e.g., ASAP). Accordingly, the main 
contribution of the paper is to introduce a strategy for 
transforming optimization problems to convex form so as to 
reduce the complexity class from NP-Hard to polynomial 
time, such as for the ECP-related computations, using an 
Enhanced Robust Convex Relaxation (ERCR) framework 
equipped with a bespoke numerical stability paradigm. 

The paper is structured as follows. Section I introduces 
the controllability problem of complex networks. Section II 
presents relevant background information and discusses the 
operating environment and the state of the controllability 
challenge. Section III provides some theoretical foundations 
and the utilized approach. Section IV delineates a strategy 
for a sequence of transformations and presents some 
preliminary experimental findings from using an ERCR 
framework on dense and homogeneous temporal networks. 
Section V provides some reflections on potential further 
heuristical processing, such as by way of LCNS partitioning 
and the practicality of TNBno expansion for some real-world 
applications, such as assessing Supply Chain Vulnerability 
(SCV). Section VI concludes with some reflections, puts 
forth some envisioned future work, and the 
acknowledgements close the paper. 

II. BACKGROUND INFORMATION 
In accordance with control theory, a system is deemed to 

be controllable, if it can be driven from an initial state to a 
desired state with suitable input(s) [4]. It then follows that if 
the nodes of a LCNS can be steered from an arbitrary initial 
state vector towards a predefined goal state vector within a 
finite period of time, then the network is deemed to be 
controllable [9]. The positing of the actual controllability is 
another matter; the positing of the accuracy of the 
controllability is still yet another matter. Among other 
frameworks, structural controllability had been put forth as a 
potentially viable analytical framework for ascertaining the 
controllability of LCNS. However, Cowan et al. have noted 
the limitations of structural controllability [12] as well as 
certain of its associated paradoxes; for example, in some 
cases, the CSEC of a structurally controllable system can be 
higher than that of a “structurally” uncontrollable system [8]. 
Alternative frameworks have been proposed, such as by 
Yuan et al., to include exact controllability (i.e., arbitrary 
link structures [e.g., directed, undirected] and link weights 
[e.g., weighted, unweighted] [13]), which better reflects the 

directed and weighted network configurations found in most 
real-world systems [35]. 

With regards to CSEC, Chen et al. asserted that “if the 
number of control signals is small, the energy cost demanded 
… could be prohibitively high;” conversely, the energy cost 
is reduced exponentially as the number of input CS increases 
[9]. It should, therefore, be axiomatic that the ascertaining of 
the sufficient number of input CS and their optimal 
“distribution throughout the complex network” (CSopt) is 
“vitally important to the feasibility and the efficiency of a 
Control Action” (CA) [1], which is defined to be the 
achieving of a predefined goal state vector; along this vein, a 
“Control Maneuver” (CM) might be comprised of several 
CAs [1], which at some point might arrive at CAOPT 
(ascertained over time). Effective CAs and/or their CMs can 
lead to faster network control/collapse [14. The Target 
Nodes (TN) involved in the achieving of the predefined goal 
state vector are deemed to have been subjected to “Targeted 
Control” (TC) [9]. The computational aims, then, seem to be 
that of ascertaining a minimum number of optimal 
control/driver nodes, such as proposed by Gao et al. [9], and 
their placements, such as proposed by Lindmark et al. [8], 
that, with sufficiently distributed and available CS, such as 
proposed by Klickstein et al., would only require a minimum 
CSEC (CSECmin) [8], but the optimal [and practical] CSEC 
(CSECOPT) would include augmentation CS. In accordance 
with self-organization theory, a series of small events can 
cause a chain reaction that can affect any number of 
components in the system, as delineated by the well-known 
Bak–Tang–Wiesenfeld (BTW) sandpile effect [15] of non-
equilibrium systems in which sand is dropped, one grain at a 
time, onto the same spot until the addition of one more grain of 
sand causes an avalanche to slide down the slopes of the 
growing sandpile; this avalanche also tends to burgeon into a 
cascading series of avalanches that can grow in size and 
intensity (i.e., similar to the notion of a cascading effect) [36]. 
Cascading effects (e.g., cascading failures) have manifested 
themselves, such as via Northeast Blackout of 2003 and 2012 
India Blackouts, wherein the “failure of one or a few 
components” … triggered the … “successive failures of other 
components” [16]. 

