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Abstract—This paper presents the development of a nonlinear 

control strategy for a robot manipulator model, using a robust 

higher order sliding mode control structure. In the present 

work, a traditional sliding mode control is presented, the 

robustness of the controller in the context of stabilization and 

trajectory tracking, is analytically proved using Lyapunov 

approach. In order to reduce the chattering in sliding mode 

controller (SMC) we used the higher order sliding mode 

control algorithm (Super twisting and Twisting). The 

simulation results presented in this paper indicate that the 

suggested approach has considerable advantages compared to 

the classical sliding mode control. 

Keywords-robot manipulator; higher order sliding mode 

control; Twisting; Super twisting 

I. INTRODUCTION 

Variable structure systems with a sliding mode were 
discussed first in the Soviet literature [1], and have been 
widely developed in recent years. The sliding mode control 
(SMC) is a powerful method to control high-order nonlinear 
dynamic systems operating under uncertainty conditions 
[2][3]. A SMC law is designed such that the representative 
points’ trajectories of the closed-loop system are attracted to 
the sliding surface and once on the sliding surface they slide 
towards the origin. As the sliding surface is hit, the system 
response is governed by the surface dynamic; consequently, 
the robustness to the uncertainty or disturbance is achieved. 
In spite of claimed robustness properties, high frequency 
oscillations of the state trajectories around the sliding 
manifold known as chattering phenomenon [2][4] are the 
major obstacles for the implementation of SMC in a wide 
range of applications. 

Several methods of chattering reduction have been 
reported [5][6]. One approach [7] places a boundary layer 
around the switching surface such that the relay control is 
replaced by a saturation function. Another method higher 
order SMC [8][9][10], latter approach have been proposed 
for a Flexible Robot Arm in [11] [12]. The current papers 
result is based on this latter approach and its main idea can 
be described as follows: 

Let  ,s x t  (
nx  is the state variable, t  the time 

variable) be the sliding variable and r N the sliding order. 

The control forces to zero in finite time s and its  1r   

first higher time derivatives by acting discontinuously on 
the rth time derivative of s . Keeping the main advantages 

of standard SMC, the chattering effect is eliminated and 
higher order precision is provided. In the case of “real” 

SMC [9], if   is the sampling time, the error is  o  in the 

case of standard SMC [13] whereas it is  ro  in the rth 

order SMC [14]. 
In the case of second order SMC ( 2r  ), many works 

have given solutions. Several second order sliding mode 
algorithms are proposed in [9][14][15] [16]. 

The present paper proposes a multi-input multi-output 
(MIMO) second order sliding mode strategy, for this 
purpose we have chosen as an application PUMA 560 robot 
manipulator with three degrees of freedom model obtained 
using Lagragian’s equations [17]. The proposed controller 
based on sliding mode control approach. 

The paper is arranged as follows: Section 2 introduces a 
general PUM 560 robot manipulator model. Section 3 
presents traditional sliding mode controller design. Section 
4 displays the design of the second order SMC (the Twisting 
and de Super Twisting algorithm). Section 5 presents the 
simulation results obtained with the full dynamic model. 
Finally, we present the comparative study to show the 
effectiveness and feasibility of the proposed control 
strategy. 

II. DYNAMIC MODEL OF ROBOT MANIPULATOR  

To control the manipulator arms, we chose the model of 
industrial PUMA 560 robot manipulator presented in Figure 
1. We considered only the first three rotationals joints 

,1 2q q and 3q . The dynamic model [17] is given in 

simplified matrix form in (1). 

      
0

, .
m m

M q q V q q q G q u u     (1) 

with:  
nq  : Vector of joint positions; 

nq  : Vector of joint velocities; 

nq  : Vector of joint accelerations; 

nu  : Vector of forces and / or torques of motor; 

 1 2 3, ,
T

u u u u     (2) 
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Figure 1. PUMA 560 robot manipulator 

  3

omu t  : Vector of torque due to the load om . 

