ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

Unmanned Aerial Vehicles & Service-Oriented Architecture:
LARISSA and Knowledge Based Framework’s First Study

Emerson A. Marconato, Douglas Rodrigues,
Arthur A. Chaves, Kalinka R. L. J. C. Branco
Institute of Mathematics and Computer Science
University of Sdo Paulo
Sédo Carlos, Brazil
Email: {emerson, douglasr, kalinka} @icmc.usp.br
arthurac @usp.br

Abstract—Embedded systems are computer systems that are part of a
larger system, which generally provide real-time monitoring and control.
They execute a predefined set of tasks on behalf of a real-time application,
and may have special requirements based on the application domain
they support. For instance, these systems are considered safety-critical
embedded systems when failure may result in loss of life or high-value
assets. UAVs (Unmanned Aerial Vehicles) constitute a typical application
of a complex critical embedded system. One concept that can result
in radically different solutions in UAVs is the use of Service-Oriented
Architecture (SOA) based on standard reference model architecture.
The increasing use of SOA in critical applications demands dependable
and cost-effective techniques to ensure high security. In this paper we
developed different kind of services for avionics with different parameters
(security, reliability and performance) to provide use of SOA in a less
critical part in the whole systems. Both LARISSA (Layered Architecture
Model Interconnection Systems in UAV) and KBF (Knowledge Based
Framework for Dynamically Changing Applications) presented in this
paper can give more intelligence to UAVs and provide a new way of
segregating the UAV mission from the vehicle itself. Some services were
developed and a performance evaluation was conducted showing the
benefits in choosing some determined services.

Keywords—Ceritical embedded systems, UAVs, SOA, Web services, per-
formance.

I. INTRODUCTION

Embedded systems are computer systems that are part of a larger
system. These systems provide, in most cases, real-time monitoring
and control. They are considered safety-critical when possible failure
may result in loss of life or high-value assets [1][2][3][4]. Both
hardware and software in embedded systems have become increas-
ingly complex. Multicore and multiprocessor systems have become
common, which has further increased the complexity of software [5].
Moreover, both can be seen in homes and in business environments
where they have been used for the control or management informa-
tion.

UAV is a typical application of a critical embedded system. The
term UAV was adopted by FAA (Federal Aviation Administration)
and by the international academic community to describe a system
that includes not only the aircraft, but also all the associated elements
such as payload, ground control station and communication links
[6]. UAVs have been widely used in precision agriculture, national
security and environmental monitoring. Several papers have been
published in this area, demonstrating the feasibility of using such
vehicles as important tools for performing precision agriculture and
environmental monitoring [7][8].

There are different types of UAVs that have different capabilities.
Some aircraft can fly autonomously, following a pre-programed flight

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

Rajiv Ramdhany, Geoff Coulson
School of Computing and Communications
Lancaster University
Lancaster, UK
Email: {rramdhany, g.coulson}@lancaster.ac.uk

path (based on a grid or a sequence of waypoints) [7], while others
can fly receiving commands from ground stations operated by pilots.
The aircraft’s size can range from micro to large, and the ground
control station can be implemented on smartphones, tablets, laptops
or networks of workstations (distributed control stations). Thus, the
aircraft may vary not only in size, but also in shape and type of
propulsion performance. The ground station interface can vary from a
joystick to a tangible user interface (for example, a table with tangible
augmented reality). The performance of the communication links and
the payload type are also very important to fulfil the mission intended
for the system. Specialized literature says that UAVs will become
popular and will be part of airspace in the next 10 years, performing
different missions, from agricultural border inspections to automatic
cargo transport [9][10][11].

The UAVs’ heterogeneity and constraints and the distinct nature
of their interactions are challenges for their successful integration
into architecture for a shared exploitation of UASs. The heterogeneity
prevalent in UAVs in terms of services for avionics and architecture
is particularly relevant to elaboration of multi-application missions.
This heterogeneity in UAV services is often manifested as character-
istics, such as reliability, security, and performance. Different service
implementations typically offer different guarantees in terms of these
characteristics and in terms of associated costs. The initial choice of
a particular avionics service implementation can therefore become
sub-optimal as long new applications/services are deployed, needing
a careful selection of services to fulfil particular performance and
operational guarantees and, subsequently, to avoid compromising the
mission.