The identification of control/driver nodes has been a 
longstanding goal of many Complex Network Analysis 
(CNA) efforts [17], such as for Supply Chain Vulnerability 
(SCV) analysis efforts within the rubric of Supply Chain 
Risk Management (SCRM). These SCRM efforts have 
become more complicated, as physical systems and 
information systems are increasingly being fused into Cyber-
Physical Systems (CPS), wherein it is possible to control 
physical systems, via cyber systems [18]. The implication 
should be clear; prospective input CS can emanate from 
either the cyber or physical domains. Both these domains are 
considered in Guo et al.’s Cyber-Physical Power System 
(CPPS) model, which touches upon the notion that while 
current CPPS can provide a modicum of resiliency for high-
indexed nodes, they are much less resilient (i.e., vulnerable) 
to malicious attacks (i.e., targeted attacks) [14]. The 
implications of the varied attack surfaces of Multi-Domain 
Operations (MDO) should be axiomatic.  
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In either case, the previously cited MCP, as applied to the 
approximated LTI paradigm, can be construed to be a 
minimum Constrained Input Selection (minCIS) problem 
[19][20]. With CSEC constraints, the minCIS then becomes 
a minimum Cost Constrained Input Selection (minCCIS) 
problem [21][22]. Among other methods, the Projected 
Gradient Method (PGM) has been used to solve the 
constrained optimization problem of minCCIS [2][23], 
which can also be recast as a constrained convex 
minimization/optimization problem [23]. In essence, PGM 
endeavors to find locally optimal solutions to a continuous 
relaxation of the convex optimization problem [1]. While 
PGM can be useful for convex optimization problems with 
simple constraints, such as minCCIS with LTI dynamics, 
other methods may be needed given more complex 
constraints. For example, various works are examining 
minCCIS amidst uncertainties (minCCIS-u), such as time 
delays [24] (e.g., does the ability to effectuate a CM persist 
beyond the immediate time period, and is it available when 
desired). The aforementioned paradigm is delineated in Fig. 
1 below. 

 

 
Figure 1. Targeted Control (TC), via Targeted Nodes (TN), in the 

Described Environs of minCCIS-u and TPUOPT 

Given the myriad of uncertainties for the minCCIS-u 
problem, the continuous relaxations involve successive 
convex optimization problems, wherein varied approaches 
might be utilized to optimally resolve each problem. After 
all, as previously observed in [25], even when the input set is 
specifically formulated to segue to a convex optimization 
problem, the resultant may still turn out to be nonconvex, 
thereby necessitating a transformation to the desired form of 
a convex optimization problem, via certain relaxation 
techniques; however, the transformation itself may spawn 
other nonconvex optimization problems. In fact, when the 
objective and constraint functions are nonconvex, these 
problems turn out to be NP-Hard Mixed Integer Non-Linear 
Programming (MINLP) nonconvex optimization problems 
that need to be optimally solved.  

The referenced ERCR, which was equipped with a 
bespoke numerical stability paradigm, was utilized to handle 
these nonconvex optimization problems and reduce the 
complexity class from NP-Hard to polynomial time; to 
further unpack this handling, by way of background 
information, pertinent approach vectors are typically 
classified into two methods: (1) exact (i.e., complete), and 
(2) relaxed (i.e., incomplete). Prototypical exact verifiers are 
predicated upon Mixed Integer Programming (MIP) 
(specifically, MINLP, for the experimentation discussed 
herein), Branch-and-Bound (BnB), or Satisfiability Modulo 
Theories (SMT) (which, by definition, are not beset by false 
positives or false negatives). The challenge of utilizing exact 
verifiers is that they must contend with resolving NP-hard 
optimization problems, which in turn, obviates their 
scalability. Prototypical relaxed verifiers are predicated upon 
Mixed Integer Convex Programming (MICP) or Mixed 
Integer Linear Programming (MILP). MILP/MICP can be 
more quickly resolved and are more scalable, but the 
effectiveness (i.e., increased false negative rates) degrades 
quickly [42], thereby potentially obviating the ability to 
verify robustness. Hence, addressing robustness, such as via 
robust convex relaxations (i.e., effectuating the tightest 
possible relaxation [42]) becomes central for the 
experimentation/simulation. The utilized pathways to a 
convex paradigm are set within a Discrete, 
Continuous/Discontinuous (y-axis) and Non-Linear, Linear 
(x-axis) quad chart shown in Fig. 2 below. 

