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Abstract—The Opportunistic Sensing Paradigm shifts away the
configuration of activity- and context recognition systems from
design time of the system to a dynamic runtime configuration.
Systems following this new paradigm have to autonomously
configure themselves during runtime according to a stated recog-
nition goal and the available sensing infrastructure. A crucial
point therefore is to find a methodology to express the recognition
goal itself and to map the requirements specified by the stated
recognition goal to the capabilities of the available sensors in
the ecosystem of the users. This paper presents an approach
for a semantic engine capable of processing and matching a
given recognition goal to the semantically described sensing
infrastructure. This matching allows to autonomously spot and
quantify the best set of sensors available at any point in time
that can contribute to the stated recognition goal and therefore
being configured to a sensing ensemble.

Index Terms—Goal Processing; Sensor Networks; Activity and
Context Recognition; Opportunistic Sensing

I. INTRODUCTION

Sensor networks enable the sensing of the physical world
and detect context and activity, which is a key to build and
develop intelligent environments [1]. Different Frameworks
exist that handle inferring context and activity out of raw
sensor data. Their common disadvantage is that the used
sensing infrastructure and the context that has to be recognized
must be defined at the design time of the system [2]. A
dynamic change in the sensing infrastructure in terms of the
spontaneous availability of new sensors or the change of the
recognition purpose respectively the recognition goal [3] is
not supported by these systems. Due to the emerging plethora
of sensing devices (e.g., smart phones or smart watches) with
integrated sensing capabilities in the ecosystem surrounding
the user, the necessity arises to federate these devices in an
autonomous, adaptive and goal oriented manner to relieve
developers from low level, platform specific concerns. Kurz et
al. present in [3] methodologies to semantically describe the
recognition capabilities of sensors in terms of labels reflecting
meaning in the real world (e.g., Walk or Drinking-Coffee).
They propose ExperienceItems that encapsulate the necessary
stages of the Activity Recognition Chain [4] to infer activity
and context information out of the raw sensor data readings. In

addition, a metric, the Degree of Fulfillment (DoF) is defined,
that quantifies how good a sensor can be used to detect a
specific label (i.e., activity class) as a value between [0, 1].
Furthermore, a way to abstract from the low level access
details yielding to a common accessible interface for different
sensing devices using Sensor Abstractions is described and
evaluated. Using these presented methodologies, we can see a
sensor as a label delivering entity that can be queried for its
capabilities, and the needed machine learning techniques can
be instantiated during runtime to infer activity and context
information. To direct the autonomous planning process [5] in
selecting the best suitable sensing devices, we propose a goal
oriented approach that defines at a high semantic level how the
system should behave. Goal oriented approaches have proven
their flexibility and effectiveness in various research domains
like Operations Research [6], Requirements Engineering [7]
and Mobile Agent Systems [8]. The common objective is that
a goal specifies at an abstract level what the system should
achieve but not how. Multiple paths exist at each point in
time on how the goal can be achieved. In this work we adapt
the goal methodology and use a goal oriented approach to
direct the configuration of an activity and context recognition
system. This is a novel approach as the sensing infrastructure
needs not to be defined at design time of the system and can
change even during its runtime. It is autonomously configured
and adapted according to the stated recognition goal. In detail,
the hypotheses valid within this paper can be formulated as
follows:

(H) The explicit formulation of a recognition goal is a suitable
way of directing the autonomous configuration of an
activity and context recognition system.

The remainder of the paper is structured as follows: Section
II proposes a methodology on how activity can be understood
and modeled. This is a crucial point to define the neces-
sary terms a recognition goal can be composed of. Based
upon our activity modeling approach that encapsulates our
understanding of what an activity is, Section III discusses
a technique on how to formulate a recognition goal based
on this understanding. Section IV shows how a formulated
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Fig. 1: Partial view of the approximately 200 modeled Context
and Activity Relations gathered during a large scale kitchen
experiment presented in [11] using the Protege-OWL modeling
tool. Activities and Context are modeled using the relations
<isRelated , <Combination, and <has A.

recognition goal is processed, refined, semantically reasoned
and quantified, and finally mapped to the available sensing
ecosystem. Section V evaluates the proposed approach in a
real-time setting and Section VI closes with a discussion of
the hypotheses and a conclusion.

