
Using Locally Weighted Regression to Estimate the
Functional Size of Software: a Preliminary Study

Luigi Lavazza Angela Locoro 
Dipartimento di Scienze Teoriche e Applicate 

Università degli Studi dell’Insubria
Varese, Italy

email:{luigi.lavazza, angela.locoro}@uninsubria.it

Roberto Meli
DPO

Rome, Italy
email:roberto.meli@dpo.it

Abstract—In software engineering, measuring software func-
tional size via the IFPUG (International Function Point Users
Group) Function Point Analysis using the standard manual
process can be a long and expensive activity. To solve this
problem, several early estimation methods have been proposed
and have become de facto standard processes. Among these, a
prominent one is High-level Function Point Analysis. Recently,
the Simple Function Point method has been released by IFPUG;
although it is a proper measurement method, it has a great
level of convertibility to traditional Function Points and may
be used as an estimation method. Both High-level Function
Point Analysis and Simple Function Point skip the difficult and
time-consuming activities needed to weight data and transaction
functions. This makes the process faster and cheaper, but yields
approximate measures. The accuracy of the mentioned method
has been evaluated, also via large-scale empirical studies, showing
that the yielded approximate measures are sufficiently accurate
for practical usage. In this paper, locally weighted regression
is applied to the problem outlined above. This empirical study
shows that estimates obtained via locally weighted regression
are more accurate than those obtained via High-level Function
Point Analysis, but are not substantially better than those yielded
by alternative estimation methods using linear regression. The
Simple Function Point method appears to yield measures that are
well correlated with those obtained via standard measurement.
In conclusion, locally weighted regression appears to be effective
and accurate enough for estimating software functional size.

Keywords–Function Point Analysis; Early Size Estimation; High-level
FPA; Simple Function Points; LOcally Estimated Scatterplot Smoothing
(LOESS)

I. INTRODUCTION

In the late seventies, Allan Albrecht introduced Function Points Analysis
(FPA) at IBM [1], as a means to measure the functional size of software, with
special reference to the “functional content” delivered by software providers.
Albrecht aimed at defining a measure that might be correlated to the value
of software from the perspective of a user, and could also be useful to
assess the cost of developing software applications, based on functional user
requirements.

FPA is a Functional Size Measurement Method (FSMM), compliant with
the ISO/IEC 14143 standard, for measuring the size of a software application
in the early stages of a project, generally before actual development starts.
Accordingly, software size measures expressed in Function Points (FP) are
often used for cost estimation.

The International Function Points User Group (IFPUG) is an association
that keeps FPA up to date, publishes the official FP counting manual [2],
and certifies professional FP counters. Unfortunately, in some conditions,
performing the standard IFPUG measurement process may be too long
and expensive, with respect to management needs, because standard FP
measurement can be performed only when relatively complete and detailed
requirements specifications are available, while functional measures could be
needed much earlier for management purposes.

Many methods were invented and used to provide estimates of functional
size measures, based on fewer or coarser-grained information than required
by standard FPA. These methods are applied very early in software projects,
even before deciding what process (e.g., agile or waterfall) will be used. One
of these methods is the High-level FPA (HLFPA) method [3], which was
developed by NESMA under the name of “NESMA estimated” method [4].

In 2010, a new FSMM called Simple Function Point (SiFP) was developed
by Meli [5]. In 2019, IFPUG acquired the method and in 2021 the IFPUG
branded Simple Function Point (SFP) method was delivered to the market [6].

HLFPA and SiFP have been evaluated by several studies, which found
that the methods is usable in practice to approximate traditional FPA values,
since they yield reasonably accurate estimates. However, the question if it is
possible to get more accurate estimates from the basic information used by
HLFPA remains open.

In this paper, we evaluate—via an empirical study—the usage of LOESS
(LOcally Estimated Scatterplot Smoothing)—also known as LOWESS (LO-
cally WEighted Scatterplot Smoothing)—to build models that can be used for
early estimation of functional size.

We also compare the standard IFPUG FPA measures, the estimates
obtained via HLFPA and the estimates obtained via alternative methods (linear
regression models and LOESS models) with the measures obtained via the
Simple Function Point (SFP) method. SFP is a lightweight method that has
also been adopted by IFPUG as an alternative to full-fledged FPA. SFP
measurement requires even less time and effort than HLFPA, and it usually
yields measures that are very well correlated with IFPUG standard measures.