 

 
Figure 2. Computational Pathways for Attaining a Convex Paradigm 

Let us then take the case of a prototypical Command and 
Control (C2) architecture (even an advanced one [26]), such 
as within the energy ecosystem, which typically involves 
Control Center (CC)-related node data and remote, 
distributed hyper-locale (specific to the area conditions) 
node data that need to be effectively fused so as to create 
actionable quality data [27]. Under exigency circumstances, 
control may devolve to Back-up CCs. If the exigency is 
limited, the devolution may only involve one Back-up CC. 
However, if the exigency is large-scale and widespread, the 
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needs may be varied, and, consequently, multiple Back-up 
CCs may be involved.  

Throughout it all, the interests of the original CC likely 
remain overarching (if not paramount), thereby necessitating 
non-zero-sum game theory success (i.e., ideally, all winners 
and no losers among the involved original CC, regional/area 
CCs, and Back-up CCs) [27]. However, this is often not the 
case due to the practicality of limited capacities and 
capabilities during large-scale and widespread exigencies. 
For example, some involved areas may have not blackstart 
(i.e., the ability to restart and recover from a blackout 
without external reliance) or quickstart (i.e., the ability to 
come back on-line quickly) capabilities. As has been 
observed from various Just-In-Time (JIT) case studies, issues 
with even a single component within the supply chain can 
have a cascading effect and impact a myriad of organizations 
[40]; this paradigm can, potentially, lead to a decrease in a 
country’s overall total industrial output. Thus, if the 
criticality of a particular component is known, and the 
involved manufacturing resides in an area with no blackstart 
or quickstart capabilities, then the original CC may prioritize 
that area; alternatively, the CC may prioritize other areas, as 
the circumstances and/or involved decision engineering 
posits dictate. In any case, the follow-on research of [28] in 
2020 and 2021 have shown that the involved objective and 
constraint functions, which include TPU and minCCIS-u-
related considerations, are likely to be nonconvex. 

As the involved circumstances change with time, the 
involved MINLP problems will vary. For example, the 
CSEC associated with minCCIS-u might be considerably 
higher when the normal CCs are at play than when the 
Backup-up CCs are at play. Regardless, prototypical 
approaches to solving these nonconvex MINLP problems 
involve transforming them into convex surrogates (e.g., via 
reformulations, convex approximations, or a series of convex 
relaxations) [25]. It turns out that the particular instantiation 
of the ERCR utilized, with the bespoke numerical stability 
paradigm, is well suited for this requisite series of convex 
relaxations. The utilized ERCR, which was based on [25], 
could not only resolve the minCCIS-u problem, but it could 
also leverage the same ERCR mechanisms for tuning its own 
hyperparameters; the utilized ERCR architectural stack 
achieved this with three key design/architectural elements: 
(1) effectuating an ERCR paradigm, via a bespoke Modified 
Squeezed “You Only Look Once” (YOLO) v3 (a PyTorch 
implementation, as contrasted to, for example, v4, which is a 
Darknet implementation) [Deep Convolutional Generative 
Adversarial Network (DCGAN)] Implementation (MSY3I), 
(2) utilizing Particle Swarm Optimization (PSO) to tune the 
MSY3I so as to reduce the associated computational costs, 
and (3) operationalizing the PSO via an Adaptive Inertial 
Weighting Mechanism (AIWM) (to mitigate against 
potential stagnation at local optima) facilitated by a modified 
GNU Octave platform (m-GNU-O). The particulars of this 
ERCR architecture are delineated in [25]; the utilized 
architectural stack and components are presented, the 
experimental setup of a stable RCR, composed of two 
MSY3I implementations that are augmented with a third 

DCGAN is delineated, and a sampling of the numerical 
issues found in various ML libraries/toolkits is discussed. 

III. THEORETICAL APPROACH 
The theoretical approach centers upon the issue of the 

accuracy of the controllability (as the actual controllability 
is also probabilistic). As discussed, an ERCR framework, as 
shown in Fig. 3, is utilized, and enhancing the tightness of 
the ERCR bounds is an ongoing challenge. The PSO and 
AIWM tuning of the involved MSY3Is is central, as is 
minimizing the convex relaxation barrier, the inherent gap 
between the actual and lower bound of robustness provided 
by verifiers (i.e., verification algorithms for verifying the 
involved DCGANs, or MSY3Is in this case).  
 

