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Abstract—Many-core architecture is becoming an attractive
design choice in high-end embedded systems design. There are,
however, many important design issues, and load balancing is
one of them. In this work, we take the approach of diffusive
load balancing which enables autonomic load distribution in
many-core systems. We modify the existing scheme by adding
the concept of simulated annealing for more effective load
distribution. The modified scheme is also capable of managing
a situation of non-uniform granularity of task loading, which
the existing ones cannot. As experiments, we tried various
existing schemes as well as the proposed one to map a synthetic
application with 30 threads on a many-core architecture with
21 cores and 4 memory tiles. The experiments show that
the modified scheme gives results better than the existing
approaches.
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I. INTRODUCTION

The rapid increase of semiconductor density has enabled
today’s high-performance embedded systems to have many-
core architecture. However, to utilize maximally the ability
of the system, it is very important to map parallel threads
properly onto the many-core architecture. There have been
numerous studies on this topic, which can be classified
into two types: design-time solution and run-time solutions.
Design-time solutions determine the mapping during design
steps and use the result as a static thread mapping during
run time [1]. The major advantage is to remove the overhead
of transient thread migration and mapping calculation which
run-time counterparts suffer from. The main limitations of
design-time solutions are (1) the scalability problem in
exploring the entire design space due to the exponential
complexity of the mapping problem with respect to the num-
ber of parallel threads and (2) lack of adaptivity to chang-
ing application behavior. In run-time solutions, known as
dynamic load balancing, decentralized methods are favored
since centralized ones suffer from the scalability problem
(e.g., in gathering global load information and mapping
calculation). Our work is based on diffusive load balancing
[2][3], which is one of representative decentralized methods
for load balancing. Decentralized methods, however, can
result in globally gradual load imbalance, which forbids
diffusive load balancing to achieve perfect load balancing.

Our idea is to borrow the concept of simulated annealing [4]
which has a good characteristic to escape local optimum.
When the diffusive load balancing scheme suffers from
globally gradual load imbalance, allowing thread migration
from under-loaded core to over- loaded core with some
probability helps proceed toward the perfect load balancing.
The load balancing problem gets more complicated when
the loadings of threads are not uniform. Whereas existing
diffusive load balancing schemes have little capability to
manage such multi-threaded applications, our modified ap-
proach can effectively handle the situation. The remainder of
this paper is organized as follows. Section II reviews related
work and Section III introduces diffusive load balancing in
terms of negotiation process. Section IV presents our idea
using the concept of simulated annealing. Section V gives
experimental results and Section VI concludes the paper.

II. RELATED WORK

Dynamic load balancing policies are classified into direct
and iterative ones. Direct load balancing maps threads onto
cores in one step [5][6]. Iterative load balancing maps
threads incrementally onto cores by migrating threads to
neighbor cores and by repeating the migration steps until
equilibrium is reached [2][3][7][8][9]. Direct load balanc-
ing methods remove redundant neighbor-to-neighbor thread
migrations which iterative methods suffer from. However,
direct methods have a significant limitation of high overhead
in gathering global information (via core to core com-
munication to exchange load information) and calculating
thread mapping based on the global information (running a
bin packing algorithm during run time). Iterative methods
determine load balancing decisions mostly based on local
load information. Thus, the overhead of mapping decision
is low. However, the quality of mapping is limited due
to the lack of global information and thread migration
overhead as explained before. In our work, we aim to
obtain perfect or close to perfect load balancing with only
local information by adopting the concept of simulated
annealing. The approach proposed in [10] also uses the
concept of simulated annealing to tackle the diffusive load
balancing problem to obtain better load balancing. In this
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work, we implement the approach more elaborately and
demonstrate its effectiveness by comparing it with various
existing diffusive load balancing approaches. In addition,
we extend the approach to the case of non-uniform thread
loading applications.