In the same way, architectures that enable the organization and
more specific definition of the components of these embedded sys-
tems (UAVs) ease the development of hardware and software that
compose them, allowing these vehicles be more easily inserted and
incorporated in a non-segregate airspace. Therefore, the main goal
of this preliminary research is propose a new architecture to UASs
and investigate the degree of heterogeneity present in UAVs in terms
of services, proposing architectural abstractions for the integration of
these service variants. In particular, we explored the notion of Service-
Oriented Architecture (SOA) in the context of UAVs as safety-
critical embedded systems for the composition of services to fulfil the
specified application performance and the dependability guarantees.

The rest of this paper is organized as follows. In Section II, we
describe the related works in the field of SOA and Reference Model
Architecture in embedded and safety-critical embedded systems.
Section III shows the concepts of Reference Model Architecture

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

and the new trends using SOA in this kind of system. Section
IV presents KBF (Knowledge Based Framework for Dynamically
Changing Applications) and its functioning. Section V shows a case
study of default, secure, and reliable services, and then analyses the
results. Finally, Section VI presents our conclusions regarding this
work, as well some future prospects for this research.

II. RELATED WORK

This section presents a review of Reference Model Architecture
and SOA (Service-Oriented Architecture) in embedded systems and
critical embedded systems. The Reference Model Architecture found
in the literature can be classified in Federated (traditional architec-
tures) and Non-Federated (non-conventional architectures).

NIST (National Institute of Standards and Technologies) provides
a reference model for UAVs [12]. In this particular pattern, the
reference model was proposed to specify military rules, practices
and controls in a comprehensible and intuitive way for a human
commander. The proposed architecture approach is different from that
required in our project, focusing on a lower level of abstraction, which
the layers specify what components found in a UAV system should
do. Then the authors introduced a hardware/software embedded
architecture especially designed to operate as a UAV’s payload and
mission controller. The hardware architecture is built as a set of
embedded microprocessors connected by a LAN (Local Area Net-
work). Over this hardware infrastructure is implemented a software
layer that allows each module to support multiple applications. Every
application can create and sign services and these services can be
dynamically discovered and consumed as in Internet domain.

The work proposed by Pastor et al. [13] is based on architecture
of hardware and software designed to operate the mission controller
and the payload in mini/micro UAVs. According to the authors, the
innovation is the use of a distributed hardware architecture which
is easily scalable by the use of LAN architecture-based software
subscription services, communication abstraction layer and execution
flow based on mission planning. Still according to the authors, the
high level of modularity offered by a LAN provides flexibility for
coupling the microprocessor type most appropriate to use the module,
given its functional requirements.

Olson et al. [14] proposed another architecture model. This is
Phase III of the project named MCAP (Manned/Unmanned Common
Architecture Program), used by the U.S. Army in UAVs such as
FCS (Future Combat Systems) and C4ISR (Command, Control,
Communications, Computers, Intelligence, Surveillance and Recon-
naissance). Phase III of MCAP architecture is based on electronics
and commercial off the shelf (COTS) and open standards interfaces.
The objective of the development of the model was define and
develop an architecture capable of supporting a amount of UAVs
in the U.S. Army platforms, demonstrating the performance of the
resulting system in a laboratory environment. The development of
this model relied on the study of three classes of UAS: Unmanned
Combat Armed Rotorcraft (UCAR), an unmanned combat helicopter;
Class IV Medium Altitude Long Endurance (MALE); and Extended
Range/Multi-Purpose (ERMP), with two aircrafts: Fire Scout and
Shadow 200.

The project presented by Neto et al. [15] is a modular embedded
architecture, consisting of three levels: embedded systems, communi-
cation link, and inertial navigation system. The project’s purposes are
design and build a platform for research and development of UAV

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

with autonomous behaviour. The proposed architecture consists of
modular embedded electronics and communication protocols based
on the OSI model.

