
A Fault Tolerance Approach Based on Reinforcement Learning in the Context of

Autonomic Opportunistic Grids

Alcilene Dalília de Sousa and Luciano Reis Coutinho

Departamento de Informática

Universidade Federal do Maranhão, UFMA

São Luis, Maranhão - Brasil

e-mail: alcileneluzsousa@gmail.com / lrc@deinf.ufma.br

Abstract — Fault tolerance is a longstanding problem. Two

basic solutions are replication and checkpointing, both with

their pros and cons. In this paper, we put forward an approach

to balance replication and checkpointing in order to provide

fault tolerance in opportunistic grid computing systems. We

try to retain the benefits of both techniques, while avoiding

their downsides. The approach combines reinforcement

learning with the MAPE-K architecture for autonomic

computing. To validate our proposal, we have performed

experiments based simulation using the Autonomic Grid

Simulator Tool (AGST). We report promising results. We

show that the proposed approach is able to learn suitable

switching thresholds between checkpointing and replication.

The suitability is verified by comparing the average completion

time and the success rate of applications of our proposal
against the values from other approaches in the literature.

Keywords - fault tolerance; grid computing; opportunistic
grids; autonomic computing; reinforcement learning.

I. INTRODUCTION

Achieving a high processing rate by dividing
computational tasks among several geographically
distributed machines is, in essence, the core idea behind the
computational model called Grid Computing [9]. In this
context, it was introduced the concept of opportunistic grids
that, potentially, gather thousands of resources, services and
applications to provide greater computational power at a
lower cost [12]. On the one hand, this type of computational
grid promotes the use of non-dedicated resources, such as
desktop workstations situated in different administrative
domains, by using their idle processing power. On the other
hand, there is the challenge of providing services in a
dynamic execution environment, where heterogeneous nodes
can enter and leave the grid at any time. In this case, it is
important to be able of effectively monitoring the grid
composition in order to detect and react to these events in a
timely manner.

Grid computing encompasses various technical
challenges. One of them, especially in the context of
opportunistic grids, is how to provide fault tolerance in an
inherently dynamical environment, an environment in which
computing nodes are heterogeneous and can become
unavailable at any time. Fault tolerance is the ability of a
system to continue to work even in the presence of faults [7].
We say that a fault has occurred when one of system

components fails or malfunction, leading to a behavior not in
accordance with the system specifications. Concerned with
this problem, researchers have been seeking for solutions.
Among these, we found some approaches based on the idea
of autonomic computing. Broadly, the idea of autonomic
computing consists in modeling and building computing
systems that have the ability of self-management and self-
adaptation to unpredictable changes [6][8][10]. Applied to
the problem of fault tolerance in opportunistic grids,
autonomic computing has given rise to approaches where the
grid middleware tries to automatically adjust parameters or
to dynamically combine traditional fault tolerance techniques
such as checkpointing and replication [2][15][16][18].

In general, these autonomic approaches provide
important gains w.r.t. the traditional fault tolerance
techniques. Despite these gains, there are some
opportunities for improvement. In this paper, we focus on
the following issue regarding the approach presented in [15]
[16] (and based on [2]). When should we switch from
checkpointing to replication, and vice-versa, given the
current workload of an opportunistic grid system? Viana
[15] fixes a threshold below which the grid performs
replication and above which it performs checkpoint. Our
hypothesis is that this threshold can vary, and that this
variation is beneficial to the fault tolerance strategy of the
grid system. It can lead to fewer delays in the execution
time of the application due to fault tolerance concerns.

To test this hypothesis, we put forward an adaptive
approach to the problem of balancing checkpointing and
replication in the context of opportunistic grids. Our
approach is based on the use of reinforcement learning.
Reinforcement learning is a paradigm of machine learning
based on trial-and-error and delayed reward [1][13]. A
typical reinforcement learning problem consists in finding a
policy (a decision function) that maps environmental states
to actions. Such a policy is optimal when it can be used to
guide our behavior through the environment in such a way
that we obtain maximum cumulative reward over time. In the
case of the problem of balancing checkpointing and
replication, we want an optimal (or near optimal) policy that
help us to decide, directly or indirectly, when it is the right
time to switch from checkpointing to replication, and vice-
versa. By choosing reinforcement learning we are following
the path of several researchers in the areas of Grid, Cloud
and Autonomic Computing [3][4][14][17][19].

