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Abstract— we present a simple and declarative language for 
describing autonomous behaviors in the paradigm of multi-
agent systems. This framework is based on the notion of “goal 
constraints” and the satisfaction of these goals is done by 
iterative improvement, with the help of “repair functions” 
which will partially fulfill them, step by step. We can thus 
define both deterministic and non-deterministic behaviors. 
This framework is aimed at describing autonomous systems 
where the context is changing or unknown, thus goals can be 
re-evaluated or solved in different ways when changes occur. 
We will illustrate it with a simple example of life-like 
navigation behaviors for agents in unknown environments. 

Keywords— multi-agent systems, emergence, behavior 
languages, constraints, optimization. 

I.  INTRODUCTION 
 

For more than a decade, multi-agent systems have 
become popular and widely used for various types of 
simulation applications [39]. Agents with autonomous 
behavior are now popular for simulating crowds in urban 
settings or emergency situations [13]. Many programming 
languages and frameworks have been proposed [4] from 
very high-level cognitive agents to low-level reactive agents. 
In the domain of computer graphics, where agents are used 
to represent autonomous characters populating a virtual 
world and interacting with the user, several high-level 
formalisms have been proposed [18,19], and other agent 
models have been proposed in a game-theoretic [33]. But 
there also exist also some lower-level frameworks such as 
the ABL language [20] which makes it possible to assign 
goals and subgoals to an agent in a procedural way and to 
define in such a way agent behaviors. However for 
autonomous agents evolving in an unknown or changing 
context, more abstract and declarative formulations are 
sometimes needed, and we will thus  propose in this paper a 
framework for describing autonomous agent behaviors 
based on a declarative programming paradigm. We propose 
to use the formalism of Constraint Satisfaction Problems 
(CSP) as a general behavior description language. 
Constraints are used to state goals, or more exactly partial 
goals, that the agent has to achieve. However, the agent does 
not know in a deterministic way what action to apply in 
order to achieve a goal but maybe just have a (non-
deterministic) procedure to partially fulfill it; procedure that 
could be applied repeatedly until the complete satisfaction 

of his goal or set of goals. Our approach is thus based on the 
idea of iterative improvement with a heuristic function, as 
popularized in the domain of search and optimization by the 
family of local search methods.  It is worth noticing that the 
idea of using simple heuristics to guide the behavior of 
humans or animals has been recently proposed in many 
cases by both psychologists and biologists [12]. 

 
A key feature of our framework is that behaviors will not 

be described in a procedural way (i.e. stating explicitly the 
sequence of action needed to achieve the goal), but in a 
declarative way (i.e. stating conditions, and alternatives), by 
a heuristic function stating how much a goal is achieved. 
Then alternative configurations will be generated and the 
best one (i.e. the one achieving the best partial satisfaction 
of the goal) will be chosen for the next action, yielding thus 
an iterative improvement process. We believe that a 
declarative, nondeterministic formalism such as that of goal 
constraint is more powerful and easier to use than a 
procedural one. 

 
As an application example, we will consider the problem 

of autonomous navigation of virtual creatures in a virtual 
world and show how algorithms derived from biologically-
inspired models of navigation can be defined in our approach 
in order to produce life-like and robust behaviors.  In the 
recent years, there have been a growing interest in both the 
animal behavior communities in considering non-trivial 
navigation problems, where animals or virtual agents does 
not know in advance the location of the goal but rather have 
a to explore the environment towards it, guided by a stimulus 
(e.g. light or smell) towards the goal (e.g. food), or just has 
to search some given area in an efficient way to locate an 
unknown goal (e.g. a prey). Our approach for defining a 
description language for autonomous Agent behaviors is 
indeed rooted in the observation that autonomous navigation 
can cast it as an optimization problem and we will propose a 
framework derived from local search techniques to 
efficiently obtain optimal or near-optimal trajectories. More 
generally, our framework can be used as a motivation 
architecture for virtual creatures, by considering variables for 
denoting internal states (e.g. energy, thirst, etc) and goal 
constraints for defining internal needs (e.g. the energy should 
stay above a certain level), routine behaviors (if the energy 
falls below some level, go for food), or external desired 
properties (e.g. stay away from predators).   
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The rest of the paper is organized as follows. Section 2 
describes the agent model and Section 3 presents the basic 
ideas of constraint-based local search. Then, Section 4 
defines concretely the declarative language for describing 
agent behaviors and Section 5 introduces the application 
example for autonomous navigation of agents. A short 
conclusion and perspectives end the paper.  
 