The remainder of the paper is organized as follows.
Section II provides an overview of functional size measurement methods,
and other background information. Section III describes the empirical study
and its results. In Section IV, we discuss the threats to the validity of the
study. Section V reports about related work. Finally, in Section VI, we draw
some conclusions and outline future work.

II. BACKGROUND

Function Point Analysis was originally introduced by Albrecht to measure
the size of data-processing systems from the point of view of end-users,
with the goal of the estimating value of an application and the development
effort [1]. The critical fortunes of this measure led to the creation of the IFPUG
(International Function Points User Group), which maintains the method and
certifies professional measurers.

The “amount of functionality” released to the user can be evaluated by
taking into account 1) the data used by the application to provide the required
functions, and 2) the transactions (i.e., operations that involve data crossing
the boundaries of the application) through which the functionality is delivered
to the user. Both data and transactions are counted on the basis of Functional
User Requirements (FURs) specifications, and constitute the IFPUG Function
Points measure.

FURs are modeled as a set of base functional components (BFCs), which
are the measurable elements of FURs: each of the identified BFCs is measured,
and the size of the application is obtained as the sum of the sizes of BFCs.
IFPUG BFCs are: data functions (also known as logical files), which are
classified into internal logical files (ILF) and external interface files (EIF);
and elementary processes (EP)—also known as transaction functions—which
are classified into external inputs (EI), external outputs (EO), and external
inquiries (EQ), according to the activities carried out within the considered
process and the primary intent.

20Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



The complexity of a data function (ILF or EIF) depends on the RETs
(Record Element Types), which indicate how many types of variations
(e.g., sub-classes, in object-oriented terms) exist per logical data file, and
DETs (Data Element Types), which indicate how many types of elementary
information (e.g., attributes, in object-oriented terms) are contained in the
given logical data file.

The complexity of a transaction depends on the number of FTRs—i.e., the
number of File Types Referenced while performing the required operation—
and the number of DETs—i.e., the number of types of elementary data—that
the considered transaction sends and receives across the boundaries of the
application. Details concerning the determination of complexity can be found
in the official documentation [2].

The core of FPA involves three main activities:
1) Identifying data and transaction functions.
2) Classifying data functions as ILF or EIF and transactions as EI, EO

or EQ.
3) Determining the complexity of each data or transaction function.
The first two of these activities can be carried out even if the FURs have

not yet been fully detailed. On the contrary, activity 3 requires that all details
are available, so that FP measurers can determine the number of RET or
FTR and DET involved in every function. Activity 3 is relatively time- and
effort-consuming [7].

HLFPA does not require activity 3, thus allowing for size estimation when
FURs are not fully detailed: it only requires that the complete sets of data
and transaction functions are identified and classified.

The SFP method [6] does not require activities 2 and 3: it only requires
that the complete sets of data and transaction functions are identified.

Both the HLFPA and SFP methods let measurers skip the most time-
and effort-consuming activity, thus both are relatively fast and cheap. The
SFP method does not even require classification, making size estimation even
faster and less subjective (since different measurers can sometimes classify
differently the same transaction, based on the subjective perception of the
transaction’s primary intent).

A. The High-level FPA method
NESMA defined two size estimation methods: the ‘NESMA Indicative’

and the ‘NESMA Estimated’ methods. IFPUG adopted these methods as
early function point analysis methods, under the names of ‘Indicative FPA’
and ‘High-level FPA,’ respectively [3]. The Indicative FPA method proved
definitely less accurate [8], [9]. Hence, in this paper, we consider only the
High-level FPA method.

The High-level FPA method requires the identification and classification of
all data and transaction functions, but does not require the assessment of the
complexity of functions: ILF and EIF are assumed to be of low complexity,
while EI, EQ and EO are assumed to be of average complexity. Hence,
estimated size is computed as follows:

EstSizeUFP = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ

where #ILF is the number of data functions of type ILF, #EI is the number
of transaction functions of type EI, etc.

B. The Simple Function Point Method
The Simple Function Point measurement method [5] [6] has been specif-

ically designed to be agile, fast, lightweight, easy to use, and with minimal
impact on software development processes. It is easy to learn and provides
reliable, repeatable, and objective results. Like IFPUG FPA, it is independent
of the technologies used and technical design principles.