II. ACTIVITY RELATIONS MODELING

To formulate a goal that describes the recognition purpose of
the system at an abstract, semantic level, the necessity evolves
to understand, define, model, and relate Activities and Context
that can be stated to the system. We see and define Activities
as a much more complex thing rather than a simple ”sequence
of actions performed” [9] or ”hierarchies of activities of daily
living” [10]. Its meaning is not only defined by the performed
physical activity itself. It is defined in combination with a
situation respectively the context. To model these relations we
use an Ontology that builds the semantic knowledge base and
represent the Activity Relations gathered during a large scale
kitchen experiment presented in [11].

In each context, a physical activity can have a complete
different meaning. From our point of view Activity can be
seen as any information that characterizes the behavior of
an individual interweaved with additional context [12]. We
model these relations using the TexTivity-Concept (as shown
in (1)). This concept allows to relate activities to different
contexts and assign different meaning to these relations.
TexTivity therefore is an amalgam of context and activity
highlighting the close relation of both concepts. Fig. 1 shows
a partial view of the modeled relations. Two TexTivities
namely StressedCoffeeDrinking, and RelaxedCoffeeDrinking
are modeled. Both TexTivities are related to same physical
activity DrinkingCoffee but assign a different meaning of this
activity in relation to the two contexts [WithBoss, Office, and
Stress]→StressedCoffeeDrinking and [WithFriends, Outside,
and Fun]→RelaxedCoffeeDrinking. According to the defini-
tion of TexTivities we named the Ontology to model these
relations TexTivity-Ontology. Using the definition of TexTivities
(as defined in (1)) allows us to link a set of context literals

(without activity) [<Combination] to a set of activity literals
[<isRelated] and give this relation a ”meaning”. Furthermore,
by knowing the relations of activities [<has A], the substi-
tution and reasoning of activities is possible by combining
activities at different levels of abstraction. This is especially
useful if no sensor can be found in the surrounding of the user
that is explicitly designed to detect the stated recognition goal.
Using the modeled relations of activities, we can semantically
reason which activities the stated recognition goal is composed
of, and use sensors that can detect these semantically related
activities instead. This allows the dynamic configuration of
sensing ensembles and exploits the full flexibility of the
opportunistic sensing approach, as the recognition goal can
be processed, reasoned and matching methodologies can be
applied to substitute activities out of related ones. How this is
done is described in detail in Sections III and IV.

TexT ivity → {Activity} � {Context\Activity} (1)

We see Activities as a multidimensional labyrinth of complex
actions. They can happen interleaved, concurrent or in any
other temporal or causal relationship. Making it even more
complex, activities can happen in combination with different
contexts that influence their meaning. Consider the activity
”Talking” either in the context of watching a football match
or improperly in a class room. Both activities ”Talking” refer
to the same ”physical” action but with a complete different
meaning in the particular context.

III. RECOGNITION GOAL FORMULATION

One of the crucial things when developing an oppor-
tunistic activity and context recognition system that adapts
autonomously during runtime is to find a way to formulate
the recognition goal explicitly to relieve developers from
low level, platform specific concerns while federating the
sensing infrastructure. The explicitly stated recognition goal
has to be reason- and processable by the opportunistic system.
This enables the autonomous selection of the best set of
available sensors, called ensemble [3], according to the stated
recognition goal. We see a sensor as a label delivering entity
at a semantic level reflecting meaning in the real world that
can be used and queried for its capabilities, can be quantified
during runtime using the Degree of Fulfillment (DoF) metric,
and can be dynamically instantiated at any point in time.
How the sensor ensemble is configured and the corresponding
activity recognition chains are instantiated by using sensor
abstractions, sensor-self-descriptions, and experience-items is
described in [3].