 
 
Figure 3. Enhanced Robust Convex Relaxation (ERCR) Architectural Stack 
Utilized  
 

As contextualizing background information, Machine 
Learning (ML) is a subfield of Artificial Intelligence (AI). 
In turn, Deep Learning (DL) is a subfield of ML, and DL 
Neural Networks (NN) are a mainstay of DL algorithms 
(“deep” refers to the number of layers of the involved NN). 
A NN with just a few layers may produce a model that is not 
quite acceptable for the task at hand. Conversely, a NN that 
is fully connected, with many layers, dramatically increases 
the computational complexity and cost. Consequently, the 
goal is to arrive at a DNN architecture with sufficiently 
reduced connectivity, and therefore, reduced computational 
complexity and cost, that is still fit for purpose and, ideally, 
sufficiently robust. A commonly used DNN, with such 
reduced connectivity, is a Convolutional Neural Network 
(CNN). By way of example, Zhu et al. have asserted that 
CNNs are promising for condition monitoring [49]. Huang 
et al. have noted that specific implementations of CNN, 
such as the Multi-Scale Cascade CNN (MC-CNN), can 
robustly classify faults [50]. Others have noted that CNNs 
are the architectural elements of choice for Generative 
Adversarial Networks (GANs). Radford et al. have noted 
that a Deep Convolutional GAN (DCGAN) can produce 
robust results that were not present in the training set [51]. 
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The utilized ERCR framework, which is underpinned by 
DCGANs (or MYS3Is, in this case) was utilized to tackle 
the Complex Network Analysis (CNA) challenge of optimal 
controllability of certain Large Complex Networked System 
(LCNS), particularly a Cyber-Physical Power System 
(CPPS) within the overarching rubric of Cyber-Physical 
Systems (CPS). An underlying challenge was to identify 
control/driver Target Nodes (TN) that are amenable to 
“Targeted Control” (TC). Other underlying challenges 
included discerning the topological structure of the LCNS-
CPPS, as the structure diffusiveness (a.k.a., permeability) 
can facilitate or prevent the diffusion of control signals (CS) 
and/or augmented control signals (ACS), which in turn 
informs the computations, which leverage a set of 
control/driver TNn-1 to influence yet another set of 
control/driver TNn so as to steer the LCNS-CPPS to a target 
state. Further granularity regarding the topological structure 
(e.g., directed/ undirected links; weighted/unweighted links) 
is necessary to address the issues of exact controllability, 
actual controllability, and accuracy of controllability. The 
involved sub-challenges include, among others, the Network 
Controllability Problem (NCP), Minimum Controllability 
Problem (MCP), Efficient Controllability Problems (ECP), 
Control Signal Energy Cost (CSEC) problem, minimum 
Constrained Input Selection (minCIS) problem, minimum 
Cost Constrained Input Selection (minCCIS) problem, 
minCCIS amidst uncertainties (minCCIS-u) (e.g., time 
delays), and adequately addressing the associated Temporal 
Problems (TPs) with uncertainty (TPUs). Essentially, the 
aforementioned problems can be recast as constrained 
convex minimization/optimization problems. 

In addition to analyzing its performance as pertains to the 
convex optimization problems, the involved MSY3Is of the 
ERCR framework must be examined for robustness. As 
noted in [25], this often relates to the performance of the 
layer-wise optimal convex relaxations implemented within 
the involved DCGAN (also MSY3Is in this case); in 
essence, a certain convex relaxation is posited for the 
purpose of ascertaining an upper bound for a worst-case 
instability scenario. This is of critical import, as prototypical 
DCGANs exhibit non-graceful degradation in performance 
even at imperceptible perturbation levels, which results in 
numerical instability; this is also why the bespoke numerical 
stability paradigm discussed in [25] is invaluable. For this 
paper, the numerical stability paradigm employed by the 
ERCR framework is, potentially, of scientific gain and 
shows promise in contending with certain round-off errors, 
thereby better facilitating the transformation of certain 
uncontrollable cases into controllable cases; moreover, 
Ohtsuka et al. has noted there is equivalence between the 
convex relaxation and sparsity constrained controllability 
problems, wherein the controllability Gramian is used as a 
metric for the ease of control [52]. In essence, the 
discernment of the controllability Gramian is directly related 
to the involved convex relaxation. In particular, the 
minimum/optimal TN selection (i.e., sparsity constraint) is, 

in essence, a selection problem, wherein TNs are selected 
for their efficacy of control while minimizing CSEC. This 
sparse optimization problem, as applied to a LCNS-CCP 
controllability maximization problem, has equivalency to its 
convex relaxation. As a consequence, the ERCR —
conjoined with its bespoke numerical stability paradigm —
by its very design (i.e., more robust convex relaxations) 
might, potentially, warrant further examination for its 
efficacy in treating sparse optimization controllability 
maximization problems. 