SFP requires only the identification of Elementary Processes (EP) and
Logical Files (LF), based on the following assumptions: 1) a user gives value
to a BFC as a whole independently of internal organization and details, and
2) a cost model based on SFP shows a precision that is comparable to that
of a cost model based on a detailed FPA measure. The latter assumption has
been verified by different studies [10] [11].

SFP assigns a numeric value directly to these BFCs:

SFP = 7 #LF + 4.6 #EP

thus significantly speeding up the functional sizing process, at the expense
of ignoring the domain data model, and the primary intent of each Elementary
Process.

The weights for each BFC were originally given to achieve the best possible
approximation of FPA but as long as the method has become a measurement
method, those weights became constants, which are not subject to update

or change for approximation reasons and that are crystallized for stability,
repeatability and comparability reasons. We can approximate the FPA by
setting EstSizeUFP = SFP.

III. EMPIRICAL STUDY
In the empirical study, we use an ISBSG dataset [12], which was also used

previously to evaluate SFP [10].
The ISBSG dataset contains several small project data. As a matter of fact,

estimating the size of small projects is not very interesting. A certified function
point consultant that performs FP analysis according to the IFPUG standard
counts between 400 and 600 FP per day, according to Capers Jones [13] and
between 200 and 300 FP per day according to experts from Total Metrics [14].
Therefore, there is hardly any need for estimating the size of projects smaller
than 200 UFP, since those projects can be sized accurately in no more than
one working day.

Based on these considerations, we removed from the dataset the projects
smaller than 200 UFP. The resulting dataset includes data from 110 projects
having size in the [207, 4202] range. Some descriptive statistics for this dataset
are given in Table I.

TABLE I
DESCRIPTIVE STATISTICS FOR THE ISBSG DATASET.

UFP HLFPA SFP #EI #EO #EQ #ILF #EIF #LF #EP
Mean 976 888 971 43 46 46 26 24 50 135
StDev 842 739 785 38 71 51 22 23 39 123
Median 639 607 674 29 17 32 20 18 37 82
Min 207 202 223 0 0 0 0 1 12 14
Max 4202 3755 4257 204 442 366 100 172 234 656

A. Method used
We build models of functional size using LOESS (locally estimated

scatterplot smoothing) [15]. LOESS is a non-parametric regression method
that combines multiple regression models in a k-nearest-neighbor-based meta-
model. It fits simple models to localized subsets of the data to build up a
function that describes the deterministic part of the variation in the data,
point by point.

The analysis was carried out using the R programming language and
environment [16]. Specifically, we used the loess function from the Stats
package, which is provided as part of the system libraries.

Through the span parameter, the loess function makes it possible to
control the degree of smoothing. In the empirical study, we tried different
values for the span parameter.

We aimed at building models using the same five variables (#EI, #EO, #EQ,
#ILF, #EIF) used by HLFPA. However, the loess function from the Stats
package does not allow more than 4 independent variable. To overcome this
problem, we observe that in the HLFPA method, #EI and #EQ get the same
weight; therefore, it is conceivable to consider EIs and EQs as a single class
of transactions (only as far as size estimation is concerned). Accordingly, for
each project we compute #EIQ = #EI+ #EQ. Then we use four independent
variables (#EO, #EIQ, #ILF, #EIF) to build size models via LOESS. In
addition, we built models that use the same two variables (#LF and #EP)
used by SFP. We also built Ordinary Least Square (OLS) linear regression
models.

The evaluation was carried out via 10-time 10-fold cross validation. For
all the estimates obtained from 10-time 10-fold cross validation, we compute
estimation errors and a few indicators, as follows. The error (alias residual)
for the ith estimation is defined as eei = Si−Ei, where Si is the actual
size of the element involved in the ith estimation (i.e., the size measured
according to the IFPUG standard process) and Ei is the estimated size. The
computed indicators are:

• MAR is the Mean of Absolute Residuals, i.e., MAR = 1
n

∑n
i=0 |eei|,

where n is the number of estimates.
• MAR/MS is the MAR divided by the mean size MS = 1

n

∑n
i=0 Si. It

gives an idea of the relative importance or the estimation errors.
• MMRE is the mean magnitude of relative errors. MMRE =

1
n

∑n
i=0 |rei|, since a relative error is defined as rei =

eei
Si

. MMRE
has been widely criticized as a biased metric [17]: we report it for
completeness. At any rate, we also report MAR/MS, which is not a
biased metric, since the mean size is a characteristic of the given dataset:
MAR/MS is a sort of normalization of the MAR.

