
Using Performance Modelling for Autonomic Resource Allocation Strategies Analysis

Mehdi Sliem
MOVEP Laboratory, USTHB

Algiers, Algeria,
msliem@usthb.dz

Nabila Salmi
MOVEP Laboratory, USTHB

Algiers, Algeria,
LISTIC, Université de Savoie

Annecy le Vieux, France
nsalmi@usthb.dz

Malika Ioualalen
MOVEP Laboratory, USTHB

Algiers, Algeria,
mioualalen@usthb.dz

Abstract—Distributed resource allocation in data centers has
gained a lot of attention from the research community in the
last few years, especially in fields like cloud computing and
multitier systems. It is usually expected that these systems
deliver some performance guarantees to users’ Service Level
Agreements (SLAs). Therefore, data center servers may need to
be dynamically redeployed to optimize some performance metrics
so that to meet the promised SLAs. Moreover, the total profit of
a system depends on its ability to reduce a data center’s energy
cost through the resources utilization optimization. The main
challenge of resource allocation is then to find the minimum
amount of resources that an application needs to meet the
desired Quality of Service (QoS). In this direction, autonomic
computing appears to be one of the most popular concepts
to achieve these goals by means of self optimization. These
properties provide a system with a dynamic optimization of its
own resources use, and enable it to autonomously adapt itself
to its environmental changes. However, such autonomic resource
allocation strategies may result in a loss of performance or even
service degradation under some conditions. Furthermore, it is
interesting to predict the behaviour and the efficiency of those
strategies, before applying a new resource allocation, to forecast
the most appropriate configuration and ensure the effectiveness of
the autonomic manager. Thus, we propose in this paper a general
insight of performance modelling of resource allocation strategies
using the modelling of an autonomic resource allocation server
as an example. The modelling is based on stochastic Petri net
models (SPN). We consider in our modelling dynamic allocation
strategies, based on workload intensity and user mixes. Finally,
we illustrate the effectiveness of our modelling through a set of
experimental results.

Keywords–Autonomic computing; data center; performance
modelling; resource allocation

I. INTRODUCTION

Todays data centers are becoming increasingly large and
complex, hosting a variety of business-critical applications
with a set of QoS requirements, such as those for web hosting
or e-commerce sites. The increasing demand for computing
resources in a shared infrastructure creates the challenge of
dynamic on-demand resource provisioning and allocation in
response to variable workloads [1].

Data centers need then to have more flexible execution
environments, allowing resources sharing between its differ-
ent applications in order to meet performances requirements
of those applications. In a cloud computing application for
instance, the main objective is to maximize profits by an
efficient use of resources, such as meeting the clients SLAs
and reducing the energy cost of the data centre, by an efficient
use of resources. Furthermore, modern Internet applications

are implemented on multi-tier architectures, increasing the
application’s complexity. Each tier provides a defined service
to the next tier and uses services from the previous tier. The
resource allocation problem for multi-tiers applications is then
harder than that for single tier applications: tiers may not be
homogeneous and a performance bottleneck in one tier may
decrease the overall profit.

The key-challenge of resources allocation is then, to pro-
vide enough resources to an application to meet its perfor-
mance goals while avoiding an over-provisioning that could
increase the energy cost and reduce the efficiency for other
concurrent hosting (i.e., less resources for next applications).
Due to these economic benefits, the resource provisioning
optimization has been the subject of much investigations [2].

Some approaches focused on static allocation strategies that
consider a fixed set of applications and resources, but these
approaches have shown their weak efficiency because of the
changing workload mixes. Other approaches are based on peak
demand but suffer too from a lack of efficiency and a non
cost-effectiveness due to their poor resource utilization during
off-peak periods. In contrast, autonomic resource management
may lead to efficient resource utilization and fast response in
the presence of changing workloads.

In cloud applications, autonomic resource allocation pro-
vides application environments with self-configuration and
self-optimization capabilities according to their environmental
changes. The system can then be enforced through scale-
up/down (i.e., adding/removing resources to individual Virtual
Machines (VM)), scale-out/in (i.e., adding/removing VMs to
an application environment), and migration (i.e., moving VMs
over the physical infrastructure). This will directly impact both
applications performances and the providers operation cost.

To achieve those autonomic computing features, IBM sug-
gested a reference model for autonomic control loops, which
is sometimes called the MAPE-K (Monitor, Analyse, Plan,
Execute, Knowledge) loop [3]. The architecture dissects the
loop into four parts that share knowledge:

• The monitor function provides mechanisms that col-
lect, aggregate, filter and report details (such as met-
rics and topologies) collected from a managed re-
source.

• The analyze function correlates and models complex
situations (for example, time-series forecasting and
queuing models). The provided mechanisms allow the
autonomic manager to learn about the Information
Technology (IT) environment and help in predicting
future situations.

18Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



• The plan function provides mechanisms that construct
actions needed to achieve goals and objectives. The
plan mechanism uses policy information to guide its
work.

• The execute function provides launches the execution
of a plan and controls it with considerations for
dynamic updates.