IV. EXPERIMENTATION 

A. Heuristical Pre-Processing 
For the 2020 follow-on work from [28], three regions 

were examined: A, B, and C. It was found that B had no 
blackstart and quickstart capabilities. Yet, B contained 
manufacturing sites producing components that would 
impact the supply chain affecting A, B, and C. In many 
ways, B’s criticality surpassed that of A and C, and from a 
SCV Criticality (SCVC) perspective — for the specific 
manufacturing analysis at hand — B was, potentially, the 
most vulnerable. For this case, the aggregate network of A, 
B, and C, hereinafter LCNSABC, did not have to be treated in 
its entirety. The heuristical determination was that an 
examination of the sub-network of B (LCNSB), would 
suffice. Hence, it was not necessary to compute the CSEC 
for LCNSABC (CSECABC); computing the CSEC for LCNSB 
(CSECB), would suffice. Also, by simply treating LCNSB, 
the considered time frame could be further constrained (as 
contrasted by treating the entirety of LCNSABC); hence, the 
involved TPU component could be reduced and simplified 
(TPUB), and accordingly, the involved CSEC could also be 
reduced and simplified (CSECB). Moreover, Chen et al. had 
found that CSEC could be reduced significantly when the 
addition of input CS could be accomplished while 
minimizing the path lengths from control/driver nodes to 
non-control/driver nodes, via optimal placements of the 
involved nodes [29]; the longest path of the set of involved 
paths is known as the Longest Control Chain (LCC). As 
LCNSB was considered in isolation, as contrasted to 
considering LCNSABC, it was found that the LCCB for 
LCNSB << LCCABC for LCNSABC; correspondingly, CSECB   

<< CSECABC.  

B. Algorithmic Pre-Processing 
To further minimize CSECB and attain CSECOPT, 

algorithmic processing was used to ascertain the potentially 
greatest impact LCNSBn (a sub-region of LCNSB). In this 
way, LCCBn for LCNSBn  << LCCB for LCNSB, CSECBn  << 
CSECB, and correspondingly, TNBn for CSECBn << TNB for 

CSECB. With the same mechanism utilized for [30], 
selective updating of an optimal Adaptive Impact Vector 
(AIVOPT) was undertaken for helping derive the potentially 
greatest impact LCNSBn. In essence, AIVBn can be derived, 
via minimizing a recast TNBn criterion subject to a similarity 

91Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



 

 

constraint; the AIV can also be validated, and more finely-
tuned, via a decomposition-based evolutionary algorithm 
coupled with the AIV. The associated constrained paradigm 
can be transformed into a convex optimization problem, via 
various Semi-Definite Programming (SDP) algorithms, 
which were implemented on a m-GNU-O as delineated in 
[30]. Then, a Quadratically Constrained Quadratic 
Programming (QCQP) Step-Down Algorithm (QCQP-SDA) 
can compute the [QCQP special class] resultant convex 
optimization problem in polynomial time; historically, this 
had been tested in Ilog Cplex Optimizer (a commercial 
software package for optimization); subsequent testing 
migrated to AD Model Builder (ADMB) (an open source 
software package for non-linear statistical modeling) as well 
as Interior Point OPTimizer (IPOPT) (a software package 
for large-scale nonlinear optimization) [31], and 
experimentation has also been conducted with Advanpix (a 
multi-precision computing toolbox for Matlab). The 
significance of deriving CSECBn, and subsequently, TNBn, is 
to have a sufficiently small TN, such that a particular 
approach proposed by Klickstein et al., the controllability 
Gramian of lattice graphs [33], could be practically used for 
further testing and winnowing to a TNBno of LCNSBno (a sub-
area of LCNSBn), as graph-related computations can be 
computationally less prohibitive as contrasted to algebraic 
computations and is well suited to the task at hand [45]. 
While certain methods, such as greedy approximation 
algorithms, which have been proposed by Summers et al. 
[32] and others, as well as low-rank approximation 
algorithms, which have been proposed by Benner et al. and 
others, are of mathematical interest, as noted by Klickstein 
et al., they do not necessarily provide the requisite 
discernment into the connections among the optimal 
distribution of input CS (i.e., CSOPT) and the topological 
properties of the involved LCNS [33]; this discernment is 
necessary, as it is an important aspect of the assessment 
process [34]. Ultimately, it provides validation that, by way 
of example, LCNSBno has been “properly selected” [6], that 
CSECBno is reasonable, and that TNBno makes practical 
sense. 

