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Abstract — Fault tolerance is a longstanding problem. Two 

basic solutions are replication and checkpointing, both with 

their pros and cons. In this paper, we put forward an approach 

to balance replication and checkpointing in order to provide 

fault tolerance in opportunistic grid computing systems.  We 

try to retain the benefits of both techniques, while avoiding 

their downsides. The approach combines reinforcement 

learning with the MAPE-K architecture for autonomic 

computing. To validate our proposal, we have performed 

experiments based simulation using the Autonomic Grid 

Simulator Tool (AGST). We report promising results. We 

show that the proposed approach is able to learn suitable 

switching thresholds between checkpointing and replication. 

The suitability is verified by comparing the average completion 

time and the success rate of applications of our proposal 
against the values from other approaches in the literature. 

Keywords - fault tolerance; grid computing; opportunistic
grids; autonomic computing; reinforcement learning. 

I. INTRODUCTION 

Achieving a high processing rate by dividing 
computational tasks among several geographically 
distributed machines is, in essence, the core idea behind the 
computational model called Grid Computing [9]. In this 
context, it was introduced the concept of opportunistic grids 
that, potentially, gather thousands of resources, services and 
applications to provide greater computational power at a 
lower cost [12]. On the one hand, this type of computational 
grid promotes the use of non-dedicated resources, such as 
desktop workstations situated in different administrative 
domains, by using their idle processing power. On the other 
hand, there is the challenge of providing services in a 
dynamic execution environment, where heterogeneous nodes 
can enter and leave the grid at any time. In this case, it is 
important to be able of effectively monitoring the grid 
composition in order to detect and react to these events in a 
timely manner. 

Grid computing encompasses various technical 
challenges. One of them, especially in the context of 
opportunistic grids, is how to provide fault tolerance in an 
inherently dynamical environment, an environment in which 
computing nodes are heterogeneous and can become 
unavailable at any time. Fault tolerance is the ability of a 
system to continue to work even in the presence of faults [7]. 
We say that a fault has occurred when one of system 

components fails or malfunction, leading to a behavior not in 
accordance with the system specifications. Concerned with 
this problem, researchers have been seeking for solutions. 
Among these, we found some approaches based on the idea 
of autonomic computing. Broadly, the idea of autonomic 
computing consists in modeling and building computing 
systems that have the ability of self-management and self-
adaptation to unpredictable changes [6][8][10]. Applied to 
the problem of fault tolerance in opportunistic grids, 
autonomic computing has given rise to approaches where the 
grid middleware tries to automatically adjust parameters or 
to dynamically combine traditional fault tolerance techniques 
such as checkpointing and replication [2][15][16][18]. 

In general, these autonomic approaches provide 
important gains w.r.t. the traditional fault tolerance 
techniques. Despite these gains, there are some 
opportunities for improvement. In this paper, we focus on
the following issue regarding the approach presented in [15]
[16] (and based on [2]). When should we switch from 
checkpointing to replication, and vice-versa, given the 
current workload of an opportunistic grid system?  Viana 
[15] fixes a threshold below which the grid performs
replication and above which it performs checkpoint. Our 
hypothesis is that this threshold can vary, and that this 
variation is beneficial to the fault tolerance strategy of the 
grid system. It can lead to fewer delays in the execution 
time of the application due to fault tolerance concerns. 

To test this hypothesis, we put forward an adaptive 
approach to the problem of balancing checkpointing and 
replication in the context of opportunistic grids. Our 
approach is based on the use of reinforcement learning. 
Reinforcement learning is a paradigm of machine learning 
based on trial-and-error and delayed reward [1][13]. A 
typical reinforcement learning problem consists in finding a 
policy (a decision function) that maps environmental states 
to actions. Such a policy is optimal when it can be used to 
guide our behavior through the environment in such a way 
that we obtain maximum cumulative reward over time. In the 
case of the problem of balancing checkpointing and 
replication, we want an optimal (or near optimal) policy that 
help us to decide, directly or indirectly, when it is the right 
time to switch from checkpointing to replication, and vice-
versa. By choosing reinforcement learning we are following 
the path of several researchers in the areas of Grid, Cloud 
and Autonomic Computing [3][4][14][17][19].  
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The paper is organized as follows. In Section II, we 
further discuss the concepts of grid and autonomic 
computing, and briefly present AGST, the Autonomic Grid 
Simulation Tool we have used in our experiments. In Section 
III, we characterize the need and challenge of fault tolerance 
in grid computing environments, and report on the state of 
the art. In Section IV, we present the basic ideas of 
reinforcement learning and related algorithms. In Section V, 
we describe our approach to the problem of fault tolerance in 
opportunistic grid which merges ideas from autonomic 
computing and reinforcement learning. Section VI reports 
some experimental results we have obtained when 
evaluating the approach. Finally, in Section VII, we draw 
our conclusion and discuss future work.  