• MdMRE is the median magnitude of relative errors.

21Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



• Finally, R2 (the coefficient of determination) is given, since it is a quite
reliable indicator of the models’ accuracy [18].

B. Results obtained
We carried out 10-times 10-fold cross validation. In the process, we did

not always get usable results. Specifically, via OLS regression we sometimes
obtained invalid models (e.g., models with not normally distributed residuals);
via LOESS we obtained models that did not support estimation in extreme
cases, i.e., for too large or too small independent variables. All these cases
were not evaluated. They are a strict minority, hence the reported results
represent the most likely outcome of estimation in practice.

The accuracy indicators computed over the obtained estimates are given
in Table II. Models LMv are built using OLS regression using v independent
variables; models LWMv (where LWM stands for Locally Weighted Model)
are built using LOESS, based on v independent variables. For LWMv we give
in parentheses the value of the span value.

TABLE II
ESTIMATION ACCURACY INDICATORS.

MAR MAR/MS MMRE MdMRE R2

HLFPA 103.8 0.106 0.097 0.084 0.966
LM5 62.0 0.064 0.074 0.057 0.985
LM4 58.2 0.060 0.071 0.055 0.987
LM2 91.6 0.096 0.096 0.084 0.971
LWM4(0.5) 93.7 0.107 0.109 0.089 0.943
LWM2(0.5) 91.4 0.099 0.103 0.082 0.940
LWM4(0.75) 66.5 0.076 0.082 0.068 0.972
LWM2(0.75) 88.7 0.096 0.101 0.075 0.950
LWM4(0.95) 55.6 0.064 0.073 0.064 0.984
LWM2(0.95) 86.6 0.094 0.096 0.072 0.958

Table II suggests that OLS linear models provide quite good estimates.
Surprisingly, LM4, i.e., the model based on #EO, #EIQ, #ILF, #EIF achieves
better results than the LM5, i.e., the model based on #EO, #EI, #EQ, #ILF,
#EIF.

We can also observe that estimation accuracy of LWM models varies
with the span; specifically, accuracy improves with span. However, the
improvement is modest for LWM2 (MAR decreases from 91.4 to 86.6), while
it is quite large for LWM4 (MAR decreases from 93.7 to 55.6). Overall,
it seems that when LOESS is used with two variables it is not able to
substantially improve the estimates provided by LM2; instead, LOESS used
with four variables achieves good results, provided that span is sufficiently
large. In fact, the minimum MAR is achieved by LWM4 with span=0.95.

To evaluate if the estimates provided by a method are significantly better
than those provided by another method, we tested the statistical significance of
the differences among absolute errors yielded by the considered methods [17].
Namely, we compared the absolute residuals via Wilcoxon sign rank test [19]
(using the wilcox.test function from the R Stats package). The results
(which are all statistically significant at the usual α = 0.05 level) are given
in Table III.

TABLE III
COMPARISON OF MODEL’S ABSOLUTE RESIDUALS VIA WILCOXON SIGN

RANK TEST.

HLFPA LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA – > > > > > > > > >
LM5 < – > < < < < < > <
LM4 < < – < < < < < < <
LM2 < > > – < < > = > >
LWM4(0.5) < > > > – = > > > >
LWM2(0.5) < > > > = – > > > >
LWM4(0.75) < > > < < < – < > <
LWM2(0.75) < > > = < < > – > >
LWM4(0.95) < < > < < < < < – <
LWM2(0.95) < > > < < < > < > –

To assess the effect size, we use the non-parametric statistic A by Vargha
and Delaney [20], as provided by the R package effsize [21]. We obtained
the results given in Table IV, where each numeric result is accompanied by
its interpretation [21]: ‘n’ and ‘s’ indicate negligible and small effect size,
respectively.

LWM4(0.95) appears to be the best model according to MAR (Table II).
However, According to the Wilcoxon sign rank test, LM4 is the most accurate
model. The disagreement between this two indications is explained by Vargha
and Delaney’s A, which is 0.51 for LM4 vs. LWM4(0.95), showing that the
size effect is practically nil, i.e., LM4 is better, but by a practically irrelevant
extent.