Prisaznuk [16] proposed IMA, an integrated model of avionics
that is used as architecture for conventional aircraft. IMA was initially
proposed to be used in commercial and military aviation. It is set
around the concept of high computational processing power and
OS modules that allows independent processing of the application
processing software. The modules share hardware resources and are
allocated in offices, which have well-defined interfaces with the
aircraft.

According to Watkins and Walter [17], it is possible differentiate
IMA (Integrated Modular Avionics) architecture from the federated
architecture (conventional). The authors state that the IMA archi-
tectures provide sharing of processors when processing information,
communications and I/O. The resource row is divided for use of
multiple avionics functions. The avionics functions served by IMA
can be from different companies and their criticality is still guar-
anteed due to the robust partitioning mechanisms that are inherent
in the architecture. In contrast, federated avionics architectures im-
plement independent collections of dedicated computing resources
(CPU, communications and I/O) for each avionics function normally
contained in Line Replaceable Units (LRUs) or Line Replaceable
Modules (LRMs). According to [18], other characteristics of IMA
are the use of open standards and provision of a single data bus to
interconnect the major aircraft systems.

Advantages of IMA compared to federated architecture are the
economy of space, weight and power consumption, due a single unit
performs various functions. Another advantage is the consolidation
of hardware; it has several applications running on fewer processors
[18].

Many complex embedded systems are coupled to a high-level
information system. SOA can provide the integration of low-level em-
bedded system services and high-level information system services.
This integration is still an incomplete work, despite the many related
works found in literature [19]-[25]. In practice, the use of SOA in
embedded systems can provide a lot of benefits, such as decoupling
configuration from environment, improvement of reusability and
maintainability, higher level of abstraction and interoperability, more
interactive interface between devices and information systems, and
easy use of resource-hungry services provided by more powerful
internet servers.

Using SOA and a reference model architecture is possible to get
new improvements in critical embedded system. It is possible to take
the advantages of the flexibility and can facilitate the modularization
of the system components. It is also considered that the adoption and
maintenance of standardized interfaces for UAVs can protect clients’
investment in the development of new systems.

III. LARISSA: LAYERED ARCHITECTURE MODEL
INTERCONNECTION SYSTEMS IN UAV

Architecture is a structure that identifies, defines, and organizes
components. The relationship and the principles of design of compo-
nents, functions and interface established between subsystems can
also be defined by architecture. Moreover, a reference model for
architecture is an architecture which the entities, relationships and
information units involved in the interactions between and within the

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

subsystems and the components are defined and modelled. In short,
it is a model that incorporates the basic purpose and the idea of the
system and can be considered as a reference for various purposes.
The term architecture model used in this study reflects exactly that
last statement: it incorporates the basic goal and ideas of the system.

The increasing use of UAVs should cause them to become increas-
ingly common. In this scenario, the techniques proposed in this work
will facilitate the development of automated applications for UAVs,
allowing these vehicles be more easily inserted and incorporated into
the airspace, contributing to their spread.

In order to propose a broader understanding of the component
parts of a UAV system, we propose a layered model, which can be
subdivided as needed. Figure 1 illustrates the model named LARISSA
(Layered Architecture Model Interconnection Systems in UAV).

In LARISSA model, the components of a UAV may be divided
into aerial segment and ground segment. The aerial segment is
hierarchically composed of: (i) physical layer, (ii) distributed RTOS
(Real Time Operating System) layer, (iii) system abstraction layer, (iv)
monitoring and control layer, (v) navigation & services layer, and (vi)
mission layer. The ground segment is divided into: (i) physical layer
and (ii) ground station layer.

Ground Segment Aerial Segment

UAS

Control and
Monitoring

SSI Sublayer +

Automatic Control

MovingMap Ground Station Mission Sublayer

Raw Control
Sublayer

Payload Control
Video Conference

Air Traffic Coordination Sublayer

Flight Path Control
Physical Sublayer

+ Electronics Sublayer
+ Energy Sublayer

, Auxiliary Systems Navigation & Services
Sublayer Geo Poliical
Awareness Sublayer

Server Sublayer

Flight Control
ublayer In flight Awarenes:
Emergency Handling

Sublayer

Redundancy Handiing
Monitoring & Sublayer
Control
Airworthiness
Awareness Sublayer

Energy Management
Sublayer

IPC Sublayer
/0 Sublayer

System Abstraction

Driver Sublayer
Distributed RTOS
Network Sublayer

Structure Sublayer +
Avionics Sublayer +
Griveet Energy Sublayer +

Auxiliary Systems
Sublayer

Fig. 1: LARISSA — The proposed reference model architecture.