      0 , .
o

T
mu m J q J q q J q q q g      (3) 

where the Jacobian matrix is defined by: 

  
     
   

   

1 2 2 3 23 2 1 1 2 2 3 23 1 3 23

1 2 2 3 23 2 1 1 2 2 3 23 1 3 23

2 2 3 23 3 23

- - - -

- - - ( )

0 - -

s l c l c d c c l s l s c l s

J q c l c l c d s s l s l s s l s

l c l c l c

  
 

   
  

 (4) 

 qqJ  ,  derived from the Jacobian matrix obtained from the 

differentiation with respect to time. 

  n nM q  : Symmetric positive definite matrix of 

inertial accelerations;  

  

2 2
1 2 23 3 2 4 2 23 5 23 6 2 5 23

5 23 6 2 7 4 3 8 4 3

5 23 8 4 3 9

0 5

0 5

I + I c + I c + I c c I s + I s I s

M q I s + I s I + I c I + . I c

I s I + . I c I

 
 

  
 
  

 (5) 

  nG q  : Vector of forces and / or couples due to 

gravitational forces; 

    3 2 2 2 2 3 3 23

3 3 23

0

0 5 0 5

0 5

G q - m l + . m l gc - . m l gc

- . m l gc

 
 

  
  

 (7) 

 , n n
mV q q  : Matrix of forces and / or torques due to 

centrifugal and Coriolis accelerations; 

  

 

 

 

  

   

 

3 2 2 2 23 23 4 2 23 2 23 1 2

2 23 23 4 2 23 1 3

2 2
6 2 5 23 2 5 23 2 3 5 23 3

2
3 2 2 2 23 23 4 2 23 2 23 1

2
4 3 2 3 4 3 3

2
2 23 23 4 2 23 1

2( ) ( )

2

(2 ) ( )

,
0 5

0 5

0 5

m

- I s c + I s c + I c s + s c q q

- I s c + I c s q q

I c + I c q + I c q q + I c q

V q q .q
I c s + I c s + . I s c +c s q

I s q q - . I s q

I s c + . I c s q +







  2
4 3 20 5. I s q

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (6) 

with the following notations: 

 
   

   

cos cos

sin sin

i i ij i j

i i ij i j

c q , c q q ,

s q , s q q ,

   


  

 (8) 

1) Property 1: The matrix  M q is symmetric, positive 

definite and bounded, and its inverse is existing and also 
bounded. The matrix verifies the following equality 

   2 ,M q V q qm for none a zero vector X : 

    2 , 0T
mX M q V q q X     (9) 

III. SLIDING MODE CONTROLLER DESIGN 

This section focuses on the design of a sliding mode 
control for the stabilization of nonlinear systems; we will 
apply it on a highly nonlinear system which is the PUMA 
560 robot manipulator. This control must meet the 
specifications defining the objectives, including stability, 
speed, accuracy and robustness. The simulations are 
performed in the case of trajectory tracking, and we passed 
the drop test load as the test of robustness. The PUMA 560 
robot model without taking into account the effect of the 
load is as follows: 

 .mMq V q G u    (10) 

This model describes the dynamics of a robot 
manipulator with three degrees of freedom, which requires 
the synthesis of three controls, and as each joint is 

considered as a subsystem whose relative degree is 2ir  , 

which means that each surface is  is of order 1ir  . And the 

error e is defined by: de q q  , with i i ide q q   

 Therefore, the sliding surface is chosen, 1 2 3, ,s s s s    , 

such as: 

 i i i is e e   (11) 

we can write,  ds q q e    
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where,  

 rs q q   (12) 

with,  r dq q e   is considered a reference for the joint 

velocity.  
From (10) and (12), we can set: 

m rM s u V q G M q        

 m r rM s u V s q G M q         

 r m m rM s u M q V s V q G          (13) 

A. Proposition 1 

We define the Lyapunov function as follows: 

 
1

2

TV s Ms  (14) 

From property (1), the matrix M  is positive definite, and 

we also 0V   for 0s  . So, according to the study of 

Lyapunov stability, the system is stable when, 0V   with 

V is the time derivative of V such that: 

 
1

2

1

2

T T

T T
m m

V s Ms s Ms

s u Mq V s V q G s Msr r


 


        

 (15) 

and from (9), we have 2 0T
ms M V s    . 