Finally, we look into the error distributions yielded by the estimation
methods that we used in the study.

Figure 1 shows the boxplots of estimation errors for each of the used
methods. It can be noticed that LWM2 models provide exceedingly large
errors in a few cases.

Fig. 1. Error boxplots.

Figure 2 provides the same information as Figure 1, but omitting outliers.
It can be seen that the various models do not yield dramatically different
accuracy levels, when the outliers are excluded. However, it is noteworthy
that HLFPA tends to underestimate (as already noted in [22]). The other
models provide more balanced errors, with medians very close to zero.

Fig. 2. Error boxplots (no outliers).

Figure 3 shows the boxplots of absolute estimation errors for each of the
used methods, excluding outliers. The mean absolute error (i.e., the MAR) is
shown as an orange diamond. Also according to Figure 3, LM4, LM5 and
LWM4(0.95) are the most accurate models.

Figure 4 shows the distribution of the distance between SFP and IFPUG
measures, in comparison with HLFPA and the best estimators. It can be seen
that SFP measures provide an approximation that is better than HLFPA’s, and
not much worse than the best estimators’.

Considering that SFP uses fixed weights and does not even require
classifying data and transactions, and that the method is not specifically
intended to approximate IFPUG measures, this is a quite remarkable result.

IV. THREATS TO VALIDITY

A typical concern in this kind of studies is the generalizability of results
outside the scope and context of the analyzed dataset. In our case, the ISBSG

22Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



TABLE IV
EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA LM5 LM4 LM2 LWM4(0.5) LWM2(0.5) LWM4(0.75) LWM2(0.75) LWM4(0.95) LWM2(0.95)
HLFPA – 0.61(s) 0.62(s) 0.54(n) 0.53(n) 0.53(n) 0.59(s) 0.55(n) 0.61(s) 0.56(n)
LM5 0.39(s) – 0.52(n) 0.44(n) 0.42(s) 0.42(s) 0.49(n) 0.43(n) 0.51(n) 0.45(n)
LM4 0.38(s) 0.48(n) – 0.42(s) 0.40(s) 0.40(s) 0.47(n) 0.42(s) 0.49(n) 0.43(n)
LM2 0.46(n) 0.56(n) 0.58(s) – 0.48(n) 0.49(n) 0.55(n) 0.50(n) 0.57(n) 0.51(n)
LWM4(0.5) 0.47(n) 0.58(s) 0.60(s) 0.52(n) – 0.50(n) 0.57(n) 0.52(n) 0.59(s) 0.53(n)
LWM2(0.5) 0.47(n) 0.58(s) 0.60(s) 0.51(n) 0.50(n) – 0.56(n) 0.51(n) 0.58(s) 0.52(n)
LWM4(0.75) 0.41(s) 0.51(n) 0.53(n) 0.45(n) 0.43(n) 0.44(n) – 0.45(n) 0.52(n) 0.47(n)
LWM2(0.75) 0.45(n) 0.57(n) 0.58(s) 0.50(n) 0.48(n) 0.49(n) 0.55(n) – 0.57(n) 0.51(n)
LWM4(0.95) 0.39(s) 0.49(n) 0.51(n) 0.43(n) 0.41(s) 0.42(s) 0.48(n) 0.43(n) – 0.45(n)
LWM2(0.95) 0.44(n) 0.55(n) 0.57(n) 0.49(n) 0.47(n) 0.48(n) 0.53(n) 0.49(n) 0.55(n) –

Fig. 3. Absolute error boxplots (no outliers).

Fig. 4. Distributions of distances from IFPUG measures.

dataset is deemed the standard benchmark among the community, and it
includes data from several application domains. Therefore our results may
be valid in general.

The usage of MMRE is questionable, since it is has been shown to be
a biased indicator (see for instance [17]). Nonetheless, we used MMRE
together with other indicators—like MAR, the boxplots of residuals and R2—
to provide a more complete and balanced picture of the accuracy of our
results, and compared the precision of different models via sound statistical
tests, namely Wilcoxon sign rank test and Vargha and Delaney’s A measure
of effect size. Therefore, the role of MMRE in the presented evaluations is
marginal.

V. RELATED WORK

The quest for measures that are available in the early stages of the software
lifecycle dates back to decades ago [23] [24] [25].