To formulate the recognition goal we use a derivation of
the Context Predicates presented in [13]. There, Stevenson
and Dobson present Context Predicates to reason informa-
tion in smart environments (e.g., smart homes). The Context
Predicates are used as entry points into the modeled domain
knowledge captured in form of an Ontology. Furthermore,
they are used to reason about the modeled knowledge. If
for example, one wants to know if Bob is at home, and
the information that Bob is in the living room is given (by
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a particular sensor), the domain knowledge can be used to
reason that the living room is located in the house and to
infer that Bob is at home. The reasoning capabilities can be
used to infer and refine knowledge that is not explicitly given
by a particular sensor. Even if we do not have the explicit
information that Bob is at home (e.g., no sensor is available
that can deliver this information explicitly), we can infer this
knowledge by using other sensors that detect that Bob is in the
living room. Having the semantic modeled relation of Home↔
Living Room we can infer that Bob is at home without having
the explicit knowledge of a particular sensor. The syntax of
the Context Predicate is defined in (2).

< CP >=< subject, predicate, object > (2)

The following examples clarify the use of Context Predicates.
A Context Predicate can be for example < {Bob},
located, livingRoom >, querying if Bob is located in the
living room. This query can be evaluated to true or false.
Another example is <?, located, livingRoom >. Using the
question mark, querying for all subjects that are located in the
living room is possible. The last example < Person, ?,
livingRoom > queries for all predicates (activities) persons
are performing in the living room.

Following the approach of using Context Predicates, that
showed to be a promising solution as a goal description using
domain knowledge and reasoning, we enhanced them to more
closer fit our proposed TexTivity-Ontology to enable a quick
and precise formulation of the recognition purpose of the
system. As we talk about activity and context recognition, we
renamed the predicate into Activity and made the term object
more generic in calling it Context. Furthermore we added the
entity TexTivity to allow its direct statement as a goal. We
permit to state each item in form of a set to allow multiple
objectives per item being stated in a single goal and define a
TexTivity Predicate as follows (3):

< TP >=< {Subject}, {Activity}, {Context},
{TexT ivity}, {Constraint} > (3)

The definition of a TexTivity Predicate can be used to formu-
late a goal like < {Bob, Paul}, ?, {LivingRoom,
BathRoom}, ?, {} >. The formulated goal configures a sys-
tem that detects all activities and TexTivities (as indicated
by the question marks) of Bob and Paul in the living- and
bathroom. As from the systems point of view, the best en-
semble is always defined by having the highest recognition
accuracy concerning the stated context and activity items,
the necessity may evolve to further optimize such an en-
semble in terms of energy consumption, size and weight,
infrastructure or body-worn sensors, or the maximum numbers
of sensors that are configured to an ensemble. As these
constraints cannot be foreseen now, the TexTivity predicates
allow to state them in an open and extendable way. In
the previous example, no constraints were defined. So the
best available sensor ensemble is configured regardless its
quantitative properties. If one wants to formulate the same

recognition goal, but assuring that the configured ensemble is
above a stated recognition accuracy, e.g., with a Degree of
Fulfillment (DoF) above 89%, it has to be added as constraint
(< {Bob, Paul}, ?, {LivingRoom,BathRoom}, ?,
{[DoF ] : 0.89} >) instructing the system to configure a
sensing ensemble with a DoF above 89% if possible, or fail
otherwise. Formulating subjects, activities, context, TexTivities
and constraints in form of sets is an elegant and fast way
to state the recognition purpose of the system for multiple
objectives.

Activity and Context is not limited to one, synchronized
stream of information that can be described and formulated
using one single TexTivity predicate. To meet these concerns,
we identified two ways of combining TexTivity Predicates
for activity and context recognition systems: (i) a logical
combination and (ii) a temporal combination. The logical
combination can be done e.g., with an AND or OR connector,
allowing to state multiple recognition purposes to the system
that are handled in parallel. An example is shown in (4) where
the logical combination AND is used to combine two TexTivity
Predicates.