III. RUN-TIME DIFFUSIVE LOAD BALANCING

A. Negotiation

Diffusive load balancing tackles load balancing problem
by mimicking the physical phenomenon of diffusion. The
diffusion forces a system towards a stable (minimum- en-
ergy) state with homogeneous distribution (of density of
molecules, pressure, etc.). It achieves this by displacing
physical objects (mostly, molecules in nature) along the
direction of decreasing energy obtained by comparing local
states (e.g., local level of concentration or pressure) in a de-
centralized manner. Diffusive load balancing tries to achieve
balanced load distribution in the same way as diffusion in na-
ture. In diffusive load balancing, a thread scheduler running
on each core takes a policy of load balancing that is similar
to physical laws applied to diffusion. Each core performs
load balancing autonomously in a fully decentralized manner
as in nature by utilizing only local load information. That is,
each core tries to balance the load distribution in a local area.
The collective efforts of each core’s load balancing force the
global load distribution towards the homogeneous state, i.e.,
equal load distribution. Each core identifies the state of its
load (under-loaded, balanced, or over-loaded) by comparing
its own load and that of its neighbors (i.e., local information).
If its load state is not balanced, it tries to make it balanced
by negotiating with its neighbors on load redistribution, i.e.,
thread migration. Negotiation is the process to determine,
if any, sender and receiver cores to migrate threads. The
coverage of neighborhood in negotiation called negotiation
coverage (i.e., participants in the negotiation) is one of
the most important parameters since it affects the quality
of diffusive methods. The case of involving only direct
neighbor cores may suffer from lack of global knowledge
while too wide a coverage may cause inefficiency due to
the increased overhead of load information collection and
negotiation. There are four types of negotiation coverage
proposed previously: direct neighborhood (DN), average ex-
tended neighborhood (AN-d), direct neighborhood repeated
(DNR) [2] and direct neighborhood with distorted load
information (DND) [3]. In DN, each negotiation covers only
two direct neighbor cores. One core initiates the negotiation
if it detects load imbalance when comparing its load with
that of the other core. Then the initiating core asks the other
to balance the load by sending (receiving) thread(s) to (from)
the other. The other does not accept the request when the
migration reverse the sender/receiver roles of the two cores
since, if accepted, it will cause the ping-pong situation where
the two cores will continue to exchange the same thread in
a ping-pong manner. In AN-d, given a center core, its d-hop

Figure 1. An illustration of diffusive load balancing

neighbor cores participate in the negotiation. Note that as the
negotiation coverage increases, the overhead of negotiation
increases, so we only consider only 1-hop, i.e., we are only
concerned about AN-1(AN) scheme. DNR allows cores to
forward a thread from one direct neighbor core to another if
there is load difference between them, and DND is the same
as DN except that each core gives distorted load information
to consider the neighbors’ load status.

B. Motivational Example

Fig. 1 shows an example of load distribution obtained by
applying the diffusive load balancing to a multi-threaded
application on a 21 core architecture. In the figure, a
rectangle represents a tile with a core or a memory. The
memory tile is annotated with ’M’. The followings are our
assumptions in the example.

• The multi-threaded application with 20 threads has 21
core tiles and four memory tiles.

• Any existing scheme including DN, AN, DNR, or
DND can be used as the negotiation coverage and the
minimum thread load is ’1’

• Each thread utilizes one target memory and each mem-
ory is utilized by three distinct threads.

• In Fig.1(a), we assume that the entire thread set con-
sisting of 20 threads is initially mapped on a core at
(2,2) when the simulation starts ((0, 0) indicates the tile
at the upper left corner and (0, 4) indicates the one at
the upper right corner).

The threads are mapped onto shaded core tiles in the
figure. The number on each shaded core tile represents its
load level. Fig. 1(b)-(f) show the results of diffusion rounds.