The separation into layers allows the system to be divided into
subsystems that can have different implementations and assists the
separation of parts that compose a complex critical embedded system
in different levels of criticality. Thus, the advantages offered by
the service-oriented architecture can be applied in sections of low
criticality, making the development of these sections simpler and more
flexible.

These layers can be represented by models, which are intended to
serve as guides for development of UAV systems, specifying how it
will interconnect the various components, such as sensors, control

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

circuits, GPS, payload, sensors, communication with the ground
control station, and others.

In information technology, a layered architecture is used to define
the specific responsibilities of each layer and the interconnection
among them. Based on an architectural model, the hardware manu-
facturer or the software designer can develop their products knowing
exactly which layer will interact in UAVs, which are the input and
output parameters, and what type of connection must be used.

According to Tanenbaum [26], certain principles must be applied
to define the layers: a layer must be created where there is need
for other level of abstraction; each layer must perform a well-
defined function, which should be chosen aiming the definition of
standard protocols; layer limits must be chosen to reduce the flow of
information transported among the interfaces; the number of layers
should be large enough, so that different functions do not need be
placed unnecessarily in the same layer, and small enough, so that
the architecture does not become difficult to control. Architecture to
be considered complete should define what each layer can perform,
specifying services and protocols that are used in each one.

Moreover, the papers related to UAVs in the literature show
UAVs implemented using traditional approaches [27][10][11]. On the
other hand, there are roadmaps published periodically by military
organizations (e.g., United States Air Force) illustrating the progress
expected for UAVs, and they mentioned that in the future they may
adopt an open, standardized, and scalable architecture, allowing the
fast addition of modular functionality.

Each layer is composed of sub-layers, which are described in the
next subsections. The navigation & services and mission sub-layers
will be described in details because they are very important to the
development of the framework proposed in Section IV.

A. Aerial Segment’s Physical

The aerial segment’s physical layer is the aircraft’s hardware
layer, which is decomposed in the structure, avionics, energy, and
auxiliary systems sub-layer. Each sub-layer may be subdivided into
more specific sub-layers.

B. Distributed RTOS

The distributed RTOS layer describes a set of API used by the
real-time operating system embedded in the aircraft, used as input to
or an output of the RTOS. In the driver sub-layer are the hardware
drivers APIs, and in the network sub-layer are the network APIs.

C. System Abstraction

The system abstraction layer’s function is defining a set of hard-
ware for use in the upper layers. The IPC (Inter-Process Communi-
cation) sub-layer is responsible for the abstraction of communication
among processes, and the I/O sub-layer controls the operation of input
and output devices.

D. Monitoring & Control

The monitoring & control layer is responsible for monitoring the
aircraft’s actions, as well its control.

It is divided into the flight control sub-layer, emergency handling
sub-layer, redundancy handling sub-layer, airworthiness awareness

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

sub-layer, and energy management sub-layer. The flight control sub-
layer responds to basic commands being executed by the aircraft, by
the automatic take-off and also by the automatic landing. On the other
hand, the emergency handling sub-layer is responsible for events that
are not planned, such as battery consumption, making it impossible to
accomplish the mission. The redundancy handling sub-layer manages
duplicated subsystems in the aircraft that were installed to increase
the reliance. The airworthiness awareness sub-layer is responsible
for sensors and embedded detectors in aircraft, which purpose is to
obtain information like those a human being has the capability to
identify, such as smoke on board. The energy management sub-layer
is responsible for the monitoring of energy levels consumed by the
aircraft.