C. Hybridized Processing 
For the involved experimentation, the full node set of 

LCNSABC had been heuristically reduced to LCNSBno, its 
corresponding CSECBno, and its corresponding TNBno. Li et 
al. had previously proposed PGM to iteratively search for 
the energy optimal placement of CS [2] (i.e., for an 
optimized CSEC or CSECOPT). Ding et al. proposed a 
Revisited Projected Gradient Method Extension (R-PGME) 
for even better performance [4]. Numerous other works 
have also contributed to deriving CSECOPT. However, 
generally speaking, the notion of complete control is 
typically considered, wherein the CS steer the full node set 
towards the predefined goal state vector. Klickstein et al. 
have noted that a smaller TN set, such as TNBno, might be all 
that is needed [4][33] to effectuate the cascading effect of 

LCNSBno, LCNSBn, LCNSB, and LCNSABC converging to the 
desired “final state in the prespecified time within a 
predefined precision” [7], thereby providing a physically 
controllable case. A TNBnp accelerant might also serve to 
assist TNBno (i.e., TNBno-TNBnp Amalgam) in effectuating 
this paradigm, which is depicted in Fig. 4 below. Ideally, the 
TNBno-TNBnp Amalgam still remains optimally small (i.e., 
TNOPT). In this case, the involved Gramian matrix is well-
behaved (i.e., the condition number or sensitivity of the least 
squares polynomial approximation and the CSEC are not 
unrealistically large), which is the desired state [7]. This is 
contrasted to the case of when the Gramian matrix is ill-
conditioned (i.e., the condition number and CSEC are 
unrealistically large), wherein, the LCNS is unable to reach 
the “final state in the prespecified time within a predefined 
precision” [7]. Hence, a suitable approach to addressing the 
Gramian matrix is critical; after all, some approaches, as 
noted by Lindmark et al., can only be “computed in closed 
form … when the time of the transfer tends to infinity” [8] 
(i.e., actual control will likely never devolve). 
 

 
Figure 4. TNBno, CSECOPT, and the Cascading Effect for Convergence to the 

Desired Final State, while the Amalgam of TNBno and TNBnp (TNOPT) Still 
Remains Small  

Arriving at a well-behaved controllability Gramian matrix 
when using CSECOPT illuminates the value of TNBnp, as an 
augmentation and accelerant to TNBno, to enhance the 
likelihood of actual controllability. This TNBno-TNBnp 

Amalgam may have an even higher likelihood of actual 
controllability (i.e., robust controllability) and accurate 
controllability, particularly in the case of dense and 
homogeneous networks [35] (as contrasted to sparse and 
heterogeneous networks) with clustered sub-networks [48]. 
Moreover, temporal networks seem to be more controllable 
than their static counterparts, such as when considering link 
temporality for network controllability; Zhang et al. have 
noted that link temporality, such as by weight variation, can 
be equated to “attaching a virtual driver node to that link” 
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[43]. Hence, the TN computational approach can also be 
used for specific optimal Target Links (TLOPT). The TNBno-
TNBnp Amalgam (a.k.a., TNOPT) can be revised to include 

TLOPT for a more accurate amalgam descriptor: TNBno-
TNBnp-TLOPT  or TNOPT- TLOPT Amalgam. The TNBno-TNBnp-
TLOPT Amalgam need not necessarily effectuate an 
overarching controlling or cascading effect on LCNSB 
and/or LCNSABC; if TNBno can impact a peer TN (e.g., 
TNBnn, TNBnm, TNBnl, etc.) or other (e.g., TNBn, TNBm, TNBl, 

etc.) (i.e., one set of control/driver nodes influencing yet 
another set of control/driver nodes) so as to steer LCNSBn 
and/or other pertinent peer LCNS and/or higher-order LCNS 
to a target state, then the desired state might be achieved. 