< {Bob}, ?, {LivingRoom}, ?, {} > AND

< {Paul}, ?, {BathRoom}, ?, {} > (4)

The purpose of the recognition goal in (4) is to detect all
Activities and TexTivities that are performed by Bob in
the livingroom AND all Activities and TexTivities that are
performed by Paul in the bathroom. Therefore, two TexTivity
Predicates are defined that formulate the recognition goals.
These two TexTivity Predicates are then combined using the
logic AND operation to get the overall recognition goal for the
activity and context recognition system.

Allen defined in [14] temporal operators like Overlaps,
Meets, Equal, Before, During, Starts and Finishes. By using
this set of operators the whole space of possible temporal
relationships can be represented. Using these operators to
combine TexTivity Predicates allows to formulate timing be-
havior between multiple TexTivity Predicates. We think of
recognition goals as shown in (5) and (6). In (5) the purpose
of the recognition goal is to detect that Bob brushed his teeth
Before he was having breakfast that could be an interesting
context information for an child education system. In (6) the
recognition goal is the detection of Paul reading his emails on
Apple’s IPad while having lunch in the office, which might
also be useful information for systems helping to avoid the
burn-out syndrome.

< {Bob}, {BrushTeeth}, {}, {}, {} > BEFORE

< {Bob}, {Breakfast}, {}, {}, {} > (5)

< {Paul}, {ReadingMail}, {IPad}, {}, {} >
DURING

< {Paul}, {}, {}, {OfficeLunch}, {} > (6)
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TABLE I: SIMILARITY SCORES OF ONTOLOGICAL RELA-
TIONS TO MATCH ADVERTISEMENTS OF RESOURCES (E.G.,
SENSOR) TO REQUESTS [15].

Similarity-
Score(CR, CA)

Taxonomic-
Ontological Relation Computation

1.0 CA ≡ CR 1.0

1.0 CA ⊆ CR 1.0

[0,1] CR ⊆ CA
|A(CA)|
|A(CR|

[0,1] ¬(CR u CA ⊆ ⊥) |A(CA)∩A(CR)|
|A(CR)|

0.0 (CR u CA ⊆ ⊥) 0.0

The use of TexTivity-Predicates to define the recognition
purpose of an activity and context recognition system in form
of an semantic abstracted, high level goal, is a flexible way
to direct the autonomous and dynamic configuration of such a
system. Having the option of combining multiple TexTivity
Predicates either with logical or temporal operators makes
this approach even more powerful and allows to represent the
nature of activities more clearly.

IV. SEMANTIC ENGINE

Using the semantic information modeled in the TexTivity-
Ontology is the key aspect to utilize the full power and
flexibility of the opportunistic approach. To configure sensor
ensembles according to the formulated high level recognition
goal, we use the semantic information modeled in the TexTivity
Ontology. Using the modeled Context, Activity and TexTivity
relations of a domain allow to reason which Context- and
Activity attributes can be substituted by related ones. As the
TexTivity Ontology models the concepts and relations of a
domain, each possible sensor output in terms of labels is an
entry point in the modeled domain knowledge. The labels
that can be delivered by sensors are the connection point
between the ”semantic”-sensors, the recognition goal and the
TexTivity Ontology. This allows the combination of sensors
according to the defined relations in the TexTivity Ontology
and to reason knowledge at a semantic level. If there is, for
example, no sensor in the environment that can be explicitly
used to detect a stated recognition goal, we can search for
sensors that can be used instead and therefore substituting the
not available sensor entity. According to the defined semantic
relations in the TexTivity Ontology, we can reason how the
formulated recognition goal can be substituted by related
contextual information. In [15] Bandara et al. propose a way
based on the semantic similarity concepts presented by Lin
[16] on how to match the advertisements of a resource (e.g., a
(self-described) sensor) to a request (e.g., the recognition goal
respectively the recognition purpose). The matching scores
between the concepts are shown in Table I.