This implies that: 

  TV s u Mq V q Gr m r     (16) 

B. Proposition 2 

The control signal u , be given by 

  T
equ u K sign s   (17) 

and  

 eq r m ru Mq V q G    (18) 

with the gains of switching  1 2 2, ,
T

K K K K , 0iK  .  

C. Proof 1 

Thus, with this choice of the control u  from (17), we obtain:  

   0T T TV s K sign s s K      (19) 

Therefore, with the control (17) the system is stable in 

closed loop (the equilibrium point 0ie  , with 1,3i  , is 

asymptotically stable). 

IV. 2-SLIDING MODE CONTROLLER DESIGN 

The problem of 2-sliding mode control is to constrain 
the trajectories of the system to evolve on the sliding 
manifold in a finite time [15]: 

  2 : ( , ) ( , ) 0  s x s t x s t x     (20) 

Let us write again the dynamic model of PUMA 560 
robot manipulator as follows: 

 .mMq V q G u    (21) 

For each joint, the constraint is chosen linear function: 

 ,  0,  1:3i i i i is e e i      (22) 

The equivalent control is given by: 

 eq r m ru Mq V q G    (23) 

For each subsystem, the effective control u  is composed 

of two terms: the equivalent control equ and the 

discontinuous control. 
To calculate the latter, we use the algorithms of 2-sliding 

mode control. When we take local coordinates 

   1 2

T T
y y s s , the problem of 2-sliding mode for 

each subsystem (joint) is reduced to the stabilization in 
finite time of the auxiliary system of order tow below: 

 
1 2

1 ( , ) ( , )

y y

y t x t x  




 

 (24) 

where  represents the derivative of the control by respect 

to time u  ; in this case, the control u is considered a 

state variable. 

 

 ( , ) ( , , ) ( , , ) ( ) ( )

( , ) ( , , )

x t s t x u s t x u f x g x u
t x

t x s t x u
u





 
    




 

 (25) 

0 m M

s
K K

u


  


, with the necessary condition of 

existence of the equivalent control in sliding mode 

0
s

u





and  ( , , ) ( , , ) ( ) ( )s t x u s t x u f x g x u

t x


 
  

 
. 
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Two 2-sliding algorithms (the twisting and Super 
Twisting) are applied to demonstrate their ability to stabilize 
the system, reduce chattering and improve accuracy in a 
problem tracking. 

A. Twisting Algorithm Controller Design 

The control law for a system of relative degree 1 r  is 
as follows in (26) [15]: 

 1 1 2

1 1 2

( ) 0

( ) 0

M

M

M

m

M

u if u u

v u a sign y if y y u u

a sign y if y y u u









 

    

  

 (26) 

with sufficient conditions for finite time convergence are: 

 
0

4 , ,m
M m m M M m

m

K
a a K a K a

K


      (27) 

The effective control is as follows: equ u udt   , we note 

TWu udt  . 

In practice for an real sliding, instead of 2y , 

determination of the sign of 1 2y y  is made by the first 

difference of 1y  as: 

 
1 1

0 0

( ( ) (( 1) )) 1

for K
s

y K y K for K 


  

  
 (28) 

where  is the sampling period. 

B. Super Twisting Algorithm Controller Design 

In this section, we will apply the super Twisting 
algorithm [15] to stabilize the robot manipulator. The 
effective control u for this algorithm consists of two terms: 

equ and 
STu , ( ) ( ) ( )eq STu t u t u t   with 

1 2( ) ( ) ( )STu t u t dt u t  . 

and 

 1
1

( )
( )

M

M

u if u u
u t

Wsign y if u u

 
 

 
 (29) 

 
1 1 00

2

1 1 1 0

( )
( )

( )

sign y if y
u t

y sign y if y





 

 

 
 

 

 (30) 

In this case, sufficient conditions for convergence are: 

 2

2
, 4 , 0 0.5M

m m

K W
W

K WK

 
  



 
    

 
 (31) 

V. SIMULATION RESULTS 

In this section, simulations are presented to illustrate the 
performance and robustness of proposed control law when 
applied to PUMA 560 robot manipulator. The parameters 
values used for the dynamic model are as follows [17], 

      , .M q q V q q q G q u um mo
     (32) 

 Mass of various links  

2 17 40m .  kg , 3 5 04m .  kg , 4 0.82m  kg , 

5 0 35m .  kg ,             6 0.09m  kg ,  

4 5 6 1 26tm m m m .  kg    . 