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

The paper is organized as follows. In Section II, we
further discuss the concepts of grid and autonomic
computing, and briefly present AGST, the Autonomic Grid
Simulation Tool we have used in our experiments. In Section
III, we characterize the need and challenge of fault tolerance
in grid computing environments, and report on the state of
the art. In Section IV, we present the basic ideas of
reinforcement learning and related algorithms. In Section V,
we describe our approach to the problem of fault tolerance in
opportunistic grid which merges ideas from autonomic
computing and reinforcement learning. Section VI reports
some experimental results we have obtained when
evaluating the approach. Finally, in Section VII, we draw
our conclusion and discuss future work.

II. GRID AND AUTONOMIC COMPUTING

Grid computing is a particular ideal case of distributed
and parallel computing [9]. It seeks to extend the potential
of computer networks to enable the sharing, selection and
aggregation of geographically distributed and possibly
heterogeneous computing resources (e.g., processors, data
and applications) in a pervasive and transparent way. The
idea is that individual users (client applications) can access
computing resources as needed with a minimum knowledge
of localization, underlying technologies of hardware and
software, etc.

A. Opportunistic Grids

Opportunistic grids are grid computing systems that
promote the dynamical integration of non dedicated
workstations, possibly distributed along several
administrative domains (e.g., organizations, academic
laboratories, home PCs, etc.), by using their idle computing
time to the execution of parallel applications [12]. This
way, opportunistic grids are highly heterogeneous and
dynamic. They aggregate regular personal computers, with
their particular hardware and software configurations, to
execute distributed application in large scale. And these
machines can enter and leave the grid at different times,
using network connections with different capabilities with
regard to properties such as bandwidth, error rate and
communication latency.

From the point of view of the user, the grid computing
system should be viewed as a single integrated resource and
should still be easy to use. These are some of the challenges
that an opportunistic grid middleware face. The grid
middleware is a software layer between the operating
systems running on the computing nodes and the user
applications submitted to the grid. The focus of an
opportunistic grid middleware is not the integration of
dedicated computer clusters [11], or to provide
supercomputing resources, but to promote a better use of
existing computing resources and the execution of
computationally intensive parallel applications.

B. Autonomic Computing

Autonomic computing, as a research field, aims at
developing computational systems able to manage

themselves with minimal human intervention [6][8][10].

The term autonomic comes from biology and is inspired
from the human nervous system. Like the nervous system,

an autonomic computing system must possess some

characteristics or properties such as self-awareness, self-

configuration, self-protection, self-optimization and self-

healing, among others [6]. In sum, these characteristics

relate autonomic computing to the design of complex

systems; systems that need constant adjustments to various

dynamical circumstances, as is the case of opportunistic

grid systems.

Figure 1. Architecture of an Autonomic Element [8].

In general, an autonomic computing system is conceived

as one or more autonomic elements composed of an

autonomic manager associated to a managed element (see

Figure 1). The managed element represents a resource or

device (computer, printers, databases, etc.) composing a

computing system. The autonomic manager is an active

component that encapsulates a managed element to turn it

into an autonomic element. The internal working of an
autonomic manager is organized in cycles, each one divided

in four distinct phases: monitoring, in which data is

collected by means of sensors; analysis, in which possible

needs and problems are detected; planning, in which

strategies are drawn to make necessary changes and

adaptations; and execution, in which the planned strategies

are effectively implemented. This general architecture is

known as the MAPE-K model.

C. Autonomic Grid Simulator Tool

In our research, we have used the Autonomic Grid

Simulator Tool (AGST)[15], a tool that allows the modeling

and simulation of autonomic approaches to self-

management problems in the context of Opportunistic Grids

[5]. AGST is based on the MAPE-K model, providing

support for all phases of the autonomic manager execution

cycle. By using AGST, one can simulate autonomic

approaches based on two types of dynamic adaptation:

parametric and compositional. Parametric adaptation

consists in the continual modification of variables that

determine the behavior of algorithms used by the grid

middleware. And compositional adaptation is the exchange

of algorithms or components of the grid middleware,

enabling the adoption of new strategies to handle new

situations and to react to changes in the grid environment.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

III. FAULT TOLERANCE

In opportunistic grid systems, and distributed systems in

general, it is important to have mechanisms that allow the

system to continue functioning despite the presence of

faults [7]. Faults occur every time the system behavior does

not comply with its intended operation due to some failure or

malfunctioning of one or more of its components. What

happens after a fault determines the degree of fault

tolerance of the system. At one extreme, we have full fault

tolerant systems in which fault does not decrease their

quality of service. At other, there are zero fault tolerant

systems in which any fault causes total system breakdown.