E. Navigation & Services

The navigation & services layer, illustrated in Figure 2, consists of
the air traffic coordination, flight path control, geo political awareness,
and server sub-layers. This layer is responsible for the aircraft’s
navigation, sending signals that perform the required path to accom-
plish the mission. The air traffic coordination sub-layer responds to
traffic in the airspace in which the aircraft is operating. The flight
path control sub-layer guides the aircraft’s navigation to achieve the
waypoints or the grid coordinates defined by the mission. The geo
political awareness sub-layer is responsible for the virtual threshold
that the aircraft must operate. The server sub-layer contains non-
priority services that help navigation and mission accomplishment.
These services can be based on WWW (World Wide Web) or DTM
(Data Transfer Mechanism).

Air Traffic Coordination Sublayer
Flight Path Control WayPoint
Sublayer i

Navigation & Services Geo Political

Awareness Sublayer

www
Server Sublayer
oM

Fig. 2: Navigation & services layer.

E Mission

The mission layer, illustrated in Figure 3, is divided into SSI
(Smart Sensor Interface), Automatic Control, and raw control sub-
layers.

SSI Sublayer MOosA

Uploading
Automatic Control

Mission Sublayer Downloading

StaruStop/ResumelStep

Raw Control
Sublayer

Fig. 3: Mission layer.

The SSI sub-layer is responsible for accessing the MOSA (Mis-
sion Oriented Sensor Array) [28] and performing the entire checking,
allowing discovering whether the aircraft met all the attributes to
accomplish the defined mission. The automatic control sub-layer
is responsible for accepting the mission data (uploading), sending
the collected data (downloading), and starting, stopping, resuming
or performing part of the mission (start/stop/resume/step). The raw
control sub-layer is simply responsible for sending data that does not

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

need a proper treatment. With this layer, we ensure that data reaches
a pre-set destination.

This layer is the last one from the aerial segment. The ground
segment’s layers are described in the next subsections.

G. Ground Segment’s Physical

The ground segment’s physical layer resembles, in some aspects,
the air segment’s physical layer. The division into sub-layers is
presented as follows: electronics, energy, and auxiliary systems.

H. Ground Station

The ground station layer has control and monitoring, moving map,
payload control, and video conference sub-layers.

The control and monitoring sub-layer receives information in the
form of aircraft telemetry and can also issue commands to guide the
aircraft. The moving map sub-layer is responsible for the exchange
of maps ability, submitting new maps to the aircraft when the initial
mission is changed. The payload control sub-layer sends signals to
aircraft in order to control the movement and operation of sensors,
cameras and radars. The video conference sub-layer is responsible for
exchange sound and image with other control stations.

IV. KNOWLEDGE BASED FRAMEWORK FOR DYNAMICALLY
CHANGING APPLICATIONS (KBF)

To make possible the development of KBF, this paper considers
critical embedded systems can be divided into sections of low and
high criticality, based on LARISSA.

KBF was proposed in [29] and [30] and is currently under
development. It extends the capability of a SOA broker’s service
discovery, adding knowledge about the application domain. Thus,
KBF will use context and monitoring information to select or compose
dynamically the best service to perform a specific mission. This
selection or composition will be based on a set of usage rules and
selection criteria, such as reliability, security, and performance. KBF
is illustrated in Figure 4 and can be seen in detail in [9].

KBF uses a knowledge database to store all information and
selection criteria defined by the user and by the application. Another
key issue is the assembly of reconfigurable matrix, a data structure
that correlates the chosen service, its functionality and the selection
criteria to mission procedures. This matrix can be: static, semi-static
and dynamic, depending on its composition and system operation [9].
Using all available information in the reconfigurable matrix, KBF can
either choose or compose the best service to run a mission defined
by the user.

V. CASE STUDY: FAST, RELIABLE, AND SECURE WEB SERVICES
IN UAVS

The definition and specification of basic services that KBF can use
were done, including their features and input/output parameters. These
services were implemented using the Java programming language.
These services use UAV’s basic information (e.g., maximum cruise
altitude, cruise speed).