Note that the diffusion rounds require a large number of
intermediate neighbor-to-neighbors thread migrations. Con-
sider the transition from Fig. 1(e) to (f). The core at (2, 2)
is over-loaded since its load level is higher than the global
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Figure 2. Gradual load imbalance

average load level. On the other hand, the core at (0, 1)
and (4, 3) is under-loaded. In the diffusive load balancing
with DN as the negotiation coverage, the transition from Fig.
1(e) to (f) cannot take place because any trial to balance
the local load with the core at (2, 2) will only change the
role of sender and receiver and because the over-loaded core
does not know which core is the right receiver due to the
lack of global knowledge about under-loaded cores. This is
a globally gradual load imbalance problem and unless we
have some smart scheme, the transition from Fig. 1(e) to (f)
cannot happen. This will be discussed in the next section in
more detail.

In terms of performance, global load imbalance can cause
significant degradation of the overall system performance.
For instance, when a mapping similar to Fig. 1(e) continues,
the maximum load ’2’ determines the total execution time
which is 50% longer than the case of ideal load balancing
where the maximum load of the 12 cores is ’1’.

IV. USING SIMULATED ANNEALING

A. Globally Gradual Load Imbalance

Diffusive load balancing, when implemented, has a major
limitation that it lacks global knowledge. It prevents diffu-
sive load balancing from achieving perfect load balancing.
Diffusion of threads, i.e., thread migration is intrinsically
based on local load information. Thus, there can be globally
gradual load imbalance, since it is difficult to be captured by
local information as our motivational example shows in Fig.
2. Even though every adjacent pair of two cores is balanced,
global load difference is 4. Sharing global load information
among cores could resolve the problem. However, it incurs
prohibitively high overhead in continuously collecting the
global information from the large number of cores. Thus,
the real implementation of diffusive load balancing can fail
to achieve perfect load balancing due to the lack of global

Figure 3. Simulated annealing-based diffusive load balancing

knowledge. It is like a situation that the global optimum
cannot be obtained because the solution is not able to
escape a local optimum in typical optimization problems.
In order to get the global optimum, it is quite effective to
exploit metaheuristics such as genetic algorithm, ant-colony
optimization, tabu search, and simulated annealing.

B. Uniform Load Granularity

Because diffusive load balancing is executed in run-time,
applying metaheuristics with huge overhead is not feasible.
We accordingly borrow only the concept of simulated an-
nealing, which includes cooling schedule and probability of
accepting moves, and so on. The approach in [9] also adopts
the concept of simulated annealing for load balancing.
However, it does not have the concept of cooling schedule,
which will make it difficult to converge to an optimal state.
Moreover, there is no experiment given to show the effect of
adopting the simulated annealing approach. In the proposed
simulated annealing-based diffusive load balancing (SA-
DLB) approach, each core performs load balancing based
on DN negotiation scheme. The distinguished element of
SA-DLB, however, is that an under-loaded core can migrate
its threads to an over-loaded one in accordance with a
calculated probability, whereas the previous works such as
DN, AN, DNR, and DND, etc. do not admit it as shown in
Fig. 3. To do so, each core maintains a temperature value
internally by lowering the value with a given period. The
higher the temperature is, it is more likely for threads to be
migrated from the under-loaded core to the over-loaded core,
and as the temperature falls down, that kind of migration is
observed less frequently. Therefore, the effect of escaping
from a local optimum can be seen in the global view, which
means there is a good chance of better load balancing. When
the statistics of the application loading is constant in time
(e.g., the number of threads and the loading of each thread
can be modeled as ergodic processes), SA-DLB outperforms
other schemes, which has been confirmed by the experiment
presented in Section V. A detailed description is shown
in Algorithm 1. First, initialize the Temperature value, the
most important parameter in simulated annealing. Then, we
determine which core will be a sender or receiver. Either an
over-loaded core or an under-loaded core can be a sender,
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Algorithm 1 SA-based Migration (Uniform Load Granular-
ity)

t← 0
initialize T//Temperature
repeat
r ← random(0 or 1)
if r = 0 then

set over-loaded core as a sender
and under-loaded core as receiver

else if r = 1 then
set under-loaded core as a sender
and under-loaded core as receiver

end if
load gapcurrent ← loadsender − loadreceiver
n← random(0 . . . loadsender)
for i = 0 to n do
loadsender ← loadsender − 1
loadreceiver ← loadreceiver + 1