Between these extremes, we found systems that present a

graceful degradation characterized by a reduction in the

quality of their operations proportional to the severity of the

fault. Given that failures are inevitable in dynamic and

heterogeneous systems, and that the cost of zero fault

tolerance can be very high, fault tolerance becomes a

characteristic of paramount importance.

A. Basic Techniques

A basic source of faults in opportunistic grid systems is

the loss of running tasks due to problems on a grid node.

These can be caused by many factors, among them the

computer be turned off by its owner. In general, this is the

kind of fault tolerance we deal in our work, and that will be

considered in the remainder of the paper.

Ultimately, the less sophisticated way to deal with the

fact that nodes may become unavailable is to detect the node

failure and restart, in another available node, the tasks that

were running on it. To avoid this restart, the researchers

have devised two basic techniques: replication and
checkpointing [7]. Replication consists in executing several

replicas of the same task in different nodes at the same time.

On the one hand, with several replicas, the change of having

to restart a task due to a node failure is minimized. On the

other hand, the grid middleware has to manage and

synchronize several running replicas that consume

computational resources and leave less space for scheduling

new incoming tasks. Looking for a better use of resources,

checkpointing is a technique that promotes fault tolerance

by periodically saving the state of the running tasks so that

they can be resumed on a different machine in the case of a
node failure. However, the downside of this technique is the

time overhead imposed upon the tasks that need to be

constantly interrupted by the grid middleware to record their

running states.

Replication and checkpointing have pros and cons

depending on different conditions of the grid environment.

If there are plenty of computing nodes in comparison to

number of tasks to be run, then replication is a better option

than checkpointing. But, to the extent that the number of

available computing nodes decreases, replication becomes

less and less attractive until we reach a point where

checkpointing becomes a better option than replication.
With these pros and cons in mind, in the last few years,

some researchers have proposed adaptive fault tolerance

mechanisms that try to autonomically balance the use of

replication and checkpointing depending on the current grid

condition [2][15][18].

B. State of the Art

Wu et al. [18] propose a mechanism based on the

number of times a task is resumed due to node failures.

Initially, for each new task, the grid middleware performs

checkpointing. If a node failure occurs, the task is restarted

from the last saved state in the same computing node. It is

considered that it was only a transient fault and that the

restarting on the same node is sufficient to solve the
problem. If a second fault occurs, it is considered that

probably the node in which the task is running is not stable

and, therefore, the task is restarted from the last checkpoint

on another node. If the task fails a third time, it is

considered that the grid environment has a high fault rate

and, therefore, the middleware starts multiple replicas of the

task to be executed simultaneously.

Chtepen et al. [2] present heuristics for the adaptive use

of checkpointing, replication and a combination of them.

The goal is to improve resource utilization and reduce the

execution time of tasks. In the case of checkpointing, one
heuristics consists in increasing or decreasing the interval

between checkpoints for each task according to the mean

time between failures (MTBF) of the computing nodes.

Regarding replication, another heuristics is to limit the use

of replication according to the system workload (grid

occupancy). A third heuristics is to dynamically switch from

checkpointing to replication, and vice-versa, based on

workload (if occupancy is high use checkpointing,

otherwise use replication).

Based on the work by Chtepen et al. [2] and the MAPE-

K model, Viana et al. [15][16] propose an autonomic fault

tolerance mechanism for opportunistic grids. The basic idea
is to make each computing node a managed element

controlled by an autonomic manager. Thus, the autonomic

manager continually adjusts the parameters of the fault

tolerance technique currently in use for each node of the

grid. It also makes a structural reconfiguration, replacing the

fault tolerance technique in use by another one, when the

system workload reaches a given fixed threshold.

Despite being adaptive (by combining replication and

checkpointing taking into account the current state of the

grid environment), these state of art mechanisms still

depend upon certain parameters that need to be adjusted

empirically by the system administrator. One example is the

fixed threshold to switch between checkpointing and

replication found in [15]. Another limitation perceived is

that [2] and [15] rely only on a measure of grid occupancy

to switch between checkpointing and replication. As can be

seen in the work [18] other factors such as rate mean time
between failures (MTBF) can also have a decisive influence

in this decision.
Motivated by these shortcomings, we put forward an

extension of the work by Viana et al. [15]. Our proposal,

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

presented in Section V, is inspired by some studies that use

Reinforcement Learning for resource allocation in

computing grids, such as [3][4][14][17][19].