The “Early & Quick Function Point” (EQFP) method [26] uses analogy
(similarities between a new and a classified piece of software) and analysis
(statistical analysis of the estimated similarity) to get size estimates. It was
reported that estimates are within ±10% of the real size in most real cases,
while the savings in time and costs are between 50% and 90%.

“Easy Function Points,” [27], adopt probabilistic approaches to estimate
not only the size, but also the probability that the actual size is equal to the
estimate.

Lavazza et al. built estimation models for UFP based on BFCs [28]
using Least Median Squares robust regression models. They observed that
FP measures could be altogether replaced by measured based on a smaller
set of BFCs.

Several other early estimation methods were proposed: Table V list the
most popular ones.

TABLE V
EARLY ESTIMATION METHODS: DEFINITIONS AND EVALUATIONS

Method name Definition Used functions Weight Evaluation
NESMA indicative [29] [30] data fixed [4] [31]–[35] [9]
NESMA estimated [29] [30] all functions fixed [4] [31]–[35] [9]
Early & Quick FP [25] [36] [26] all functions statistics [9] [37]
Tichenor ILF model [38] ILF fixed [9]
simplified FP (sFP) [39] all functions fixed [9]
ISBSG average weights [40] all functions statistics [9]
SiFP [5] data and trans. statistics [10] [11]

Lavazza and Liu [22] used a dataset containing data from 479 projects to
compare the accuracy of HLFPA method with Ordinary Least Squares method,
with both 5 predictors (LM5) and only 2 predictors (LM2). They found that
(1) unlike HLFPA, linear regression models do not underestimate, (2) linear
regression models yield slightly less accurate estimates, and (3) models based
on only two variables yield marginally less accurate estimates.

VI. CONCLUSION
Measuring software functional size via IFPUG FPA with the standard

manual process is sometimes a long and expensive activity, and it is simply
impossible when the details of a functional specification are not available
for any reason. To solve this problem, several early estimation methods have
been proposed. In this paper, we compare the estimates obtained via a standard
estimation methods, namely HLFPA, and a new functional size measurement
method, namely IFPUG SFP, with the estimates obtained with traditional
(namely, linear regression) models and LOESS models. The accuracy achieved
by these methods has been evaluated via an empirical study, which used a
dataset containing data from 110 projects.

LOESS provided the lowest mean absolute error. However, statistical tests
show that linear regression models using 4 or 5 independent variables achieve
the same level of accuracy. Therefore, practitioners needing to estimate
software functional size in the early stages of projects are advised to try
both linear regression models and LOESS models.

ACKNOWLEDGMENT
The work reported here was partly supported by Fondo per la Ricerca di

Ateneo, Università degli Studi dell’Insubria.

REFERENCES

[1] A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83–92.

[2] International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

[3] A. Timp, “uTip – Early Function Point Analysis and Consistent Cost
Estimating,” 2015, uTip # 03 – (version # 1.0 2015/07/01).

23Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



[4] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs–is it really worth it?” in Software
Measurement European Forum (SMEF), 2009.

[5] R. Meli, “Simple function point: a new functional size measurement
method fully compliant with IFPUG 4.x,” in Software Measurement
European Forum, 2011.

[6] IFPUG, “Simple Function Point (SFP) Counting Practices Manual
Release 2.1,” 2021.

[7] L. Lavazza, “On the effort required by function point measurement
phases,” International Journal on Advances in Software, vol. 10, no.
1 & 2, 2017.

[8] nesma, “Early Function Point Analysis,” https://nesma.org/themes/
sizing/function-point-analysis/early-function-point-counting/ last access
6/6/22.

[9] L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” Journal on Advances in Software, vol. 6,
no. 1& 2, 2013.

[10] L. Lavazza and R. Meli, “An evaluation of simple function point as
a replacement of IFPUG function point,” in IWSM–MENSURA 2014.
IEEE, 2014, pp. 196–206.

[11] F. Ferrucci, C. Gravino, and L. Lavazza, “Simple function points for ef-
fort estimation: a further assessment,” in 31st Annual ACM Symposium
on Applied Computing. ACM, 2016, pp. 1428–1433.

[12] International Software Benchmarking Standards Group, ““Worldwide
Software Development: The Benchmark, release 11,” ISBSG, 2009.