end for
load gapnew ← loadsender − loadreceiver
gain← |load gapcurrent| − |load gapnew|
if gain ≥ 0 then

commit migration
else

if random[0, 1) < e
|load gapcurrent|−|load gapnew|

kT

then
commit migration

end if
end if
T ← g(T, t)
t← t+ 1

until (halting-criterion)

and the other is set to be a receiver. A sender core generates a
random number at most its number of threads. For example,
a sender that has three threads can generate 0, 1, 2, or 3.
Then the sender calculates the load gap betweet the sender
and the receiver that will be obtained after migrating threads
as many as the generated random number. The computed
load gap is used to determine whether the probabilistic move
will be accepted or not. This process is done iteratively
with the temperature value decreasing. In our environment,
the temperature value is decreased by 10% at every step
of iteration as described with g(T,t) in Algorithm 1. The
halting-criterion is satisfied when the temperature reaches
10% of the initial value.

C. Non-uniform Load Granularity

As explained in previous subsection, in the SA-DLB
method, it is assumed that every thread has the same load
size, which is also assumed in the previous approaches such
as DN, AN, DND, and DNR. Therefore, the load of each
core is calculated as the number of threads assigned to that

Figure 4. Move generation for non-uniform load situation

core. In this case, any thread can be migrated and it is
easy to determine how much loads are to be migrated. For
example, to migrate load of amount 10 to a receiver core, the
sender core can just send 10 threads. However, the problem
becomes more complicated when the application has threads
with various kinds of load quantity, i.e., non-uniform load
granularity. Because the number of threads does not mean
the quantity of load of a core, it is no longer simple to
determine how many threads are to be migrated. This implies
that it is no more suitable to apply the existing methods such
as DN, etc. If we apply SA-DLB, however, we can easily
determine which threads are to be migrated and how much
load is sent to the target core. Fig. 4 shows the example of
move generation of SA-DLB in the situation of non-uniform
load granularity. Each white rectangle represents a processor
core and each circle represents a thread assigned to the core.
Each thread is annotated with its load value and this value
is also used as the identifier of the thread (threads with the
same load value do not need to be distinguished). In the
upper left pair of Fig. 4, one core has six threads with 21
load and the other core has three threads with 7 load. If
the DN method is applied to balance the two cores, the left
core could send 7 loads to the right one, which makes both
cores have the same load, i.e. 14. However, it is not easy
to select appropriate threads, so achieving load balance in
the global view would be much difficult. Before applying
SA-DLB, we assume that the over-loaded core manages
the process of load balancing between two cores. We call
the managing core a ’controller’. The controller generates
random one-bit binary numbers as many as its number of
threads. If the generated random numbers are ’011001’ as
in the lower left case of Fig. 4, the threads ’2’,’3’, and
’6’, which correspond to ’1’, are regarded as candidates
to migrate. If these three threads are moved to the right
core, the cores will have 10 and 18 load respectively, and
this makes the load difference of the two cores 8, which is
smaller than the original gap, 14. In this case, the migration
is accepted because the load gap is decreased, implying that
the degree of imbalance between two cores is decreased. If
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Algorithm 2 SA-based Migration (Non-Uniform Load
Granularity)

t← 0
initialize T//Temperature
repeat
r ← random(0 or 1)
if r = 0 then

set over-loaded core as a sender
and under-loaded core as receiver

else if r = 1 then
set under-loaded core as a sender
and under-loaded core as receiver

end if
load gapcurrent ← loadsender − loadreceiver
for i = 0 to number of sender threads do
rand← random(0 or 1)
if rand = 1 then

loadsender ← loadsender − loadi
loadreceiver ← loadreceiver + loadi

end if
end for
load gapnew ← loadsender − loadreceiver
gain← |load gapcurrent| − |load gapnew|
if gain ≥ 0 then

commit migration
else

if random[0, 1) < e
|load gapcurrent|−|load gapnew|

kT

then
commit migration

end if
end if
T ← g(T, t)
t← t+ 1

until (halting-criterion)

the generated random numbers are ’011101’ as in the case
of lower right in Fig. 4, the resulting gap between the cores
is 18 which is bigger than the original value. Even though
the imbalance becomes worse, the migration for ’011101’ is
not discarded immediately. Instead, the migration could be
accepted with some probability which is shown in Algorithm
2 in detail. For convenience, we call the algorithm a SA-
DLB-NU.