II. GRID AND AUTONOMIC COMPUTING 

Grid computing is a particular ideal case of distributed 
and parallel computing [9].  It seeks to extend the potential 
of computer networks to enable the sharing, selection and 
aggregation of geographically distributed and possibly 
heterogeneous computing resources (e.g., processors, data 
and applications) in a pervasive and transparent way. The 
idea is that individual users (client applications) can access 
computing resources as needed with a minimum knowledge 
of localization, underlying technologies of hardware and 
software, etc.  

A. Opportunistic Grids 

Opportunistic grids are grid computing systems that 
promote the dynamical integration of non dedicated 
workstations, possibly distributed along several 
administrative domains (e.g., organizations, academic 
laboratories, home PCs, etc.), by using their idle computing 
time to the execution of parallel applications [12]. This 
way, opportunistic grids are highly heterogeneous and 
dynamic. They aggregate regular personal computers, with 
their particular hardware and software configurations, to 
execute distributed application in large scale. And these 
machines can enter and leave the grid at different times, 
using network connections with different capabilities with 
regard to properties such as bandwidth, error rate and 
communication latency. 

From the point of view of the user, the grid computing 
system should be viewed as a single integrated resource and 
should still be easy to use. These are some of the challenges 
that an opportunistic grid middleware face. The grid 
middleware is a software layer between the operating 
systems running on the computing nodes and the user 
applications submitted to the grid. The focus of an 
opportunistic grid middleware is not the integration of 
dedicated computer clusters [11], or to provide 
supercomputing resources, but to promote a better use of 
existing computing resources and the execution of 
computationally intensive parallel applications.  

B. Autonomic Computing 

Autonomic computing, as a research field, aims at 
developing computational systems able to manage 

themselves with minimal human intervention [6][8][10]. 

The term autonomic comes from biology and is inspired 
from the human nervous system. Like the nervous system, 

an autonomic computing system must possess some 

characteristics or properties such as self-awareness, self-

configuration, self-protection, self-optimization and self-

healing, among others [6]. In sum, these characteristics 

relate autonomic computing to the design of complex 

systems; systems that need constant adjustments to various 

dynamical circumstances, as is the case of opportunistic 

grid systems. 

Figure 1. Architecture of an Autonomic Element [8]. 

In general, an autonomic computing system is conceived 

as one or more autonomic elements composed of an 

autonomic manager associated to a managed element (see 

Figure 1). The managed element represents a resource or 

device (computer, printers, databases, etc.) composing a 

computing system. The autonomic manager is an active 

component that encapsulates a managed element to turn it 

into an autonomic element. The internal working of an 
autonomic manager is organized in cycles, each one divided 

in four distinct phases: monitoring, in which data is 

collected by means of sensors; analysis, in which possible 

needs and problems are detected; planning, in which 

strategies are drawn to make necessary changes and 

adaptations; and execution, in which the planned strategies 

are effectively implemented. This general architecture is 

known as the MAPE-K model. 

C. Autonomic Grid Simulator Tool 

In our research, we have used the Autonomic Grid 

Simulator Tool (AGST)[15], a tool that allows the modeling 

and simulation of autonomic approaches to self-

management problems in the context of Opportunistic Grids 

[5]. AGST is based on the MAPE-K model, providing 

support for all phases of the autonomic manager execution 

cycle. By using AGST, one can simulate autonomic 

approaches based on two types of dynamic adaptation: 

parametric and compositional. Parametric adaptation 

consists in the continual modification of variables that 

determine the behavior of algorithms used by the grid 

middleware. And compositional adaptation is the exchange 

of algorithms or components of the grid middleware, 

enabling the adoption of new strategies to handle new 

situations and to react to changes in the grid environment. 
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III. FAULT TOLERANCE

In opportunistic grid systems, and distributed systems in

general, it is important to have mechanisms that allow the 

system to continue functioning despite the presence of 

faults [7]. Faults occur every time the system behavior does 

not comply with its intended operation due to some failure or 

malfunctioning of one or more of its components. What 

happens after a fault determines the degree of fault 

tolerance of the system. At one extreme, we have full fault

tolerant systems in which fault does not decrease their 

quality of service. At other, there are zero fault tolerant 

systems in which any fault causes total system breakdown. 