II. AGENT MODEL 
 

Simple but interesting life-like behaviors with emergent 
properties, such as for instance those described in [5], should 
be easily implemented and tested. We will thus consider a 
simple model of reactive agents, who can sense their 
environment through a set of sensors perceiving external 
stimuli and who can perform actions on their environment 
through a set of effectors. In between some decision process 
will decide what behavior to perform, based on some internal 
state in which the agent is currently.  

 
 

 
Figure 1.  Simple agent model 

 
We will however consider s slightly refined framework and 
detail the decision process. The agent behavior is defined by 
a set of goals, which will be specific logical relations over 
both the internal variables of the agent (defining the 
internal state) and the external variables (i.e. values of some 
stimulus perceived through the sensors), and thus decisions 
are made by a reasoning engine, which will try to satisfy the 
goals. This reasoning engine will be an iterative 
improvement algorithm that will be detailed in the following. 
Each goal will propose a repair mechanism in order to 
reduce the error between the current situation of the agent 
and a situation satisfying the goal. As an agent can have 
several goals to satisfy simultaneously, all the repair 
mechanism have to be aggregated, this will define the next 
action performed by the agent. This iterative step-by-step 
mechanism continues until the agent has satisfied all its 
goals. Obviously, this model can be considered as a specific 
instance of the Belief-Desire-Intention (BDI) agent model 
[25], but it is more specialized and operational. 
  

 
 

Figure 2.  Refined agent model 

In computer graphics and animation systems, the most 
common formalism for representing behaviors of high-level 
agents, such as virtual humans is some extension of finite 
state automaton (FSA) [22,40] or more complex hierarchical 
models [16,32]. For low-level agents, such as the swarm 
agents in flocks or herds and reactive agents, two basic 
approaches are classically used:  

 
1. Steering behaviors, where the different low-level 

goals (such as grouping or escaping) are stated as 
forces that are then added to produce the actual  
behavior of the agent in a time-step manner. This 
approach has been pioneered by Reynolds in the 
late 80’s [30,31], but is still active now and various 
extensions have been proposed [23,32,9,11, 35]. 

2. Particle systems [36] or potential fields [14] treating 
the swarm as a complex physical system.  

The second approach might be interesting for efficiently 
simulating million of agents, but it is not flexible at all and 
cannot be the basis of a general behavior description 
framework. Indeed, elegant mathematical models of 
swarming behaviors have been proposed [7] but they rely on 
idealistic assumptions and cannot be extended to more 
complex models that the entomologist have nevertheless 
pointed out from real observations.  

We are obviously closer to the first approach above, but 
we propose to use the formalism of constraints as a general 
behavior description language. Constraints are used to state 
goals, or more exactly partial goals, that the agent has to 
achieve. This can be seen as an extension of the steering 
behavior approach where constraints are solved logically 
instead of forces added numerically.  One interesting point 
however is that the constraint formalism is naturally 
nondeterministic, as opposed to any force-based formalism 
such as steering behaviors, which is intrinsically 
deterministic. Indeed we find here again the classical 
dichotomy between declarative and procedural languages.  
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III. GOAL CONSTRAINTS AND LOCAL SEARCH  

In recent years, the interest for the family of Local Search 
methods and Metaheuristics for solving large combinatorial 
problems has been increasing and has attracted much 
attention from both the Operations Research and the 
Artificial Intelligence communities for solving real-life 
problems [1,10]. Local Search (i.e. non-complete) methods 
have been widely used in Combinatorial Optimization for 
finding optimal or near-optimal solutions for more than a 
decade [arts, gonzales], and efficient general-purpose 
systems for local search now exist, and Simulated 
Annealing, Genetic Algorithms, Tabu Search, neighboring 
search, Swarm Optimization, Ant-Colony optimization, etc, 
are all different kinds of metaheuristics that can be applied 
to different sets of problems ranging from resource 
allocation, scheduling, packing, layout design, frequency 
allocation, etc, in order to produce task-specific local search 
algorithms. These methods usually start from one random 
configuration (or a set of random configurations) and try to 
improve this configuration, little by little, through small 
changes in the values of the variables. Hence the term “local 
search” as, at each time step, only new configurations that 
are “neighbors” of the current configuration are explored. 
The definition of what constitutes a neighborhood will of 
course be problem-dependent, but basically it consists in 
changing the value of a few variables only (usually one or 
two, even for a problem with hundreds or thousands of 
variables). The advantage of Local Search methods is that 
they will usually quickly converge towards a solution (if the 
optimality criterion and the notion of neighborhood are 
defined correctly...) and not exhaustively explore the entire 
search space. 