In these experiments, we implemented the services listed in Figure
5. Those services were then replicated, adding reliability through WS-
ReliableMessaging (WS-RM) specification [31], which is responsible
for guaranteeing that messages are really delivered. Then those

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

External Providers

§p2

f

8

Pl

Service Providers

Pn

fZﬁ

9
Reconngyrable Broker Knowledge
Matrix Database

Service Selection/
X ‘Composition X
A [Service Register
T
3 10

[

Service Consumer|

Fig. 4: Knowledge Based Framework for Dynamically Changing
Applications (KBF)

services were replicated once again, but this time we added security
through WS-Security specification [32], which is responsible for
applying cryptography and digital signature to SOAP messages. So
there are three different versions of the initial services: one secure,
one reliable and a plain version, i.e., without additional parameters.
All of these were hosted in and provided by an Apache Tomcat server
running on a remote machine.

Static services

e Inform cruising altitude e Inform cruising speed

e Inform minimum stall speed e Inform maximum speed

e Inform maximum weight capacity e Inform autonomy with maximum
load

Dynamic services

o Inform/define current height * Define destination coordinates
Displacement i =
Inform/define current altitude * Inform current GPS position
* Inform/define current speed
Inform remaining autonomy

Autonomy .
Py i
* Inform payload weight

Status 5 {o Inform current action

Fig. 5: Basic services implemented in KBF.

On the client side, we implemented an application that makes
several calls to those services. The amount of calls varies from one
experiment to other. In these experiments, client and server were in
different machines at the same local network.

In each experiment, the clients were run several times and the
Round Trip Time (RTT) was measured in each repetition. In the end
of the experiment, the average RTT was done, as well the standard
deviation and confidence interval (95%) in each case for the different
versions and then, finally, the results were compared.

In order to compare the performance in terms of RTT of the
different versions, we realized an experiment in which a client
machine runs a sequence of service requests, and the RTT was
measured for different sequence sizes, i.e., for different amounts of
services. The results were obtained through 30 repetitions of each
experiment.

As shown in Figure 6, for each experiment (different amount
of services), the plain version achieved the best performance when
compared to the other two versions. Since it has no additional

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

= Plain

= Reliability

Security

Average RTT (s)

1service 5 services 19 services

100 services

Fig. 6: Average RTT of different amount of services, for different
versions.

parameters, it has fewer operations to be executed; therefore it takes
less time to be executed.

In the first experiment, with 1 service, both the reliable and the
secure versions achieved a similar RTT. Since the secure version uses
cryptography and digital signature, it would be usual to think it might
have the highest RTT. However, for a single service, the WS-RM
exchanges 4 more messages than the other two versions. That is three
more times messages in a single services call, and since access to the
network is a slow operation, it causes a higher impact on the RTT,
making it similar to the impact caused by security operations such as
cryptography and digital signature.

In the next experiment, with 5 services, the average RTT increased
for all three versions. However, now there is a difference between the
secure and reliable version’s RTT, because the 4 extra messages of the
WS-RM resulted in less than 3 times more messages. Therefore the
impact caused by the cryptography and digital signature operations
is now greater than the one caused by extra usage of network.

The experiment with 19 services evaluates the behaviour of an
application used in a real life situation. As shown in Figure 6,
the plain version achieved the best performance, followed by the
reliable version in second, and the secure version achieved the highest
RTT. Besides, the difference between the reliable and secure versions
is greater now than before. Since there are more messages being
exchanged, the impact caused by the WS-RM is even smaller.

This pattern can also be observed in the last experiment, with
100 services. The impact of the extra messages sent by the WS-RM
specification is even smaller, making the reliable version’s RTT more
far to the secure version and closer to the plain version.

VI. CONCLUSIONS

UAVs are complex systems that perform complex missions.
Large UAVs systems are distributed in dozens of different processor
systems. The Reference model architecture aims to standardize the
various parts that makes up a system. This kind of architecture brings
benefits to systems like UAVs, primarily for being safety critical and
complex systems. In this sense, LARISSA meets the existing needs.

This paper also introduced the use of SOA in critical embedded
systems, providing dynamic behaviour and flexibility to this class of
systems. However, the issue of choosing the parts of the system that
can be implemented with this technology, without compromising its
safety-critical nature, is not a trivial task.

Different types of services, based on avionics, and the effects
on performance when using them were also presented. The results

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

showed that by applying security and reliability to these services, a
considerable overhead is generated, and so this might cause problems
on applications that are exclusively dependent on real time perfor-
mance. However, considering UAVs, there are occasions in which
the real time performance is not the main requirement. Therefore it
is possible to use these resources, but it is designer’s responsibility
to decide where and when to make services secure and/or reliable,
and also to decide the level of security required for the mission being
developed.