V. EXPERIMENTS

A. Target Many-Core Architecture

The target many-core architecture consists of 21
ARM946ES core tiles, 4 SRAM memory tiles and 5x5 mesh
NoC as shown in Fig.1. The NoC performs XY and worm-
hole routing without virtual channel. The NoC router has five
ports (one for the local NI, and the other four for neighboring
routers). A flit has 8 bytes and a packet has 1 9 flits. The

Figure 5. Simulation Results

Figure 6. Peak load and standard deviation

NI has a buffer for two packets for pipelined operation. We
designed the entire system with a commercial transaction
level simulation environment, Carbon SoC Designer [11].

B. Experimental Results

Fig. 5 shows the results of load distribution obtained by
applying the diffusive load balancing to a multi-threaded ap-
plication on a 21 core architecture (memory tiles are placed
at locations different from those in Fig. 1 to see the effects
more clearly but the results are not much different). Each
white rectangle represents a processor core. The memory tile
is annotated with ’M’.

We start with an entire thread set consisting of 30 threads
initially mapped on a core at (2, 2) as shown in Fig. 5(a).
Simulation results of previous approaches including DN,
AN, DND, and DNR are shown in Fig. 5(b)-(e), respectively,
together with that of the proposed SA-DLB in Fig. 5(f). In
the result of DN, AN, and DNR, threads are well distributed
in the sense that for every pair of two neighboring cores
the load difference is less than or equal to one. However,
we can easily observe global imbalance; in DN scheme,
the core at (3, 4) has three threads while cores at (0, 1),
(0, 2), and (0, 3) have no thread. Moreover, in the DND
scheme, cores at (2, 2) and (1, 2) have a gap of 2. On the
other hand, SA-DLB can distribute the thread perfectly as
shown in Fig. 5(f). In Fig. 6, the peak value and standard
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Figure 7. Simulation results

Table I
SIMULATION RESULTS

DN-based SA-based
average 4.28 4.28
standard deviation 2.24 1.27
maximum load 9 6
minimum load 1 2
difference 8 4

deviation of distributed load are shown. Even though the
improved version of DN such as AN, DNR, and DND has
better standard deviation, our SA-DLB gives the best result
in terms of standard deviation. Although SA-DLB provides
a better performance for load balancing, it tends to take
3∼4 times longer than other approaches, since it has higher
computational complexity.

Fig. 7 shows the result of SA-DLB in the case of non-
uniform load granularity. Initially, the many-core system has
30 threads with total load amount of 90 on a core at (2,
2). Because there is no previous work that is capable of
managing non-uniform cases, we compare our SA-DLB-NU
with a DN-like scheme that can handle such cases. The DN-
like scheme tries to balance the load with its direct neighbor
by migrating threads in a way to make two involving cores to
have as same load as possible. Table I summarizes the results
shown in Fig. 7. SA-DLB-NU has less standard deviation
and the maximum loading is also less than the DN-based
diffusion scheme.

VI. CONCLUSION AND FUTURE WORK

In this contribution, we have introduced a new negotiation
scheme for run-time diffusive load balancing on many-
core SoC architecture. By adopting the concept of escaping
local optimum in simulated annealing, we can distribute

parallel threads more evenly than by using existing nego-
tiation techniques. Our new negotiation scheme can manage
the situation of a multi-threaded applications with various
thread load granularity. Future work will include making
our approach applicable to applications with communicating
threads. In addition to the communication of threads, we
believe that SA-DLB can also be used for balancing load of
applications with dynamically varying statistics.
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