IV. REINFORCEMENT LEARNING

Reinforcement learning is a Machine Learning paradigm

[1][13] that addresses the issue of how an agent (i.e., an
autonomous entity that perceive and act in an environment)

can interactively learn the right policy to achieve a given

purpose (see Figure 2).

Figure 2. The agent-environment interaction [13].

A. Markov Decision Process

Formally, the problem faced by the agent in a

reinforcement learning scenario is rendered as a Markov

Decision Process (MDP)[13]. A MDP is characterized by a
finite set of environmental states S; a finite set of possible

actions A; a state transition function 𝑇: 𝑆 × 𝐴 → Pr(𝑆) that

gives, for each state and action pair, a probability

distribution over the set of states (where 𝑇(𝑠, 𝑎 (𝑠′) is the
probability of the environment transit to state 𝑠′ when the

agent perform action a in state s); and a (expected) reward

function 𝑅: 𝑆 × 𝐴 → ℝ that maps each state and action pair

to a real value representing the (expected) immediate reward

after performing action a in state s. In this setting, the

functions T and R abstract the dynamics of the environment

and are not necessarily known to the agent.

To solve a MDP is to come up with an optimal

policy 𝜋: 𝑆 → 𝐴 , i.e., a decision function that maps each

possible state to an action in such a way to produce, over

time, the greatest possible cumulative reward to the agent.

B. Temporal Difference Learning
In general, reinforcement learning algorithms are based

on estimating value functions that characterize optimal

policies. One of these functions maps state action

pairs 𝑠, 𝑎 to real values Q 𝑠, 𝑎 that are estimations of the

cumulative reward that the agent is expected to receive in

the long run if it performs the action a in the state s.

Two popular algorithms for learning Q value functions
are Q-learning and SARSA [13]. Both are Temporal

Difference Learning (TD Learning) algorithms. This means

that they work by using the difference between the current

and previous estimates to incrementally update Q values.

Specifically, the update rule in SARSA is 𝑄 𝑠, 𝑎 ←
𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]; and in Q-learning is

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 maxa′ 𝑄(𝑠′, 𝑎′) − 𝑄 𝑠, 𝑎 ;

where 𝛼 is a step size parameter, 𝛾 is the discount factor for

future rewards, 𝑟 = 𝑅(𝑠, 𝑎) and 𝑠′ the observed next state

when the action a was performed in the current state s.

The basic difference between Q-learning and SARSA

lies in the action used to update the Q values. In Q-learning
the update is done with the optimal action obtained from a

greedy choice. Regarding SARSA, it is used the next action

obtained when the agent follows the policy derived from the

current Q values. In practice, this difference is reflected in

the optimality and in the safeness of the learned policy. Q-

learning tends to find policies with expected cumulative

rewards higher than SARSA. However the polices found by

SARSA are safer than those by Q-learning, in the sense of

obtaining less negative rewards when the agent deviates

from the policy to explore new possibilities.

V. PROPOSED APPROACH

As discussed in Section III, recent autonomic

mechanisms for fault tolerance in grid systems have used

heuristic rules that require empirical adjustments of some

parameters. Discovering these parameters is not always an

easy task. Thus, we propose a fault tolerance approach that

extends the work by Viana et al. [15][16] by using

Reinforcement Learning to automatically adjust the

threshold used to switch between checkpointing and

replication. Instead of relying only in the occupancy level of

the grid, the idea is to make this switching also dependent

on the amount and reliability of the computing nodes

composing the grid system.

A. Adaptive Switching Threshold

The autonomic fault tolerance mechanism in [15], based

on [2], deals with two levels of adaptation: parametric and

structural adaptation. Regarding parametric adaptation,

some parameters such as number of replicas or frequency of
checkpointing are dynamically adjusted depending on the

grid statistics (e.g., MTBF and grid workload). With respect

to structural adaptation, what occurs is the switching

between checkpointing and replication based on the current

grid occupancy.