Between these extremes, we found systems that present a 

graceful degradation characterized by a reduction in the 

quality of their operations proportional to the severity of the 

fault. Given that failures are inevitable in dynamic and 

heterogeneous systems, and that the cost of zero fault 

tolerance can be very high, fault tolerance becomes a 

characteristic of paramount importance. 

A. Basic Techniques 

A basic source of faults in opportunistic grid systems is 

the loss of running tasks due to problems on a grid node. 

These can be caused by many factors, among them the 

computer be turned off by its owner. In general, this is the 

kind of fault tolerance we deal in our work, and that will be 

considered in the remainder of the paper. 

Ultimately, the less sophisticated way to deal with the 

fact that nodes may become unavailable is to detect the node 

failure and restart, in another available node, the tasks that 

were running on it. To avoid this restart, the researchers 

have devised two basic techniques: replication and 
checkpointing [7]. Replication consists in executing several 

replicas of the same task in different nodes at the same time. 

On the one hand, with several replicas, the change of having 

to restart a task due to a node failure is minimized. On the 

other hand, the grid middleware has to manage and 

synchronize several running replicas that consume 

computational resources and leave less space for scheduling 

new incoming tasks. Looking for a better use of resources, 

checkpointing is a technique that promotes fault tolerance 

by periodically saving the state of the running tasks so that 

they can be resumed on a different machine in the case of a 
node failure. However, the downside of this technique is the 

time overhead imposed upon the tasks that need to be 

constantly interrupted by the grid middleware to record their 

running states. 

Replication and checkpointing have pros and cons 

depending on different conditions of the grid environment. 

If there are plenty of computing nodes in comparison to 

number of tasks to be run, then replication is a better option 

than checkpointing. But, to the extent that the number of 

available computing nodes decreases, replication becomes 

less and less attractive until we reach a point where 

checkpointing becomes a better option than replication. 
With these pros and cons in mind, in the last few years, 

some researchers have proposed adaptive fault tolerance 

mechanisms that try to autonomically balance the use of 

replication and checkpointing depending on the current grid 

condition [2][15][18].  

B. State of the Art 

Wu et al. [18] propose a mechanism based on the 

number of times a task is resumed due to node failures. 

Initially, for each new task, the grid middleware performs 

checkpointing. If a node failure occurs, the task is restarted 

from the last saved state in the same computing node. It is 

considered that it was only a transient fault and that the 

restarting on the same node is sufficient to solve the 
problem. If a second fault occurs, it is considered that 

probably the node in which the task is running is not stable 

and, therefore, the task is restarted from the last checkpoint 

on another node. If the task fails a third time, it is 

considered that the grid environment has a high fault rate 

and, therefore, the middleware starts multiple replicas of the 

task to be executed simultaneously.  

Chtepen et al. [2] present heuristics for the adaptive use 

of checkpointing, replication and a combination of them. 

The goal is to improve resource utilization and reduce the 

execution time of tasks. In the case of checkpointing, one 
heuristics consists in increasing or decreasing the interval 

between checkpoints for each task according to the mean 

time between failures (MTBF) of the computing nodes. 

Regarding replication, another heuristics is to limit the use 

of replication according to the system workload (grid 

occupancy). A third heuristics is to dynamically switch from 

checkpointing to replication, and vice-versa, based on 

workload (if occupancy is high use checkpointing, 

otherwise use replication).  

Based on the work by Chtepen et al. [2] and the MAPE-

K model, Viana et al. [15][16] propose an autonomic fault 

tolerance mechanism for opportunistic grids. The basic idea 
is to make each computing node a managed element 

controlled by an autonomic manager. Thus, the autonomic 

manager continually adjusts the parameters of the fault 

tolerance technique currently in use for each node of the 

grid. It also makes a structural reconfiguration, replacing the 

fault tolerance technique in use by another one, when the 

system workload reaches a given fixed threshold.  

Despite being adaptive (by combining replication and 

checkpointing taking into account the current state of the 

grid environment), these state of art mechanisms still 

depend upon certain parameters that need to be adjusted 

empirically by the system administrator. One example is the 

fixed threshold to switch between checkpointing and 

replication found in [15]. Another limitation perceived is 

that [2] and [15] rely only on a measure of grid occupancy 

to switch between checkpointing and replication. As can be 

seen in the work [18] other factors such as rate mean time 
between failures (MTBF) can also have a decisive influence 

in this decision. 
Motivated by these shortcomings, we put forward an 

extension of the work by Viana et al. [15]. Our proposal, 
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presented in Section V, is inspired by some studies that use 

Reinforcement Learning for resource allocation in 

computing grids, such as [3][4][14][17][19].