 
We will use the notion of constraints to represent at a 

declarative level goals that agent have to achieve. 
Constraints are  logical relations, specific relation from a 
limited vocabulary, for instance artihmetic relations (e.g. =, 
≤, etc) or specific symbolic relations (e.g. all_different) for 
which there exist some efficient solving algorithms.  Thus 
achieving (logically) the goals is then reduced to solving 
(numerically) the constraints. We have developed in 
previous work [6] a framework for autonomous navigation 
of agents in virtual worlds based on a constraint-based 
combinatorial optimization algorithm named “adaptive 
search” and applied it to path-finding. The core ideas are:  

1. To consider for each constraint a heuristic function 
that is able to compute an approximated degree of 
satisfaction of the goals (the current “error” on the 
constraint); 

2. To aggregate constraints on each variable and 
project error on variables thus trying to repair first 
the variable with worst “error”; and 

3. To update and refine these heuristic functions as the 
agent explores the environment and discovers new 
information. 

4. To use some sort of “Tabu list” in order to give the 
agent a short-term memory and avoid having it 
trapped in loops and local minima. 

 
This constraint-based local search method gave us the 
inspiration for the behavior description language for 
autonomous agents, as we would like now to rephrase this 
approach in a more abstract manner and generalize it to any  
type of behaviors, as a generic goal-based motivation 
architecture for autonomous agents. 
 

IV. A BEHAVIOR DESCRIPTION LANGUAGE 
 
We will consider that each variable vi in the model is 

either an  internal variable of some agent or an external 
variable of the environment (also called a stimulus) and is 
ranging over a discrete or real-valued domains Di.  Each 
variable has thus a possibly distinct domain. A 
configuration over the domains D1 ,…, Dn  is a vector 
(d1,…,dn) of values with di ∈Di. When the domains are 
clear from the context, we will simply speak of a 
confiruation of size n. 

 
An agent is defined by: 

• A set of  internal variables V={ v1, …, vk}  
(describing the internal state of the agent) 
with associated domains 

• A set of  external variables V’={ v’1, …, v’j}  
(describing the stimuli perceived by the agent) 
with associated domains 

• A set of behavior goals:  G={ g1, …, gp} 
(defining the intended behaviors of the agent) 

• An  aggregation operator ∑ 
(used to combine behaviors and decide which 
action to perform) 

 
    The aggregation operator will be used to “sum up” the 
repair actions proposed to partially solve each of the p 
behavior goals of the agent (which could at some point be 
contradictory) and thereof to produce a single action to be 
performed by the agent. This operator is defined when 
programming the agent, and  takes a set of p configurations 
to produce a single result configuration. It could be for 
instance  a (component-wise-) sum, average,  max, or any 
other type of function. In order to give more importance to 
some goals w.r.t. others, aggregation operators can be 
weighted sums or hierarchical (e.g. lexicographic ordering 
choosing to satisfy some first-ranking  goal first and then 
the second-ranking goal only when the first one is satisfied, 
and so on so forth). Thus complex schemes, including for 
instance sequential satisfaction of goals or opportunistic 
behaviors, can be encoded with specific aggregation 
operators. As each goal gi of the agent might involve a 
different set Vi of variables with  Vi  ⊂ V, the tuple resulting 
from the repair action of goal gi has to be extended to a 
complete configuration of size k. This is done by completing 
the result vector with corresponding current values of the 

107

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-134-2



internal variables of the agent. Then aggregation operator ∑ 
is applied over configuration of size k only.  
 