We retain these basic ideas from [15]. However, we add

to the parametric adaptation a further item: the switching

threshold between checkpointing and replication (measured

in terms of grid occupancy percentage). To do this

parametric adaption, we develop an approach in which the

autonomic manager learns by reinforcement how to

increment or decrement the switching threshold in order to
minimize the execution time of successfully completed

applications. In this way, the grid middleware initially

adopts a switching policy reflecting the threshold proposed

in [15]. Over time, to the extent that applications complete,

the middleware try to increment or decrement the threshold

guided by the amount of delayed or restarted applications.

At the end, the switching threshold is modified to a value

below or above the default value reflecting the particular

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

characteristic of the grid environment (e.g., MTBF, grid

workload and number of computing nodes).

Figure 3. Proposed approach.

In Figure 3, we depict the proposed approach. It is an

adaptation of the MAPE-K model shown in Figure 1. The

managed elements are the nodes of an opportunistic grid.

The autonomic manager, in addition to dealing with the

parametric and structural adaptations laid down in [15], is

supposed to record and update the policy for changing the

switching threshold. This policy is represented as a Q-table,

a table that holds a Q value function. During the analysis

phase, the Q-table is updated given the current state and
reinforcement coming from the grid environment. The

update is performed by using the SARSA algorithm (here

we have opted for the safeness at the expense of optimality).

In the planning phase, the policy coded in the Q-table is

used to update the switching threshold and to decide if a

structural adaptation (change to checkpointing or

replication) is needed or not.

B. Markov Decision Process

In sum, the problem of adapting the switching threshold,

formalized as a MDP, consists in: states 𝑠 ∈ { threshold

values in terms of grid occupancy percentage }; actions 𝑎 ∈

{ increment, decrement, maintain }; state transition function

𝑇(𝑠, 𝑎) is deterministic and previously known since

increment and decrement assume their mathematical

meaning of addition and subtraction, and maintain means
leave the threshold value unaltered; immediate reward

function 𝑅(𝑠, 𝑎) is unknown, but delayed negative reward

values are calculated from the amount of delayed and

restarted tasks (i.e., for each autonomic cycle, the number of

delayed and restarted tasks is counted and aggregated as a

negative reward; it is used a weighted sum in which a restart

is 10 times worse than a delayed task).

VI. EVALUATION OF THE APPROACH

To evaluate the proposed approach, we have conducted

several simulation experiments using AGST (Section II-c).
To put into perspective the results obtained we compare our

approach with the traditional techniques of checkpointing,

replication, and the autonomic approach reported in [15].

A. Scenarios

Here, we consider two basic scenarios: 1 ─ many

resources, many faults, 100 applications; and 2 ─ few

resources, many faults, 200 applications.

In the first scenario, we created a simulation model with

1400 computing nodes; in the second, 700 nodes. In both,

the nodes were interconnected by a network of 100 Mbps.

The medium processing power was equivalent to a Pentium

IV 1.6 GHz (1,858 MIPS, based on the TSCP 5

benchmark); to simulate heterogeneity, this medium varies

according to a uniform distribution U (938; 2,779) MIPS,

where the processing power of the faster machine is
approximately three times greater than the processing power

of the slower machine. Regarding the faults, AGST was

configured to generate synthetic failures with an exponential

distribution with MTBF equal to 500 seconds. The duration

of failure (downtime) was determined by an exponential

distribution with variable mean, whose minimum and

maximum values were respectively 300 and 600 seconds

(faults with fast recovery, typical of opportunistic grids

environments where frequent failures are due to restarting of

machines by the users, or electrical current fluctuations,

instead of long terms failures such as hardware failures). At
last, concerning the grid workload, the applications consist

in bag-of-tasks applications with three tasks each, resulting

in a total of 300 tasks in the first scenario and 600 tasks in

the second. These applications were generated with a

variation in size (in terms of millions of instructions)

according to a uniform distribution U (53,510; 321,062) MI

(considering the medium processing power of 1,858 MIPS,

each application would take approximately from 8 to 48

hours to complete). All these settings are similar to the

settings found in [15] to easy the comparison.

B. Simulations

By combining the four fault tolerance strategies

(checkpointing, replication, autonomic [15] and our

approach denoted in the sequel as RLearning) and the two

scenarios we reach at eight different simulations. In the

simulation involving checkpointing, the technique was

configured to perform the checkpoint of the tasks on a fixed

interval of 30 minutes. With regard to replication, it was

configured to statically create three replicas for each task.