IV. REINFORCEMENT LEARNING

Reinforcement learning is a Machine Learning paradigm 

[1][13] that addresses the issue of how an agent (i.e., an 
autonomous entity that perceive and act in an environment) 

can interactively learn the right policy to achieve a given 

purpose (see Figure 2).  

Figure 2. The agent-environment interaction [13]. 

A. Markov Decision Process 

Formally, the problem faced by the agent in a 

reinforcement learning scenario is rendered as a Markov 

Decision Process (MDP)[13]. A MDP is characterized by a 
finite set of environmental states S; a finite set of possible 

actions A; a state transition function 𝑇: 𝑆 × 𝐴 → Pr(𝑆) that 

gives, for each state and action pair, a probability 

distribution over the set of states (where 𝑇(𝑠, 𝑎 (𝑠′ ) is the
probability of the environment transit to state 𝑠′ when the 

agent perform action a in state s); and a (expected) reward 

function 𝑅: 𝑆 × 𝐴 → ℝ that maps each state and action pair 

to a real value representing the (expected) immediate reward 

after performing action a in state s. In this setting, the 

functions T and R abstract the dynamics of the environment 

and are not necessarily known to the agent. 

To solve a MDP is to come up with an optimal 

policy  𝜋: 𝑆 → 𝐴 , i.e., a decision function that maps each 

possible state to an action in such a way to produce, over 

time, the greatest possible cumulative reward to the agent. 

B. Temporal Difference Learning
In general, reinforcement learning algorithms are based 

on estimating value functions that characterize optimal 

policies. One of these functions maps state action 

pairs  𝑠, 𝑎  to real values Q 𝑠, 𝑎  that are estimations of the 

cumulative reward that the agent is expected to receive in 

the long run if it performs the action a in the state s.  

Two popular algorithms for learning Q value functions 
are Q-learning and SARSA [13]. Both are Temporal 

Difference Learning (TD Learning) algorithms. This means 

that they work by using the difference between the current 

and previous estimates to incrementally update Q values. 

Specifically, the update rule in SARSA is 𝑄 𝑠, 𝑎 ←
𝑄 𝑠, 𝑎 +  𝛼[𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]; and in Q-learning is 

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +  𝛼 𝑟 + 𝛾 maxa′ 𝑄(𝑠′, 𝑎′)  − 𝑄 𝑠, 𝑎 ; 

where 𝛼 is a step size parameter, 𝛾 is the discount factor for 

future rewards, 𝑟 = 𝑅(𝑠, 𝑎) and 𝑠′  the observed next state 

when the action a was performed in the current state s. 

The basic difference between Q-learning and SARSA 

lies in the action used to update the Q values. In Q-learning 
the update is done with the optimal action obtained from a 

greedy choice. Regarding SARSA, it is used the next action 

obtained when the agent follows the policy derived from the 

current Q values. In practice, this difference is reflected in 

the optimality and in the safeness of the learned policy. Q-

learning tends to find policies with expected cumulative 

rewards higher than SARSA. However the polices found by 

SARSA are safer than those by Q-learning, in the sense of 

obtaining less negative rewards when the agent deviates 

from the policy to explore new possibilities.  

V. PROPOSED APPROACH 

As discussed in Section III, recent autonomic 

mechanisms for fault tolerance in grid systems have used 

heuristic rules that require empirical adjustments of some 

parameters. Discovering these parameters is not always an 

easy task. Thus, we propose a fault tolerance approach that 

extends the work by Viana et al. [15][16] by using 

Reinforcement Learning to automatically adjust the 

threshold used to switch between checkpointing and 

replication. Instead of relying only in the occupancy level of 

the grid, the idea is to make this switching also dependent 

on the amount and reliability of the computing nodes 

composing the grid system. 

A. Adaptive Switching Threshold 

The autonomic fault tolerance mechanism in [15], based 

on [2], deals with two levels of adaptation: parametric and 

structural adaptation. Regarding parametric adaptation, 

some parameters such as number of replicas or frequency of 
checkpointing are dynamically adjusted depending on the 

grid statistics (e.g., MTBF and grid workload). With respect 

to structural adaptation, what occurs is the switching 

between checkpointing and replication based on the current 

grid occupancy. 