To find the best sensor ensemble according to the stated
recognition goal, we define a Goal Function (as shown in
(7)) that uses the semantic similarity concepts presented in
[16] and matches the requested capabilities of the recognition
goal to the advertised recognition capabilities of the sensors

(as described conceptual in Table I). The function weights the
resulting DoF according to the number of labels (and their
single DoFs) that can be satisfied by the sensor ensemble and
returns a value between [0,1] that reaches a maximum for the
best set of sensors.

DoF =
1

LtR

n−1∑
i=0

DoFi (7)

LtR=number of Labels the sensor is queried for
n=number of Labels satisfied by the sensor (n ≤ LtR)
DoFi=DoF of a single label with index i

In case where no sensor is found in the ecosystem of the
user that can explicitly be used to detect the stated recognition
goal, Goal Substitution and Reasoning using the captured
Domain Knowledge Relations takes place. By knowing the
semantic relations of context and activities, we can reason
which sub-context can be used to reason context at a higher
semantic level. This is an extremely powerful approach as we
can use sensors that were not explicitly designed to detect
the stated recognition purpose. An example is the recognition
goal <{},{Locomotion},{},{},{}> that formulates to detect
Locomotion. If we can not find a sensor in the environment,
that can explicitly be used to detect Locomotion we use the
semantic information modeled in the TexTivity Ontology. We
refine Locomotion into its related sub-activities (<has A) →
Walk, Stand, Lie and Sit as shown in Fig. 1 and search for
sensors that are capable of recognizing these activities. We
rank the found sensors according to the Goal Function defined
in (7) and select the highest ranked as ensemble. The example
highlights, the use of sensors to detect Walk, Stand, Lie and Sit
that were not designed to detect Locomotion explicitly. Only
because the semantic relations of Locomotion to these four
activities are known, and modeled in the TexTivity Ontology,
we can combine them to detect Locomotion.

As the reasoning capabilities are not limited to one refine-
ment step {A → {B,C}}, the refinement of activities and
context may involve the recursive evaluation of an entire tree
of related context {A → {B,C};B → {U, V,W}, C →
{X,Y }} → {. . .}. This can take as many steps as necessary
to decide if the formulated recognition purpose is satisfiable or
not. Furthermore, reasoning of a recognition goal, expressed
in form of a TexTivity Predicate, is a reasoning in multiple
dimensions as it can be done for all elements contained in the
TexTivity Predicate as exemplarily shown in Fig. 2. The two
presented methodologies, (i) the semantic matchmaking of the
recognition goal expressed using TexTivity Predicates to the
sensing infrastructure and (ii) the goal splitting, substitution
and quantification according to the defined Goal Function
(7) are implemented in a Semantic Engine that handles the
Semantic Concept Matching between the sensing ecosystem
and the stated recognition goal as shown in Figure 3. In the
following Section V we evaluate the presented methodologies
using a reference implementation of an opportunistic activity
and context recognition system called the OPPORTUNITY
Framework [3].
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Fig. 3: Semantic Engine used for Processing the stated Recognition Goal in mapping, reasoning and substituting it to the
available sensors in the ecosystem of the user.

Fig. 2: Reasoning of TexTivity Predicates in
multiple dimensions for the recognition goal
<{Bob},{Locomotion},{Home},?,{}> according to the
defined relations in the TexTivity Ontology.