 Geometrical parameters 

2 149.09d mm , 2 431.8l mm , 3 433.07l mm . 

with  0 0 9.8
T

g   

To excite the any dynamics of robot there is a cycloidal 
trajectory test (33), where the different joints move 

respectively of the position 50 , 135 ,135   to the 

position 45 , 85 ,30 , in a time of movement equal to 

1.5 sec . 

  
 

 

0 2 sin 2 0
2

D t tiq for t tdi ft tq t f fdi

q t for t tdi f f

 


   
     

    



   




 (33) 

with    0i di f diD q t q  : Displacement, and ft  the final 

instant of the movement. 
The parameters of the simulations are, 

 For the sliding surfaces 5
j

  , 1, 2,3j   

 For a SMC control, the control gains selected are 

 50,50,50
T

K    

 For the Twisting algorithm are:  0.1, 0.1, 0.1T
ma  , 

 550, 550, 550T
Ma  ,  20, 20, 20T

Mu  . 

 For the Super Twisting algorithm are: 0 0.1  , 

0.5  ,  20, 20, 20
M

Tu  ,  250, 250, 250T  , 

 0.025, 0.025, 0.025TW  . 

with the sampling period 0.001secT  , and the simulation 

time 2sect  . To test the robustness of the control laws 

proposed, we chose the falling load. In this, the robot is a 

tracking trajectory with a load  0m kg  and if the 

maximum speed is pending, the load drops 

 0 0 à 0.8m t  . 

VI. COMPARATIVE STUDY 

The results of using conventional sliding mode 
controller are shown in Figure 2 and the results obtained 
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when the 2-sliding controller has been used are shown in 
Figure 3 for Twisting algorithm, Figure 4 for Super 
Twisting algorithm.  

 

 

Figure 2. Simulation results of first-order SMC. 

 

 

Figure 3. Simulation results of second order SMC: Twisting algorithm. 

 

 

Figure 4. Simulation results of second order SMC: Super Twisting 

algorithm. 

From the simulations results, we can find that the control 
result of conventional sliding mode controller produces a 
serious chattering phenomenon, Figure 2. 

On the other hand, the chattering phenomenon of the 
controlled system is suppressed in the case of Super 
Twisting algorithm controller (Figure 4). Moreover, the 

proposed controller is a robust controller since the load 
drops hasn’t influence on the control performances. 

To compare the performance of 2-sliding controller with 

SMC, we define tow cost functions 1J and 2J , such as: 

 1
1

1
. ( . )

2

P
T

k

J u u


   (34) 

 2
1

1

2
. ( . )

P
T

k

J e e


   (35) 

The simulation results for each performance index are 
given in Table I: 

TABLE I. COMPARATIVE STUDY 

Controller 
Cost function 1J  Cost function 2J  

SMC 66.6686 10  2.6692  

Twisting algorithm 53.9922 10  28.0488  

Super Twisting algorithm 52.769 10  2.8437  

Comparing the simulation results, it can be said that the 
proposed control strategy, second order SMC (Super 
Twisting algorithm), gave better performance than using the 
conventional sliding mode controller. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a second order SMC is proposed for a 
PUMA 560 robot manipulator system and simulation results 
are presented. Firstly, the classical sliding mode control of 
PUMA 560 robot manipulator system is developed. 
Secondly, the second order SMC control is used to smooth 
the discontinuous control term in order to alleviate the 
chattering phenomenon. The simulation results presented in 
this paper indicate that the suggested approach has 
considerable advantages compared to the classical sliding 
mode control. As future works, we would like making an 
experimental study of the control approach on a real robot 
manipulator. 
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