The autonomic approach was configured as described in

[15]. Specifically, the threshold adopted for switching

between checkpoint and replication is 30% (i.e., when the

grid workload is < 30% use replication, otherwise use

checkpointing). Finally, the RLearning approach follows

the same configurations of the autonomic approach, with the

difference that the switching threshold is variable.

All the eight different simulations were repeated 40

times, resulting in a total of 320 experiments. The metrics

used to compare the fault tolerance strategies were the
average completion time (in hours) and the success rate of

the applications (percentage of application that concluded

execution without restarting).

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

C. Results

The simulation results are shown in Figures 4 and 5.

Figure 4. Scenario 1 ─ 1,400 nodes, 300 tasks and many faults.

Analyzing Figure 4, it is possible to notice that when
there plenty of resources the best strategy is to use

replication only. It leads to the smallest average completion

time (30.56) with 100% of successfully completed

applications. The worst is checkpointing only. In between

these extremes we have the autonomic and the RLearning

approaches. They both approximate the results of replication

only by using replication when there are many idle nodes.

As applications are submitted and replicas are created, the

grid occupancy begins to increase, forcing a switch to

checkpointing when the workload reaches the predefined

threshold value. This explains why the autonomic and

RLearning approaches are beaten by replication in a
scenario with many resources and few applications.

When we focus on the autonomic and the RLearning

approaches, we see that RLearning was a better

approximation to replication than the autonomic approach

was. We attribute this difference to the fact that the

RLearning dynamically changes the switching threshold

between checkpointing and replication. Broadly, the

RLearning approach tries other threshold values; if these

values do not produce negative rewards, then they became

adopted by the system. Thus, the tendency is the threshold

to converge to a higher value that prevents the system to
incur in an earlier than needed use of checkpointing.

Analyzing Figure 5, we observe how the fault tolerance

strategies fare when the amount of resources decreased and

the number of application increase. In this case, the

checkpointing only remains as the worst approach.

However, replication only is not the best approach if we

deem the loss of running tasks as an undesirable event. In

comparison to checkpointing and the autonomic approach,

replication has lost 5% of the running applications (this loss

occurs when all replicas are killed due to node failures).

Looking specifically to the autonomic versus the
RLearning, we realize that the RLearning approach pursue

the average completion time of the replication only strategy

(which is the lowest of all approaches), while trying to avoid

application loss. In our experiments this loss was less than

0,03%, a small value compared to the 5% obtained by

replication. In this way, we judge that the RLearning

approach arrived at a good tradeoff between average

completion time and application successful completion,

w.r.t. the other approaches.

Figure 5. Scenario 2 ─ 700 nodes, 600 tasks and many faults.

Finally, we call the reader's attention to the fact that we

have performed other simulation experiments than these that

were reported. We have varied number of resources,

applications and fault rates. In general, the results have

shown that we obtain better levels of adaptation to the greed

characteristics by using the RLearning over the autonomic

approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have dealt with the problem of

providing fault tolerance in opportunistic grid environment,

by balancing the use of checkpointing and replication.

Building upon the state of art, we have proposed the use of

the MAPE-K model together with reinforcement learning as

a viable approach to decide the exact point when

checkpointing should be used instead of replication, and

vice-versa. Our reinforcement learning approach was

evaluated by means of simulation models developed by

using AGST. The obtained results have corroborated our

initial hypothesis that the switching threshold between

checkpointing and replication should not be a fixed value,

but may dependent on the amount of resources per

applications and the reliability of the computing nodes

composing the grid system.

Fault tolerance is a challenging problem. Currently, we

are exploring the aspects of convergence versus continual

policy modification lying at the heart of our approach. For
this we are performing further experimental evaluation by

means of simulation. As future work we plan to extend the

approach to deal with other parameters discussed in [15].

For example, we can try to learn the number of replicas, or

the interval between checkpoints. Finally, at long run, we

also plan to experiment the approach in a real grid

middleware. In this regard, we are thinking about the

InteGrade middleware [12].

ACKNOWLEDGMENT

Thanks to the Graduate Program in Computer Science
from the Federal University of Maranhão and the Foundation
for Research Support of Maranhão (FAPEMA) for the
financial support, Proc. BM-01440/13.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning (2nd Ed).
Cambridge, MA: MIT Press, 2010.

[2] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. Turck, P.
Demeester, and P. A. Vanrolleghem, “Adaptive Task
Checkpointing and Replication: Toward Efficient fault-
tolerant grids,” IEEE transactions on parallel and distributed
systems, vol. 20, no. 2, Feb. 2009.

[3] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N.

Rivierre, and I. Truck, “Using Reinforcement Learning for
Autonomic Resource Allocation in Clouds: Towards a Fully
Automated Workflow,” The Seventh International
Conference on Autonomic and Autonomous Systems (ICAS
2011) IARIA, May 2011.

[4] A. Galstyan, K. Czajkowski, and K. Lerman, “Resource
allocation in the grid using reinforcement learning,” Third
International Joint Conference on Autonomous Agents and

Multiagent Systems – Vol. 3 (AAMAS 2004), IEEE
Computer Society, Jul. 2004, pp. 1314-1315,
doi:10.1109/AAMAS.2004.232

[5] B. T. Gomes, and F. J. Silva e Silva, “AGST - Autonomic
Grid Simulation Tool. A Simulator of Autonomic Functions
Based on the MAPE-K Model,” First International
Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH 2011), Jul.
2011, pp. 354–359.

[6] S. Hariri, B. Khargharia, H. Chen, J. Yang and Y. Zhang,
“The Autonomic Computing Paradigm,” Cluster Computing,
vol. 9, pp. 5–17, 2006.

[7] P. Jalote, Fault Tolerance in Distribuited Systems.
Englewoods Cliffs, NJ: Prentice Hall, 1994.

[8] J. O. Kephart, and D. M. Chess, “The vision of autonomic
computing,” IEEE Computer, vol. 36, n. 1, pp. 41–50, Jan.
2003.

[9] F. Magoules, J. Pan, K. Tan, and A. Kumar, Introduction to
Grid Computing. CRC Press, 2009.

[10] M. Parashar, Z. Li, H. Liu, V. Matossian, and C. Schmidt,
“Enabling Autonomic Grid Applications: Requirements,
Models and Infrastructure,” In: Self-star Properties in
Complex Information Systems (SELF-STAR 2004), Springer
LNCS, vol. 3460, pp. 273-290, 2005.

[11] P. R. Prins, “Teaching parallel computing using beowulf

clusters: a laboratory approach,” J. Comput. Sci. Coll., vol.
20, n. 2, pp. 55–61, Dec. 2004.

[12] F. J. da Silva e Silva, F. Kon, A. Goldman, M. Finger, R. Y.
Camargo, F. F. Castor, and F. M. Costa, “Application
Execution Management on the InteGrade Opportunistic Grid
Middleware,” Journal of Parallel and Distributed Computing,
vol. 70, n. 5, pp. 573–583, May 2010.

[13] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An

Introduction. Cambridge, MA: MIT Press, 1998.
[14] G. Tesauro, “Reinforcement Learning in Autonomic

Computing: A Manifesto and Case Studies,” IEEE Internet
Computing, vol. 11, n. 1, pp. 22-30, 2007.

[15] A. E. Viana, An Autonomic Approach to Fault Tolerance in
Running Applications on Desktop Grids. Master’s thesis,
Universidade Federal do Maranhão, São Luís, MA, Brasil,
2011.

[16] A. E. Viana, B. Gomes, J. Gonçalves, L. R.

Coutinho, and F. J. Silva e Silva, “Design and Evalutation
of Autonomic Fault Tolerance Strategies Using the AGST
Autonomic Grid Simulator,” Latin American

Conference On High Performance Computing (CLCAR
2011), Sep. 2011.

[17] Z. Wang, X. Qiu, and T. Wang, “A Hybrid Reinforcement
Learning Algorithm for Policy-based Autonomic
Management,” 9th International Conference on Service

Systems and Service Management (ICSSSM 2012) IEEE,
Jul. 2012, pp. 533–536, doi:10.1109/ICSSSM.2012.6252294

[18] Y. Wu, Y. Yuan, G. Yang, and W. Zheng, “An Adaptive
Task-Level Fault-Tolerant Approach to Grid,” Journal of
Supercomputing, vol. 51, n. 2, pp. 97–114, Feb. 2010.

[19] Z. Zhai, “Grid Resource Selection Based on Reinforcement
Learning,” Int. Conference on Computer Application and
System Modeling – Vol. 12 (ICCASM 2010) IEEE, Oct.

2010, pp. 644 – 647, doi:10.1109/ICCASM.2010.5622441

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

	ICAS-14-20049-v3
	Sem nome