We retain these basic ideas from [15]. However, we add 

to the parametric adaptation a further item: the switching 

threshold between checkpointing and replication (measured 

in terms of grid occupancy percentage). To do this 

parametric adaption, we develop an approach in which the 

autonomic manager learns by reinforcement how to 

increment or decrement the switching threshold in order to 
minimize the execution time of successfully completed 

applications. In this way, the grid middleware initially 

adopts a switching policy reflecting the threshold proposed 

in [15]. Over time, to the extent that applications complete, 

the middleware try to increment or decrement the threshold 

guided by the amount of delayed or restarted applications. 

At the end, the switching threshold is modified to a value 

below or above the default value reflecting the particular 
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characteristic of the grid environment (e.g., MTBF, grid 

workload and number of computing nodes).  

Figure 3. Proposed approach. 

In Figure 3, we depict the proposed approach. It is an 

adaptation of the MAPE-K model shown in Figure 1. The 

managed elements are the nodes of an opportunistic grid. 

The autonomic manager, in addition to dealing with the 

parametric and structural adaptations laid down in [15], is 

supposed to record and update the policy for changing the 

switching threshold. This policy is represented as a Q-table, 

a table that holds a Q value function. During the analysis 

phase, the Q-table is updated given the current state and 
reinforcement coming from the grid environment. The 

update is performed by using the SARSA algorithm (here 

we have opted for the safeness at the expense of optimality). 

In the planning phase, the policy coded in the Q-table is 

used to update the switching threshold and to decide if a 

structural adaptation (change to checkpointing or 

replication) is needed or not. 

B. Markov Decision Process 

In sum, the problem of adapting the switching threshold, 

formalized as a MDP, consists in: states 𝑠 ∈ { threshold 

values in terms of grid occupancy percentage }; actions 𝑎 ∈ 

{ increment, decrement, maintain }; state transition function 

𝑇(𝑠, 𝑎)  is deterministic and previously known since 

increment and decrement assume their mathematical 

meaning of addition and subtraction, and maintain means 
leave the threshold value unaltered; immediate reward 

function 𝑅(𝑠, 𝑎)  is unknown, but delayed negative reward 

values are calculated from the amount of delayed and 

restarted tasks (i.e., for each autonomic cycle, the number of 

delayed and restarted tasks is counted and aggregated as a 

negative reward; it is used a weighted sum in which a restart 

is 10  times worse than a delayed task).  

VI. EVALUATION OF THE APPROACH

To evaluate the proposed approach, we have conducted 

several simulation experiments using AGST (Section II-c). 
To put into perspective the results obtained we compare our 

approach with the traditional techniques of checkpointing, 

replication, and the autonomic approach reported in [15].  

A. Scenarios 

Here, we consider two basic scenarios: 1 ─ many

resources, many faults, 100 applications; and 2 ─ few 

resources, many faults, 200 applications.  

In the first scenario, we created a simulation model with 

1400 computing nodes; in the second, 700 nodes.  In both, 

the nodes were interconnected by a network of 100 Mbps. 

The medium processing power was equivalent to a Pentium 

IV 1.6 GHz (1,858 MIPS, based on the TSCP 5 

benchmark); to simulate heterogeneity, this medium varies 

according to a uniform distribution U (938; 2,779) MIPS, 

where the processing power of the faster machine is 
approximately three times greater than the processing power 

of the slower machine. Regarding the faults, AGST was 

configured to generate synthetic failures with an exponential 

distribution with MTBF equal to 500 seconds. The duration 

of failure (downtime) was determined by an exponential 

distribution with variable mean, whose minimum and 

maximum values were respectively 300 and 600 seconds 

(faults with fast recovery, typical of opportunistic grids 

environments where frequent failures are due to restarting of 

machines by the users, or electrical current fluctuations, 

instead of long terms failures such as hardware failures). At 
last, concerning the grid workload, the applications consist 

in bag-of-tasks applications with three tasks each, resulting 

in a total of 300 tasks in the first scenario and 600 tasks in 

the second. These applications were generated with a 

variation in size (in terms of millions of instructions) 

according to a uniform distribution U (53,510; 321,062) MI 

(considering the medium processing power of 1,858 MIPS, 

each application would take approximately from 8 to 48 

hours to complete). All these settings are similar to the 

settings found in [15] to easy the comparison.  