A behavior goal, or simply a behavior, is defined by: 

• A set of variables  X  ⊂ (V∪V’) 
• A goal constraint c over  X   

(logical relation stating when the goal is achieved) 
• A real-valued error function  f  

(giving an heuristic value on how much the goal is 
unsatisfied) 

• A repair mechanism  r over  X 
(to be applied when the goal is not satisfied)  

 
Consider an n-ary behavior goal g(X1, … ,Xn) and 

associated variable domains  D1 ,…, Dn.  An error function fg 
associated with the behavior goal g is a real-valued function 
from   D1 × … × Dn such that fg(X1, …, Xn) has value zero if 
cg (X1, … , Xn) is satisfied. Observe that it could be possible 
for fg to have value zero when cg is not satisfied, as fg is only 
an approximation heuristic function representing the degree 
of non-satisfaction of the goal constraint. This function is 
intended to give an indication on how much the constraint is 
violated. For instance in path-planning applications and 
spatial goal constraints, the error function can be seen as (an 
approximation of) the distance between the current 
configuration (i.e. position) and the closest satisfiable region 
of the constraint domain, e.g. the air-distance.  Since the 
error is only used to heuristically guide the agent, we can 
use any simple approximation when the exact distance is 
difficult (or even impossible) to compute.  
 
A repair mechanism is defined by: 

• A set of variables X ={ X1, …, Xn} 
• A repair generator RG  

(generating a set of alternative configurations for 
variables in  X) 

• An escape generator EG  
(generating stochastic values for variables in X) 

 
The repair generator will generate alternative values 

only for the internal variables of the agent, as external 
variables are considered as constants by the agent, in the 
hope that some of them will better satisfy the goal, that is, 
will produce a configuration with error less than that of the 
current one w.r.t. error function of the goal. Then the best 
one (i.e. with smallest error) will be selected as next 
possible action for the agent.  However, it might happen no 
alternatives generated by the repair mechanism are 
improving the error with respect to the goal constraint. Then 
the escape generator will be used in order to propose a 
stochastic action. In that case the escape generator is used to 
produce a random value for the internal variables, which will 
be used for the next action. The range in which this 
stochastic choice should be applied is of course dependent on 
the behavior, this is why the escape generator is part of the 
repair mechanism of each given behavior. Observe that a 
simple and conservative (although a bit stupid…) escape 
strategy is to have the identity as escape generator, i.e. to 
keep the current values of the variables. Therefore, the agent 

will freeze and do nothing, hoping that the environment will 
change and allow for some action at a later time. On the 
other hand a more complex escape generator (e.g., a 
stochastic procedure based on Perlin noise or Levy flight) 
will provide a non-deterministic behavior. 
 

As a very simple example, the behavior of an agent which 
should go to a given position (already known) can be 
modeled by a goal constraint on a single internal value, its 
position:  

agent.position = target.position 
The error function could be the air-distance:  

|agent.position - target.position| 
The repair mechanism can generate several alternative 
positions in front of the agent for the next step, as there 
might be some obstacles and the direct way (straight line) 
might be infeasible. In any case the agent will select the best 
remaining position (closest to the target).   
 

Observe that if all the repair generators are deterministic 
(i.e. generate a single alternative configuration), then the 
overall behavior of the agent will be deterministic. For 
example the framework of Steering behaviors [30,31], is 
based on the notion of steering forces that are added to 
produce the overall behavior of the agent. In the case of so-
called boids with flocking behaviors steering forces are 
three distinct  separation, alignment and cohesion forces that 
are computed and then added component-wise, thus 
deterministically. Indeed, comparing to the steering behavior 
paradigm, we propose here non-deterministic behaviors and 
we do not try to define a combination of forces that will 
bring the agent to the desired position but just check possible 
alternative configurations and choose the best one, which can 
be done efficiently in the local search approach. Also 
observe that we can cope with dynamically changing 
priorities between behaviors (e.g. in the definition of the 
aggregation operator of the agent), because the error 
functions are re-evaluated and combined at each time step. 

 
The overall generic computation model for the agents can 

thus be simply defined as follows: 
 

For each (agent A in the world) { 
  For each (goal G of agent A){ 
    Evaluate current error FG 
    Evaluate satisfaction condition CG 
    If (not CG) { 
      Generate a set of alternatives R 
      For each (alternative S in R){  
        Evaluate error function FG on S} 
      Select best alternative config. S’ 
            (i.e. with smallest error) 
      If (error of S’ > FG) { 
        S’ = escape generator for G} 
    repair action RG = S’ extended to VA  
    }  
  } 
  Aggregate all repair actions with ∑ 
  Perform resulting action for agent A  
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} 
 
It is clear that the combination of several goals might 

produce quite complex behaviors. For instance if the agent 
should go towards some object (goal constraint: 
agent.position = target.position), and stay at some distance 
of it (goal constraint: agent.position ≥ target.position + d), 
then a following behavior (at distance d) will be simply 
obtained if the target is moving. 