[13] C. Jones, “A new business model for function point metrics,” 2008,
http://concepts.gilb.com/dl185 last access 6/6/22.

[14] Total Metrics, “Methods for Software Sizing – How
to Decide which Method to Use,” 2007 last ac-
cess 6/6/22, https://www.totalmetrics.com/function-point-
resources/downloads/R185 Why-use-Function-Points.pdf.

[15] W. S. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American statistical association, vol. 74, no.
368, 1979, pp. 829–836.

[16] R core team, “R: a language and environment for statistical computing,”
2015.

[17] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, “What
accuracy statistics really measure [software estimation],” in Software,
IEE Proceedings-, vol. 148, no. 3. IET, 2001, pp. 81–85.

[18] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determi-
nation R-squared is more informative than SMAPE, MAE, MAPE, MSE
and RMSE in regression analysis evaluation,” PeerJ Computer Science,
vol. 7, 2021, p. e623.

[19] J. Cohen, “Statistical power analysis for the behavioral sciences
Lawrence Earlbaum Associates,” Hillsdale, NJ, 1988, pp. 20–26.

[20] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal of
Educational and Behavioral Statistics, vol. 25, no. 2, 2000, pp. 101–132.

[21] M. Torchiano et al., “effsize: Efficient effect size computation,” R
package version 0.7, vol. 1, 2017.

[22] G. Liu and L. Lavazza, “Early and quick function points analysis:
Evaluations and proposals,” Journal of Systems and Software, vol. 174,
2021, p. 110888.

[23] D. B. Bock and R. Klepper, “FP-S: a simplified function point counting
method,” Journal of Systems and Software, vol. 18, no. 3, 1992, pp.
245–254.

[24] G. Horgan, S. Khaddaj, and P. Forte, “Construction of an FPA-type met-
ric for early lifecycle estimation,” Information and Software Technology,
vol. 40, no. 8, 1998, pp. 409–415.

[25] L. Santillo, M. Conte, and R. Meli, “Early & Quick Function Point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41–41.

[26] DPO, “Early & Quick Function Points Reference Manual - IFPUG
version,” DPO, Roma, Italy, Tech. Rep. EQ&FP-IFPUG-31-RM-11-EN-
P, April 2012.

[27] L. Santillo, “Easy Function Points – ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods,” in IWSM–MENSURA, 2012.

[28] L. Lavazza, S. Morasca, and G. Robiolo, “Towards a simplified definition
of function points,” Information and Software Technology, vol. 55,
no. 10, 2013, pp. 1796–1809.

[29] NESMA–the Netherlands Software Metrics Association, “Definitions
and counting guidelines for the application of function point analysis.
NESMA Functional Size Measurement method compliant to ISO/IEC
24570 version 2.1,” 2004.

[30] International Standards Organisation, “ISO/IEC 24570:2005 – Software
Engineering – NESMA functional size measurement method version
2.1 – definitions and counting guidelines for the application of Function
Point Analysis,” 2005.

[31] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236–1249.

[32] J. Popović and D. Bojić, “A comparative evaluation of effort estimation
methods in the software life cycle,” Computer Science and Information
Systems, vol. 9, no. 1, 2012, pp. 455–484.

[33] P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611–660.

[34] L. Lavazza and G. Liu, “An Empirical Evaluation of the Accuracy of
NESMA Function Points Estimates,” in ICSEA, 2019, pp. 24–29.

[35] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing the
effectiveness of approximate functional sizing approaches for effort
estimation,” Information and Software Technology, vol. 123, July 2020.

[36] T. Iorio, R. Meli, and F. Perna, “Early&quick function points® v3. 0:
enhancements for a publicly available method,” in SMEF, 2007, pp.
179–198.

[37] R. Meli, “Early & quick function point method-an empirical validation
experiment,” in Int. Conf. on Advances and Trends in Software Engi-
neering, Barcelona, Spain, 2015.

[38] C. Tichenor, “The IRS development and application of the internal
logical file model to estimate function point counts,” in IFPUG Fall
Conf., 1997.

[39] L. Bernstein and C. M. Yuhas, Trustworthy systems through quantitative
software engineering. John Wiley & Sons, 2005, vol. 1.

[40] R. Meli and L. Santillo, “Function point estimation methods: A com-
parative overview,” in FESMA, vol. 99. Citeseer, 1999, pp. 6–8.

24Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications


