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Abstract—Action learning is a process of automatic induction
of knowledge about domain dynamics. The idea to use Answer
Set Programming (ASP) for the purposes of action learning
has already been published in [2]. However, in reaction to
latest introduction of Reactive ASP and implementation of
effective tools [6], we propose a slightly different approach, and
show how using the Reactive ASP together with more compact
knowledge encoding can provide significant advantages. The
technique proposed in this paper allows for real-time induction
of action models in larger domains, and can be easily modified
to deal with sensoric noise and non-determinism. On the other
hand, it lacks the ability to learn the conditional effects.
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I. INTRODUCTION
A. Action Learning and Reasoning about Actions

Knowledge about domain dynamics, describing how cer-
tain actions affect the world, is essential for planning and in-
telligent goal-oriented behaviour of both living and artificial
agents. In artificial systems, this knowledge is referred to as
action model. It is an expression of all the actions that can
be executed in a given domain, with all their preconditions
and effects in some kind of representation language.

Action learning, as a type of reasoning about actions,
is a process of automatic generation and/or modification of
action models based on sensoric observations. Autonomous
and automated systems may benefit from action learning,
since it allows them to adapt to unpredicted changes in
environment’s behaviour (caused for example by addition
of new unknown agents, by hardware malfunction, etc.).

Action models in general are used specifically for the
purposes of planning. As a motivating example, imagine
an autonomous Mars Rover robot (similar to one described
in [4]). Such robot acts in an unknown environment, but
plans its actions based on a static hard-wired knowledge
about about their effects. Now imagine, that one of its
wheels gets damaged, which would change the effects of the
“moveForward” action. If such robot was capable of action
learning, it could update his action model accordingly, and
continue acting successfully towards its goals.

B. Background and Methods

Recent action learning methods take various approaches
and employ the wide variety of AI tools. We should
mention the action learning technique based on heuristic
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greedy search, introduced in [16], perceptron algorithm-
based method which can be found in [11], two solutions
based on the reduction of action learning into different
classes of satisfiability problems, available in [[1] and [15],
learning with inductive logic programs described in [12], or
learning module written in Answer Set Programming (ASP),
described by M. Balduccini in [2].

The method we propose in this paper is closest to
Balduccini’s learning module, in that it also uses ASP
for induction and representation of action models. There
are however several differences, that make it usable under
different conditions. We will address these differences in
detail in Section [V]

C. Reactive ASP

Answer Set Programming (ASP [7], [3l]) has lately be-
come a popular declarative problem solving paradigm, with
growing number of applications [6], among others also in the
field of reasoning about actions. Semantics of ASP enables
us to elegantly deal with incompleteness of knowledge, and
makes the representation of action’s properties easy, due
to nonmonotonic character of negation as failure operator
[LO]. With ASP, our knowledge is represented by so-called
extended logic programs - sets of rules of the following
form:

c4 ajy...an,not by...not by,.

where a;, b; and c are literals, i.e., either first-order logic
atoms, or atoms preceded by explicit negation sign “—”. The
“not” symbol denotes negation by failure. Part of the rule
before “«-” sign is called head and part after it is body.
Rule with an empty body (n = m = 0) is called a fact and
rule without a head is an integrity constraint. Every logic
program has a corresponding (possibly empty) finite set of
answer sets.

Since we are dealing with dynamic systems, we can
take advantage of so-called incremental logic programs. An
incremental logic program is a triple (B, P[t], Q[t]) of logic
programs, with a single parameter ¢ ranging over natural
numbers [S]. While B only contains static knowledge,
parametrized P[t] constitutes a cumulative part of our
knowledge (Q[t] is so-called volatile part, but we don’t use
it in our solution). In our method, ¢ will always identify the
most recent time step, and P[t] will describe how the newest
observation affects our previous beliefs.
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In [6], Gebser et al. go further, and augment the concept
of incremental logic programming with asynchronous infor-
mation, refining the statically available knowledge. They
also introduce their reactive ASP solver oClingo which we
use in our solution.

II. LEARNING WITH REACTIVE ASP

We will now describe our learner, which is basically a
short incremental logic program (B, Pt], (). It has a large
(but gradually decreasing) number of answer sets, each
corresponding to a single possible action model.

At time step 1, the online ASP solver oClingo (6] com-
putes the first answer set and stores it in memory (along
with all the partial computations it has done so far). At every
successive time step, we confront this answer set with new
observations.

Note 1: The oClingo is a server application, which listens
on a specified port and waits for new knowledge. This
knowledge is sent to oClingo by a controller application,
and in our case always represents the latest action and fluent
observations.

A. Encoding the Action Model

First of all, we needed to choose the encoding of action
models into a logic programs that is sufficiently expressive,
but at the same time remains as compact as possible.

The main idea behind our encoding lies in the fact that
for a given fluent F', every possible action A can either:

1) cause a fluent F' to hold (we encode this by a fact

causes (A, F) . ),

2) cause a complementary fluent —F to hold
(causes (A, —F) .),
3) or keep the value of that fluent literal

(keeps (A, F) .

In addition to that, we want our action models to contain

the information about action’s executability. In that respect,
every action A can either:

resp. keeps (A, —F) .).

1) have a fluent F' as its precondition (encoded by a fact
pre (A, F). ),
2) or not have it as its precondition (—pre (A, F) .).

B. Generating Answer Sets

Answer sets corresponding to all the possible action
models are generated by static part of our program (logic
program B). It consists of the set of rules depicted in figure
1.

In the first part, we have three choice rules, that generate
answer sets where A either causes F, causes —F, or
keeps F. Next two constraints filter out the answer sets
corresponding to impossible models - where A causes F'
and —F at the same time, or where A both keeps and
changes the value of F'. Last two rules merely express the
equivalence between two possible notations of A keeping
F.
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% Effect generator and axioms:

causes (A,F) <« not causes(A,—F), not keeps(A,F).
causes (A,7F) < not causes(A,F), not keeps(A,F).
keeps (A,F) < not causes(A,F), not causes(A,-F).
< causes (A,F), causes(A,-F).

< causes (A,F), keeps(A,F).

keeps (A,F) « keeps(A,-F).

keeps (A,-F) « keeps(A,F).

% Precondition generator and axioms:
pre (A,F) < not —pre(A,F).
-pre(A,F) < not pre(A,F).

< pre(A,F), —pre(A,F).

< pre(A,F), pre(A,-F).

Figure 1. Static (time-independent) part of our learner logic program.

Second part is very similar. Here we have two choice rules
generating answer sets where A either has, or doesn’t have a
precondition F'. Constraints here eliminate those answer sets,
where A has and doesn’t have precondition F' at the same
time, or where it has both F' and —F as its preconditions.

Note 2: Keep in mind, that the logic programs in this
paper are simplified to improve the readability and save some
space. You can download the exact ready-to-use ASP solver
compatible encodings from [9].

C. Answer Set Elimination

Now, we need to process new knowledge received at
successive time step We use a time-aware, cumulative
program P[t] for that.

#external obs/2.
#external exe/2.
< obs(F,t), exe(A,t), causes(A,—F).
< obs(—F,t), obs(F,t—1), exe(A,t),
< exe(A,t), obs(—F,t—1), pre(A,F).

keeps(A,F).

Figure 2. Cumulative (time-aware) part of our learner logic program.

First two statements merely instruct oClingo that it should
accept two kinds of binary atoms from the controller appli-
cation?} fluent observations obs and executed actions exe.

Remaining three constraints take care of actual lear-
ning, by disallowing answer sets that are in conflict with
the latest observation. First constraint says, that if F' was
observed after executing A, then A cannot cause = F'. Second
constraint tells us, that if ' changed value after executing
A, then A does not keep the value of F. And the last one
means, that if the action A was executed when —F held, I
cannot be a precondition of A.

INote, that we allow at most one action to be executed in every time
step.

2Telling oClingo what to accept is not necessary, if we use new
-—import=all parameter. This option was implemented only after we
designed our logic programs.
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#step O.

exe (move(bl, b2, table) ,9).
obs (on(bl,table) ,9).

obs (—on(bl,52) ,9).

obs (on(b2,table) ,9).

obs (—on(b2,b1) ,9).
#endstep .

Figure 3. Observation example from Blocks World domain[14] sent to
oClingo at time step number 9. It describes the configuration of two blocks
bl and b2 on the table after we moved b1 from b2 to the table.

At every time step, these constraints are added to our
knowledge with parameter ¢ substituted by a current time
step number. Also, we need to add the latest observation.
These observations are sets of obs and exe atoms. See the
example of observation that is sent to oClingo in figure [3]

We say, that a constraint “fires” in an answer set, if
its body holds there. In that case, this answer set be-
comes illegal, and is thrown away. Now recall, that in
time step 1, oClingo generated the first possible answer
set and stored it in memory. An observation like the one
above can cause some of our constraints to fire in it and
eliminate it. For example, if our answer set contained the
causes (move(bl, b2, table), on(bl,b2)) atom, the first
constraint would fire.

If that happens, oClingo simply computes the new an-
swer set, that is not in conflict with any of our previously
added constraints. This is how we update our knowledge,
so that we always have an action model consistent with
previous observations at our disposal. Note, that each ob-
servation potentially reduces the number of possible an-
swer sets of our logic program (B, P[t],(), thus making
our knowledge more precise. After a sufficient number of
observations, (B, P[t], ) will have only one possible answer
set remaining, which will represent the correct action model.

III. DEALING WITH NOISE AND NON-DETERMINISM

The problem may arise, in the presence of sensoric noise
or non-deterministic effects, since the noisy observations
could eliminate the correct action model. This could eventu-
ally leave us with an empty set of possible models. However,
we propose a workaround, that can overcome this issue.

The problem with non-determinism is, that we cannot
afford to eliminate the action model after the first negative
example. We need to have some kind of error tolerance.
For that reason, we should modify the cumulative part of
our program PJt], so that our constraints fire only after a
certain number of negative examples:

Here we can see, that our observations don’t directly
appear in the bodies of constraints. Instead, they are capable
of increasing the negative example count (which is kept
in the variable C of negExCauses, negExKeeps and
negExPre predicates). Constraints then fire, when the
number of negative examples is higher than 5.
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negExCauses (A,F,C+1) «

negExCauses (A,F,C), obs(—F,t), exe(A,t).
negExKeeps(A,F,C+1) «
negExKeeps(A,F,C), obs(—-F,t),
obs(F,t—1), exe(A,t).
negExPre (A,F,C+1) +
negExPre (A,F,C), exe(A,t), obs(—F,t—1).

< causes (A,F), negExCauses(A,F,C), C > 5.
+— keeps(A,F), negExKeeps(A,F,C), C > 5.
< pre(A,F), negExPre(A,F,C), C > 5.

Figure 4. Modified P[t] should be able to deal with sensoric noise, by
introducing error tolerance.

Note 3: The error tolerance threshold is a numeric con-
stant 5 here to keep things simple, but we can easily imagine
better, dynamically computed threshold values (for example
based on the percentage of the negative examples in the
training set, etc.).

IV. COMPARISON TO ALTERNATIVE METHOD

Let us now take a closer look at the similarities and
differences between our method and Balduccini’s learning
module approach described in [2]].

Inc. kn. Prec. Cond. eff. Noise | Real-time
Balduccini yes | yes yes ? no
Our method yes yes no yes yes

A. Incomplete Knowledge

From the viewpoint of domain compatibility, both me-
thods share the ability to deal with incompleteness of
knowledge. The absence of complete observations may slow
down the learning processﬂ but cannot lead us to induce
incorrect action models.

B. Action’s Preconditions

Our method learns not only the effects, but also precon-
ditions of actions. Similarly, Balduccini’s learning module
supports the induction of preconditions, in a form of so-
called impossibility conditions.

C. Conditional Effects

Balduccini’s learning module allows for direct induction
of conditional effects, which is a greatest advantage over
our method. Having the conditional effects allows for more
elegant representation of resulting action models. (Note
however, that they are not necessary, and can be expressed
by a larger number of actions with right preconditions.) On

3By slowing down we understand, that we might require more time steps
to induce precise action models. Incompleteness of observations will not
hinder the computation times at individual time steps.
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the other hand, we must keep in mind that learning them is
in general harder and more time-consuming problem.

D. Encoding of Action Models

An action model is in the case of Balduccini’s lear-
ning module encoded by a set of atoms of the following
types: d_law(L), s_law(L), head(L, F), action(L, A), and
prec(L, F), with L substituted by a name (unique constant
identifier) of a C-language [8]] law, A by an action instance,
and F' by a fluent literal. Notice, that this way, we directly
encode the syntactic form of individual C-language laws into
logic programs. See figure 5] for a simplistic example of this
encoding.

Following C-language law:

caused on(bl,table) after move(bl,b2,table), on(bl,b2),
free(bl), free(table).

Is in Balduccini’s learning module translated into:

d_law (dynamicLaw25).

head (dynamicLaw25 ,on(bl,table)).

action (dynamicLaw25 ,move(bl, b2, table) ).
prec (dynamicLaw25 ,on(bl,52)).

prec (dynamicLaw25 , free(bl)).

prec (dynamicLaw25 , free(table)).

Figure 5. Example of C-language — LP translation used in Balduccini’s
learning module.

Every time the observation is added, the whole history is
confronted with this set. If the observation is not explained
[2]] by it, we add more atoms to it (either creating new laws,
or adding effect conditions to existing ones).

In our case, the action model encoding is much more
compacﬂ We don’t translate an action model from any given
planning language, which allows us to omit the d_law and
s_law predicates and L parameter. Instead we have chosen
an abstract, semantics-based, direct encoding of a domain
dynamics, where every effect or precondition is represented
by a single atom. Notice also, that the size of our action
model doesn’t increase over time.

E. Extending the Techniques

The bottom line here is, that our representation structures
are simpler, for the price of lower expressiveness. The
semantic-based encoding makes it fairly easy to extend
learning by an ability to deal with noise. It is probable,
that Balduccini’s learning module could also be similarly
extended, but it would be far less straightforward process
(it consists of 14 rules, describing a syntactic structure of
action model, rather than focusing directly on semantics).

4Note, that the main reason we can afford more compact encoding is the
fact, that we don’t use conditional effects.
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FE. Performance and Online Computation

Our method can be considered semi-online, in a sense
that we only consider the most recent observation as relevant
input for our computation. This is possible because of the
use of Reactive ASP: At each time step, the solver keeps
everything that it has computed at previous steps in memory,
and only adds new observation. If the current model is
disproved, some revisions might be needed, but significant
part of the computation has already been performed and
results are stored in memory. This, together with relatively
compact encodings allows us to learn action models in real-
time.

G. Experiments and Conclusion

In [2], we can find an experimental comparison of Bal-
duccini’s learning module and Otero and Varela’s laction
learning system [12]]. Their experiment was conducted with
5 narratives of 4 blocks and 6 actions. laction system found
a solution in 36 seconds on Pentium 4, 2.4GHz, while
the results of Balduccini’s module was fairly comparable
with 14 seconds on somewhat faster computer (Pentium 4,
3.2Ghz).

To demonstrate the speedup resulting from using a
compact encoding and Reactive ASP, we have decided
to try significantly larger problem instance. Our do-
main was also a Blocks World with 4 blocks + table
(bl,b2,b3,b4,table), but we had 32 possible ac-
tions (valid instances of pickup (Block,From) and
puton (Block, To)) and our training set consisted of 150
observations of randomly chosen legal actions.

Processing the training set with full observations took
17.9 seconds, while similar set with partial observations
took 14.98 seconds. The experiment was performed with
oClingo solver, version 3.0.92b, under 64bit Linux system
with Intel(R) Core(TM) i5 3.33GHz CPU. The input files
that we used can be downloaded from [9], together with
detailed instructions.

We conclude, that the decrease in the size of encoding,
together with preservation of results from previous time
steps (using reactive ASP approach), enables us to learn
action models considerably faster. This seems to result from
the fact, that the complexity of answer set computation
algorithms is exponential in the number of input atoms [[13]]
(thus reducing the input for solver even a little can speed up
the computation significantly), and that an important part of
computation can be recycled from previous time steps.

In the near future, we are planning to provide an in-
depth comparison of our method to a wide variety of action
learning approaches, followed by a specification of the most
apropriate practical applications in the area of autonomous
and automated systems.
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