The architecture and the framework presented, backed up by the

tests results, allow the use of SOA in the sections of low criticality
of safety-critical embedded systems, specially UAVs, leading to a
breakthrough in the development of this class of systems, making it
easier and more feasible to create, reuse and maintain safety-critical
embedded systems.

[1]

[2]

[3]

[4]

[6]

[7]

[9]

[10]

(1]

[12]

Copyright (c) IARIA, 2014.

REFERENCES

L. Lazi¢ and D. Velasevi¢, “Applying simulation and design of ex-
periments to the embedded software testing process: Research articles,”
Software Testing, Verification & Reliability, vol. 14, no. 4, pp. 257-282,
Dec. 2004.

A. Armoush, E. Beckschulze, and S. Kowalewski, “Safety assessment
of design patterns for safety-critical embedded systems,” in SEAA
"09: Proceedings of the 2009 35th Euromicro Conference on Software
Engineering and Advanced Applications. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 523-527.

S. P. Kumar, P. S. Ramaiah, and V. Khanaa, “Architectural patterns to
design software safety based safety-critical systems,” in ICCCS ’11:
Proceedings of the 2011 International Conference on Communication,
Computing & Security. New York, NY, USA: ACM, 2011, pp. 620—
623.

Z. Yi, W. Cai, and W. Yue, “Adaptive safety critical middleware for dis-
tributed and embedded safety critical system,” in NCM ’08: Proceedings
of the 2008 Fourth International Conference on Networked Computing
and Advanced Information Management - Volume 01. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 162-166.

R. Bergamaschi, G. Martin, W. Wolf, R. Ernst, K. Vissers, and
J. Kouloheris, “The future of system-level design: Can we find the right
solutions to the right problems at the right time?” in CODES+ISSS "03:
Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. New York, NY,
USA: ACM, 2003, pp. 231-231.

GAO, “Unmanned aircraft systems: Federal actions needed to ensure
safety and expand their potential uses within the national airspace
system,” 2008, United States Government Accountability Office. Report
to Congressional Requesters.

0. Trindade, L. O. Neris, L. C. P. Barbosa, and K. R. L. J. C. Branco,
“A layered approach to design autopilots,” in ICIT ’10: Proceedings
of the IEEE International Conference on Industrial Technology, march
2010, pp. 1415-1420.

K. R. L. J. C. Branco, J. M. Pelizzoni, L. O. Neris, O. Trindade, F. S.
Osério, and D. F. Wolf, “Tiriba - a new approach of uav based on
model driven development and multiprocessors,” in /CRA '11: IEEE
International Conference on Robotics and Automation, may 2011, pp.
1-4.

D. Rodrigues, R. M. Pires, J. C. Estrella, M. Vieira, M. Correa, J. B.
Camargo, K. R. L. J. C. Branco, and O. Trindade, “Application of SOA
in safety-critical embedded systems,” Communications in Computer and
Information Science, vol. 206, pp. 345-354, 2011.

DoD, “Unmanned systems roadmap 2007-2032,” 2007, U.S. Depart-
ment of Defense. Office of the Secretary of Defense.

DoD, “Unmanned systems integrated roadmap FY2009-2034,” 2009,
U.S. Department of Defense. Office of the Secretary of Defense.
NIST, “4D/RCS: A reference model architecture for unmanned vehicle
systems version 2.0,” 2002, NIST. U.S. Department of Commerce.

ISBN: 978-1-61208-331-5

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

E. Pastor, J. Lopez, and P. Royo, “UAV payload and mission control
hardware/software architecture,” IEEE Aerospace and Electronic Sys-
tems Magazine, vol. 22, no. 6, pp. 3-8, 2007.

L. Olson and L. Burns, “A common architecture prototype for army
tactical and fcs uavs,” DASC °05: The 24th Digital Avionics Systems
Conference. Washington,: IEEE, 2005, pp. 8.B.5-1 — 8.B.5-11.