 

V. EXAMPLE: NAVIGATION STRATEGIES 
 
For the last two decades, the observation and modeling of 
animal motion and navigation strategies by zoologists and 
entomologists have inspired researchers in Artificial 
Intelligence and Artificial Life for the design of simulation 
models for crowds and autonomous agents. In particular, 
Nature-inspired simulations based on the metaphor of 
swarm intelligence, such as the foraging simulation of ant-
colonies [3] or collective motion such as flocks schools and 
herds [30,8]. More recently, [37] presents a comprehensive 
review the similarities between collective behaviors of 
different types of agents:  bacterial colonies, cells, insects, 
fishes, birds, mammals, humans, etc. Besides these 
collective motion and cognition, researchers have also been 
investigating movements and navigation strategies of single 
animals, especially the navigation patterns of predators 
looking for a prey in an unknown environment. It appears 
that similar patterns and probably search strategies are put at 
use by very different animal (e.g. bees, flies, moths, 
peacocks, albatross, and can be modeled by so-called “Levy 
flights” [29]. This method has been defined as an optimal 
search behavior (e.g. better than random walk or so-called 
spiral search) for random search in an unknown 
environment, especially when the targets are sparse [38] [2]. 
Even more interestingly [27] showed that Levy flight 
navigation strategies could be an emergent property 
resulting from a simple gradient-following strategy for 
chemotaxis (reaction to some chemical stimulus). This is 
indeed the behavior of simple living creatures such as the 
small soil nematode Caenorhabditis elegans [21,24]. Very 
recently [15,28] showed that a simple gradient-following 
strategy such as chemotaxis can be used to navigate in 
complex mazes and showed that such simple chemotaxis 
finds in several examples the shortest route, although this 
method does not guarantee to always find an optimal path.  
 

When considering the domain of adaptive behaviors [34], 
an exploration process guided by a stimulus (e.g. light or 
smell) towards a goal (e.g. food) of unknown location, two 
different methods are usually defined: temporal difference or 
spatial difference. The temporal difference method consists 
in considering a single sensor (e.g. the nose) and checking at 
every time-point the intensity of the stimulus. If the stimulus 
is increasing, then the agent continues in the same direction, 
otherwise the direction is changed randomly and so on so 

forth.  This is exemplified by the chemotaxis of the 
Caenorabditis elegans. With this method, the agent 
eventually reaches the goal, but might wander in some 
irrelevant regions of the environment in between [21]. A 
more efficient strategy is possible by using the spatial 
differences method [17]. It requires to have (at least) two 
identical sensing organs, placed at slightly different positions 
on the agent (e.g. the two ears). The basic idea is to favor, at 
any time-point, motion in the direction of the sensor which 
receives the most important stimulus. If none of the sensors 
perceives an increasing of the stimulus, then a random move 
is performed. This behavior gives very good results and the 
agents goes most of the time directly towards the goal. Also 
when the goal is moved away, e.g. because the prey is 
moving, the agent reacts instantly (as the stimulus is checked 
iteratively at every time-point) and moves towards the new 
location. 

Both of these models fit quite well within the general 
framework for describing agent behaviors presented in the 
previous section. The temporal difference method consists in 
having a single internal variable for storing the value of the 
stimulus at the previous time point and if the current value of 
the stimulus is not increasing then a random turn (within 
some given limits, e.g. plus or minus 30 degrees) will be 
performed.  The spatial difference method consists in having 
two internal variables for checking the values of the stimulus 
with two sensors in different positions and then making a 
move in the direction of the sensor with highest stimulus. 
Observe that one can have more than two sensors and thus 
check the intensity of the stimulus at various alternative 
points, but it seems than it does not improve the search 
process significantly [17], explaining thus maybe why 
animals and humans only need two symmetric sensors (e.g. 
eyes or ears). 
 

VI. CONCLUSION 
We presented a simple and declarative framework for 

describing autonomous behaviors in the paradigm of multi-
agent systems. This model is a generalization of previous 
work on navigation models for autonomous agents in virtual 
worlds [6], and can be used as generic goal-based motivation 
architecture for autonomous agents. Our language is based 
on the notion of “goal constraints” and the satisfaction of 
these goals is done by iterative improvement, with the help 
of “repair functions” which will partially fulfill them, step by 
step. We are currently finishing an implementation of this 
framework using the processing language [26]. 
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