B. Simulations 

By combining the four fault tolerance strategies 

(checkpointing, replication, autonomic [15] and our 

approach denoted in the sequel as RLearning) and the two 

scenarios we reach at eight different simulations. In the 

simulation involving checkpointing, the technique was 

configured to perform the checkpoint of the tasks on a fixed 

interval of 30 minutes. With regard to replication, it was 

configured to statically create three replicas for each task. 

The autonomic approach was configured as described in

[15]. Specifically, the threshold adopted for switching 

between checkpoint and replication is 30% (i.e., when the 

grid workload is < 30% use replication, otherwise use 

checkpointing).  Finally, the RLearning approach follows 

the same configurations of the autonomic approach, with the 

difference that the switching threshold is variable. 

All the eight different simulations were repeated 40 

times, resulting in a total of 320 experiments. The metrics 

used to compare the fault tolerance strategies were the 
average completion time (in hours) and the success rate of 

the applications (percentage of application that concluded 

execution without restarting). 
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C. Results 

The simulation results are shown in Figures 4 and 5. 

Figure 4. Scenario 1 ─ 1,400 nodes, 300 tasks and many faults.

Analyzing Figure 4, it is possible to notice that when 
there plenty of resources the best strategy is to use 

replication only. It leads to the smallest average completion 

time (30.56) with 100% of successfully completed 

applications. The worst is checkpointing only. In between 

these extremes we have the autonomic and the RLearning 

approaches. They both approximate the results of replication 

only by using replication when there are many idle nodes. 

As applications are submitted and replicas are created, the 

grid occupancy begins to increase, forcing a switch to 

checkpointing when the workload reaches the predefined 

threshold value. This explains why the autonomic and 

RLearning approaches are beaten by replication in a 
scenario with many resources and few applications.  

When we focus on the autonomic and the RLearning 

approaches, we see that RLearning was a better 

approximation to replication than the autonomic approach 

was. We attribute this difference to the fact that the 

RLearning dynamically changes the switching threshold 

between checkpointing and replication. Broadly, the 

RLearning approach tries other threshold values; if these 

values do not produce negative rewards, then they became 

adopted by the system. Thus, the tendency is the threshold 

to converge to a higher value that prevents the system to 
incur in an earlier than needed use of checkpointing.  

Analyzing Figure 5, we observe how the fault tolerance 

strategies fare when the amount of resources decreased and 

the number of application increase. In this case, the 

checkpointing only remains as the worst approach. 

However, replication only is not the best approach if we 

deem the loss of running tasks as an undesirable event. In 

comparison to checkpointing and the autonomic approach, 

replication has lost 5% of the running applications (this loss 

occurs when all replicas are killed due to node failures). 

Looking specifically to the autonomic versus the 
RLearning, we realize that the RLearning approach pursue 

the average completion time of the replication only strategy 

(which is the lowest of all approaches), while trying to avoid 

application loss. In our experiments this loss was less than 

0,03%, a small value compared to the 5% obtained by 

replication. In this way, we judge that the RLearning 

approach arrived at a good tradeoff between average 

completion time and application successful completion, 

w.r.t. the other approaches. 

Figure 5. Scenario 2 ─ 700 nodes, 600 tasks and many faults.

Finally, we call the reader's attention to the fact that we

have performed other simulation experiments than these that 

were reported. We have varied number of resources, 

applications and fault rates. In general, the results have 

shown that we obtain better levels of adaptation to the greed 

characteristics by using the RLearning over the autonomic 

approach.  

VII. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with the problem of

providing fault tolerance in opportunistic grid environment, 

by balancing the use of checkpointing and replication. 

Building upon the state of art, we have proposed the use of 

the MAPE-K model together with reinforcement learning as 

a viable approach to decide the exact point when 

checkpointing should be used instead of replication, and 

vice-versa. Our reinforcement learning approach was 

evaluated by means of simulation models developed by 

using AGST. The obtained results have corroborated our 

initial hypothesis that the switching threshold between 

checkpointing and replication should not be a fixed value, 

but may dependent on the amount of resources per 

applications and the reliability of the computing nodes 

composing the grid system. 

Fault tolerance is a challenging problem. Currently, we 

are exploring the aspects of convergence versus continual 

policy modification lying at the heart of our approach. For 
this we are performing further experimental evaluation by 

means of simulation. As future work we plan to extend the 

approach to deal with other parameters discussed in [15]. 

For example, we can try to learn the number of replicas, or 

the interval between checkpoints. Finally, at long run, we 

also plan to experiment the approach in a real grid 

middleware. In this regard, we are thinking about the 

InteGrade middleware [12]. 
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