As noted by Roy et al., central to this task seems to be 
the principal submatrices of the controllability Gramian 
[37]. In particular, these Gramian submatrices well inform 
various metrics and optimal inputs. The LCNS diffusiveness 
(a.k.a., permeability) for CS and/or augmented CS 
(collectively, CSopt) can be calculated in a variety of ways 
[38]; in turn, the permeability can be emblematic of the 
readiness of the LCNS to be controllable. For the specific 
cases studied, when the LCNS is uncontrollable, the inverse 
Gramian does not exist and CSEC approaches infinity [39]; 
conversely, when the LCNS is controllable, the inverse 
Gramian does exist. On the basis that a corresponding 
vanishing moment recovery matrix is a suitable 
approximation to the inverse Gramian and “guarantees n 
vanishing moments of the irregular framelets” [40], the 
ERCR framework endeavors to capitalize upon its efficacy 
for handling wavelet tight frames with n vanishing 
moments; as the number of vanishing moments increases, 
the polynomial degree of the wavelet increases and the 
involved underlying graph becomes smoother. The potential 
advantage of this is that, theoretically, wavelet tight frames 
can be derived from any multiresolution analysis [47].  

Architecturally, to facilitate the requisite discernment 
into the LCNS diffusiveness, autodiff libraries (e.g., a C++ 
library that facilitate automatic differentiation of 
mathematical functions) are utilized by the ERCR 
framework to enable large-scale tuning of the myriad of 
parameters utilized, and the specialized workflow is 
comprised of the following: (1) iterative convolutions with 
ever smaller filters (wherein the filter depth is smaller than 
the input layer depth, such that kernel size is less than the 
channel size), (2) pointwise nonlinearities (which are 
relationships that are already equivariant to permutations of 
the input/output indices), and (3) constrained subsampling 
operations, such that, collectively, the resultant paradigm 
nicely bears semblance/emulates the wavelets [41]. Overall, 
the enhanced numerical stability paradigm utilized by the 
ERCR framework, which is based upon [25], shows promise 
in contending with select round-off errors, thereby 
facilitating the transformation of certain uncontrollable 
cases into controllable cases. For those paradigms, wherein 
the BTW cascading effect is a potentiality, this facilitation 
may constitute a deciding factor. 

For the experiments described herein, two different 
ERCR paradigms with different versions of components at 
the MSY3I level (i.e., ERCR Component #1: MSY3I-1 and 
ERCR Component #2:  MSY3I-2) were augmented with a 
TensorFlow-based DCGAN implementation. MSY3I-1 was 
utilized for solving the controllability-related convex 
optimization problems. As such, it required a high degree of 
numerical stability; accordingly, PyTorch v0.4.1 was 
utilized. MSY3I-2 was utilized for solving ERCR-related 
optimization problems. PyTorch v1.7.0 was utilized, which 
allowed MSY3I #2 to focus on its intrinsic stability training, 
so as to mitigate against numerical instability issues from 
PyTorch v1.7.0 (as contrasted to v0.4.1). A “forward stable” 
TensorFlow-based DCGAN implementation (i.e., ERCR 
Component #3: DCGAN) was utilized via an additional 
generator (hence, a mixture of generators) to assist in 
mitigating mode failure (a.k.a., mode collapse), which can 
occur when two competing neural networks that are being 
trained concurrently fail to converge or have an unusual 
convergence [25]. In addition, to validate the results for 
reasonableness, Advanpix was utilized for its multi-precision 
computation of the eigen-decomposition of the 
controllability Gramian (Wp), the invertible matrix (Up), and 
the matrix Mp, where Mp = Up-1WpUp-1 is the p x p symmetric, 
real, semi-positive definite matrix and has the same set of 
eigenvectors as Wp	 (Wp also has the same set of eigenvectors 
as Up) [44].	 As the Gramian is approximately proportional to 
the covariance matrix, sample covariance matrix 
computations were performed for Quality Assurance/Quality 
Control (QA/QC).  