V. EVALUATION

To evaluate the approach of using high level recognition
goals to direct the dynamic configuration of an activity and

context aware system, we developed the OPPORTUNITY
Framework [3]. The framework is a reference implementation
of an opportunistic context and activity recognition system.
It allows to state high level recognition goals during runtime
in form of TexTivity predicates that direct the dynamic and
autonomous configuration of the system. It uses the goal
processing, reasoning and semantic matchmaking capabilities
of the Semantic Engine described in Sections III and IV to
configure sensor ensembles to fulfill the stated high level
recognition goal. A similar setup was already successfully used
by our group to test the configuration of sensor ensembles
[17]. For the evaluation we set up a real time scenario with
body worn sensors to test and evaluate the presented approach.
We picked a rather easy activity set for evaluating, as the
goal is not to work with highly sophisticated and complex
activity classes. The handling of complex activities using
dynamically configured Hidden Markov Models with a similar
sensor setup is presented in [17]. For testing we used the
activity classes of the modes of locomotion → (Walk, Sit,
Stand, Lie). We used four XSense-Mti-sensors that deliver
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Fig. 4: Experimental setup of the on-body sensors to test
and evaluate the autonomous configuration of an Activity and
Context recognition system in a realtime setting.

triaxial acceleration data. The sensors were mounted on the
left and right upper-/lower arm and are named according to
their position motionjacket RUA (right-upper-arm), motion-
jacket RLA (right-lower-arm), motionjacket LUA (left-upper-
arm) and motionjacket LLA (left-lower-arm). Additionally,
one SunSPOT accelerometer sensor was attached to the right
shoe (sunspot shoetoebox). Fig. 4 shows the sensor setup
and the corresponding realtime schematic of the runtime con-
figured sensor ensembles using the OPPORTUNITY Frame-
work. The four motionjacket sensors were trained to detect
Walk, Sit, Stand, and Lie using the OPPORTUNITY Dataset
[11]. The sunspot shoetoebox was trained to detect Locomo-
tion. In the following two scenarios the TexTivity predicate
<{},{Locomotion},{},{}, {} >, formulating the recognition
goal to detect the activity Locomotion, was stated to the
system. In the first scenario, all sensors were available (Fig.
5a) as indicated by the green bubbles. The OPPORTUNITY
Framework queried the available sensors for their recognition
capabilities. One sensor, the sunspot shoetoebox, was found
that can explicitly be used to recognize Locomotion. The goal
refinement process stopped as a sensor was found that is
explicitly dedicated to detect Locomotion. So this sensor is
selected as ensemble (as indicated by the black arrow), the
corresponding recognition chain is dynamically instantiated,
and the recognition process is initiated.

In the second scenario, we turned off the
sunspot shoetoebox sensor as indicated by the grey bubble
(Fig. 5b). The four motionjacket sensors were still available.
In this case, no sensor is available that can explicitly be
used to detect Locomotion, as the motionjacket sensors
are trained to detect Walk, Sit, Stand and Lie. Again, the
OPPORTUNITY Framework queried the available sensors
for their recognition capabilities. As no sensors were found
by the framework that can explicitly be used to detect
Locomotion, the Semantic Engine initialized the Goal
Refinement process according to the semantically modeled
relations of the TexTivity Ontology. The OPPORTUNITY
Framework autonomously reasoned the related activities of
Locomotion (<has A →) {Walk, Stand, Lie, Sit} (Fig. 1).
Knowing the related activities, the framework queried for

TABLE II: SEMANTIC SCORES FOR THE SEMANTICALLY
REASONED RECOGNITION GOAL “LOCOMOTION” AC-
CORDING TO THE GOAL FUNCTION (7).

Sensor Walk Stand Lie Sit Score

motionjacket RUA 0.700 0.770 0.980 0.860 0.828

motionjacket RLA 0.690 0.380 0.900 0.950 0.730

motionjacket LUA 0.780 0.670 0.970 0.930 0.838

motionjacket LLA 0.790 0.320 0.480 0.730 0.580

(a) (b)

Fig. 5: Visual, real-time representation of the physical sensors
used in the scenario to evaluate the Goal Description and
Semantic Matchmaking in a varying sensor ecosystem.