J. Neto, R. Paixao, L. Rodrigues, E. Moreira, J. dos Santos, and P. Rosa,
“A surveillance task for a uav in a natural disaster scenario,” 2012 IEEE
International Symposium on Industrial Electronics (ISIE). Hangzhou:
IEEE, 2012, pp. 1516-1522.

P. J. Prisaznuk, “Integrated modular avionics,” in National Aerospace
and Electronics Conference (NAECON). IEEE, 1992, pp. 39-45.

C. B. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” DASC ’07: 26th Digital
Avionics Systems Conference. Dallas, TX, USA: IEEE, 2007, pp.
2.A.1-1 — 2.A.1-10.

W. R. Inc, “Arinc 653: An avionics standard for safe, partitioned
systems,” in IEEE-CS Seminar, 2008.

N. R. Kakanakov, “Experimental analysis of client/server applications
in embedded systems,” in Proceedings of the Annual Scientific and
Applied Science Conference Electronics, vol. 4, 2005, pp. 97-102.

N. R. Kakanakov and G. Spasov, “Adaptation of web service ar-
chitecture in distributed embedded systems,” in CompSysTech ’05:
Proceedings of the International Conference on Computer Systems and
Technologies, 2005, pp. 1-6.

K. C. Thramboulidis, G. Doukas, and G. Koumoutsos, “A SOA-based
embedded systems development environment for industrial automation,”
EURASIP Journal on Embedded Systems - Embedded System Design
in Intelligent Industrial Automation, vol. 2008, pp. 1-15, 2008.

M. H. Lee, C. J. Yoo, and O. B. Jang, “Embedded system software
testing based on SOA for mobile service,” International Journal of
Advanced Science and Technology, vol. 1, no. 1, pp. 55-64, 2008.

G. Moritz, S. Priiter, D. Timmermann, and F. Golatowski, “Web services
on deeply embedded devices with real-time processing,” in ETFA '08:
IEEE International Conference on Emerging Technologies and Factory
Automation, 2008, pp. 432-435.

S. Deugd, R. Carroll, K. E. Kelly, B. Millett, and J. Ricker, “SODA: Ser-
vice oriented device architecture,” IEEE Pervasive Computing, vol. 5,
no. 3, pp. 94-96, 2006.

H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - service infras-
tructure for real-time embedded networked devices: A service oriented
framework for different domains,” in ICNICONSMCL ’06: Proceedings
of the International Conference on Networking, International Confer-
ence on Systems and International Conference on Mobile Communi-
cations and Learning Technologies. =~ Washington, DC, USA: IEEE
Computer Society, 2006, pp. 43-48.

A. S. Tanenbaum, Computer Networks, 5th ed. Prentice Hall, 1997.

K. P. Valavanis, Advances in Unmanned Aerial Vehicles: State of the
Art and the Road to Autonomy, ser. International Series on Intelligent
Systems, Control, and Automation. Springer, 2007.

R. M. Pires, D. Rodrigues, K. R. L. J. C. Branco, and O. Trindade,
“Mosa - mission oriented sensor array: A proposal,” in CLEI ’11: Pro-
ceedings of the XXXVII Conferencia Latinoamericana de Informdtica,
2011, pp. 1309-1318.

D. Rodrigues, R. M. Pires, J. C. Estrella, M. Vieira, M. Correa, J. B.
Camargo, K. R. L. J. C. Branco, and O. Trindade, “Application of SOA
in safety-critical embedded systems,” Communications in Computer and
Information Science, vol. 206, pp. 345-354, 2011.

D. Rodrigues, R. M. Pires, J. C. Estrella, E. A. Marconato, O. Trindade,
and K. R. L. J. C. Branco, “Using SOA in critical-embedded systems,”
in Proceedings of the 2011 IEEE International Conferences on Internet
of Things (iThings), and Cyber, Physical and Social Computing (CP-
SCom), 2011, pp. 733-738.

OASIS, “Web services reliable messaging (WS-ReliableMessaging) ver-
sion 1.2,” 2009, http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm- 1.
2-spec-os.html, Accessed 06 April 2014.

OASIS, “Web services security (WSS) TC,” 2006, https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=wss, Accessed 06
April 2014.

10