V. FURTHER HEURISTICAL PROCESSING FOR LCNS 
PARTIONING AND POTENTIAL TNBNO EXPANSION 

The process involved in the derivation of TNBno, 
CSECOPT, etc. is invaluable for it gives insight into the 
notion of network partitioning (i.e., LCNS partitioning) and 
the potential significance of various involved clusters. Of 
note, Pasqualetti et al. had proposed a decoupled control 
strategy that was scalable and amenable to a distributed 
implementation; central to the strategy was LCNS 
partitioning into strongly connected components [46]. 
Restated, interconnection matrices needed to be computed 
for the various involved clusters. Also of note, works in the 
area of control theory typically focus on simultaneous 
control of the clusters. Yet, certain prescient works in the 
area of SCV have noted the potential potency related to 
sequential control of the clusters. For example, Zhu et al. 
have noted that “the sequential attack is demonstrated to be 
statistically stronger than the simultaneous attack” [45]; 
along this vein, sequential control is likely to have more 
efficacy than simultaneous control of the clusters. A final 
point to note, Liu et al. have noted that “dense and 
homogeneous networks can be controlled using a few driver 
nodes” [35], and this sets the stage for the clustered sub-
network and TL virtual driver experimentation for a 
decoupled and sequenced control strategy on a dense and 
homogeneous temporal LCNS described herein. 
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Particular attention was paid to those clusters, whose  
associated CSEC were abnormally low. These might 
constitute areas of SCV, which might warrant further 
examination. When honing in on these areas, it might be 
prudent to review the relative criticality of vulnerability of 
the prospective control nodes via the Analytical Hierarchy 
Process (AHP). In particular, Sharma, et al. noted that the 
following factors might be non-trivial: (1) type of supply 
chain relationship (e.g., transactional, collaborative), (2) 
transparency with regards to supply chain-related 
information (e.g., ambiguity, uncertainty), (3) degree of 
control over alerting systems [6]. Amaeshi et al. had noted 
“boundaryless responsibility” and the potential liability 
associated with the actions of the suppliers’ suppliers, and 
Liao et al. [41] had noted that “firms are building stronger 
relationships with their supply chain suppliers in order to 
gain flexibility, efficiency,” etc.; the combination of these 
notions may have enticed larger organizations to migrate 
from transactional to more collaborative relationships. In 
some cases, collaborative relationships have led to more 
ambiguity, and Luthra, et al. have noted that “data vagueness 
and inaccuracy” … “may affect the results of AHP” [35]. 
Limited Vulnerability Design (LVD) efforts may also be 
affected by a skewed AHP.  

Accordingly, in the treatment of abnormally low values 
related to CSEC, the principal submatrices of the Gramian 
and their inverses were treated. This informed the involved 
TC metrics and CSOPT, which in turn informed the derivation 
of CAOPT and the upstream CM. Hence, the overall notional 
sequence of involved transformations (not necessarily in this 
computational order), among others, is shown in Fig. 5 
below. 

 
Figure. 5. Notional Sequence of Involved Transformations (Not 

Necessarily in this Computational Order) 

 
Overall, this paradigm contributes towards informing both 
the actual as well as the accuracy of controllability.  

VI. CONCLUSION 
Optimal controllability of certain LCNS involves solving 

a succession of convex optimization problems. Since further 
nonconvex problems may be spawned amidst the solving of 
these convex optimization problems, an ERCR framework 
is leveraged. The utilized ERCR’s bespoke numerical 
stability paradigm was useful in the facilitation of certain 
uncontrollable cases into controllable cases, and it was also 
able to facilitate discerning the involved LCNS’s 
permeability so as to yield the apropos accelerant amalgam 
for use in the determination of CSECOPT, TPUOPT, TNOPT, 
TLOPT, among others. Accordingly, in the treatment of 
abnormally low values related to CSEC, the principal 

submatrices of the Gramian and their inverses were treated. 
This helped to inform the involved TC metrics and CSOPT, 
which in turn informed the derivation of CAOPT and the 
upstream CM. The involved sequence of transformations 
contributed to enhancing the actual and accuracy of 
controllability (i.e., optimal controllability) of the LCNS 
involved in the preliminary experimentation described in 
this paper. Also of interest, it turns out that the involved 
interconnection matrices can well inform a potential TNBno 
expansion [46], as the clusters discerned from the LCNS 
portioning need to be assessed by their efficacy, as 
sequencing changes; conversely, the involved TNBno might 
also be winnowed as each cluster is assessed. Future work 
will involve more quantitative experimentation in this area. 
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