sensors that can detect the related activities. Four sensors,
the motionjacket RUA, motionjacket RLA, motionjacket LUA
and motionjacket LLA were found that can be used. The
Goal Function (7) was evaluated for each sensor to quantify
its capabilities according to the reasoned recognition goal as
shown in Table II. After evaluating the Goal Function, the
four motionjacket-sensors were configured to an ensemble as
the Condorcet’s jury theorem [18] states that if the probability
of a single vote is grater than 0.5 (DoF/Score), then the
probability that the majority decision is correct is increased.
The corresponding recognition chains of the single sensors
are dynamically instantiated and are fused using majority
voting (Fig. 5b). Out of the four delivered labels (Walk,
Stand, Lie, Sit) we can reason their relation on a higher
semantic level inferring Locomotion using the modeled
activity relations in the TexTivity Ontology that are utilized
by the Semantic Engine. The evaluation scenario showed that
it is possible to combine sensors according to semantically
modeled information in a realtime system. We showed that
the system can autonomously configure and adapt an activity
and context recognition system dependent on the available
sensing infrastructure and the stated recognition goal during
runtime. Even if no sensors are available to detect the
stated recognition goal explicitly, the system autonomously
utilizes the semantically modeled information in the Semantic
Engine in two ways. First, in a top-down fashion, it queries
for related activity and context according to the stated
Recognition Goal and then it quantifies sensors using a
Goal Function (as shown in (7)) that can be used to detect
them (e.g., Locomotion →{Walk, Stand, Lie, Sit}). Second,
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the system uses the semantically modeled information in a
bottom-up fashion, to reason context at a higher semantic
level out of the semantic data delivered by the sensors (e.g.,
{Walk, Stand, Lie, Sit}→Locomotion).

VI. CONCLUSION

Sensors providing information to detect human activities are
embedded in more and more artifacts of everyday living (e.g.,
smartphones, watches, cameras, clothing, etc.). Using these
artifacts motivates the shift away from deploying ”application
specific” sensors and to support developers in relieving them
from low level, platform specific concerns. We use sensors
that just happen to be available and utilize them in an goal
oriented, opportunistic way for activity and context recogni-
tion. We can handle and exploit heterogeneous resources using
Sensor Abstractions and dynamically instantiate the necessary
stages of the Activity Recognition Chain to infer activity and
context information out of the raw sensor data readings using
ExperienceItems. We see each sensor as a label delivering
entity that can be queried for its capabilities.

As central contribution we propose a Semantic Engine
that matches the stated recognition goal in form of TexTivity
Predicates to the available, semantically described sensor
ecosystem. Therefore it utilizes modeled context and activity
relations in the TexTivity Ontology that can be reasoned and
inferred to combine sensors at different semantic levels. To
direct the autonomous and adaptive configuration, we use a
goal-oriented approach. The goal encapsulates a high level
directive that defines, at a semantic level, what the system
should do and how it should behave. As syntactical formalism,
to describe and formulate the recognition goal we propose
the use of TexTivity-Predicates as a precise, flexible, and
reasonable way of formulating the recognition purpose of the
Activity and Context recognition system.

The autonomous and adaptable combination and use of
sensors at a semantic level provide the possibility to use
sensors that are already out there in the environment and elim-
inates the need to deploy more and more application specific
sensors. The fact that the system can react on changes in the
sensing infrastructure (e.g., due to sensor failures) increases
its stability and robustness compared to traditional systems.
An essential point for the scalability of the opportunistic
sensing approach is the fact that sensors, processing, and
communication resources are only used and configured to
ensembles, if they are needed to fulfill the stated recognition
goal.

The evaluation clearly highlights that the research hy-
potheses holds that a goal oriented, top-down configuration
approach for autonomously adapting an activity and context
recognition system during runtime offers a high flexibility in
terms of combining sensors at a semantical level resulting in
a stable, and accurate activity and context recognition system
envisioning the autonomous and dynamic creation of sensing
infrastructures of massive scale during runtime.
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