Even if self-optimization may appear as an attractive way
to enforce resource allocation process, reaching the goal of
system improvement varies from an autonomic system to
another, depending on the autonomic manager architecture and
its implemented features. The targeted function to improve
and the resource allocation process are also determinant cri-
teria in building an efficient autonomic system. Furthermore,
autonomic features are costly: they make systems more and
more complex and need considerably more resources than
other systems. So, attempting to improve a system with au-
tonomic features may lead to some undesired configuration,
with the introduction of new bugs or the loss of some vital
settings, or else the degradation of the resulted configuration
performances.

Hence, it is important to ensure that the chosen alloca-
tion strategy offer the desired performances under different
circumstances while designing the system. This requires to
predict and measure performances of an autonomic manager
and its possible impact on the current system, before applying
a solution or a reconfiguration. The main goal is to know how
long the decision making process will take and how much
the system’s performances will be improved. The autonomic
resource allocation has also to be compared with static resource
allocation according to the application case. In this direc-
tion, formal methods are strong tools for system performance
prediction based on modelling. Mathematical models, such
as Petri nets [4] are well suitable for modelling distributed
systems and fit the autonomic computing process with the
system operation.

We attempt, in this paper, to define a general modelling
of autonomic resource allocation using Stochastic Petri Nets
(SPN). This modelling is presented through a simple typical
example of an autonomic resource allocation system. We
consider for our modelling a dynamic allocation strategy,
based on workload mixes analysis, applied by an autonomic
server. Some static allocation strategies are defined, each
one assigning a fixed amount of resources to user requests.
The system will work initially with a predefined strategy,
while the autonomic manager analyzes continuously workload
mixes. The autonomic manager will, then, reconfigure the
system to move to a more appropriate strategy, whenever there
are pending user requests while other requests hold several
resources. So, according to the analysis of the monitored
data, the autonomic manager redistributes fairly the existent
resources.

The paper is organized as follows: Section II discusses
related work. Then, Section III presents our general modelling
and the experimental results. Finally, Section IV concludes the
paper and gives future work.

II. RELATED WORK

Significant attention has been given to the topic of dis-
tributed resource allocation in the last few years. The main

studied issue is the cost, efficiency and the generated profits
of the used methods, especially when client Service Level
Agreements (SLAs) must be satisfied. Several work have
then been proposed to use autonomic computing, while using
predictive models. We provide, in the following, the most
relevant prior work.

As Clouds are complex, large-scale, and heterogeneous
distributed systems, resource allocation is one of the main
topics of interest studied in the last few years in the context of
cloud computing. Thus, Ghanbari et al.’s, results [2] provide
valuable insights on the performance of alternative resource
allocation strategies and job scheduling disciplines for a cloud
computing infrastructure. The service level agreement is based
on a response time distribution, which is more relevant than the
mean response time with respect to performance requirements
of interactive applications. The authors developed an efficient
and effective algorithm to determine the allocation strategy
that results in a smallest number of required servers. They
have also developed a novel scheduling discipline, called
probability dependent priority, which is superior to First Come
First Served (FCFS) and head-of-the-line priority in terms of
requiring the smallest number of servers. The authors consider
in their work the case of two job classes.

In the same direction, Buyya et al. [5] identifies open issues
in autonomic resource provisioning and presents innovative
management techniques for supporting Software as a Service
(SaaS) applications hosted on Clouds. The authors present
a conceptual architecture and early results highlighting the
benefits of Clouds autonomic management. They presented the
first steps towards an autonomic Cloud platform able to handle
many of the above problems. Such a platform will be able to
dynamically supply applications with Cloud resources in such
a way that Quality of Service user expectations are met with
an amount of resources that optimizes the energy consumption
required to run the application.

In [6], an SLA-based resource allocation problem for multi-
tier applications in the field of cloud computing is considered
by Goudarzi and Pedram. An upper bound is provided on
the total profit and an algorithm based on force-directed
search is proposed to solve the problem. Processing, memory
requirements and communication resources are considered as
three dimensions in which optimization is performed. In [1],
the purpose was to demonstrate the advantage of ”adaptive”
models, relative to ”static” models in optimization. Hu et
al. investigated model based optimization of a private cloud
where applications are clustered across a known homogeneous
set of physical machines. They modified resource sharing
of applications, to minimize SLA violations. The focus was
only on response time, considering that multiple service level
objectives will not change the approach, but just the complexity
of solving the optimization problem. The main contribution of
this work was using dynamically tracking models (for each
application) within the global optimization loop. These models
update themselves at runtime in order to adapt to environment
perturbations, not captured in initial model specification.

Workload variation and its resource consumption is also
an important point to study for the resource management,
in this direction, Litoiu [7] investigates performance analysis
techniques to be used by the autonomic manager. The work-
load complexity was studied, and algorithms were proposed
for computing performance metrics bounds for distributed
transactional systems under asymptotic and non-asymptotic

19Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



conditions, with saturated and non-saturated resources respec-
tively. The proposed technique makes use of linear and non-
linear programming models and their performance evaluation.
Workloads are characterized by their intensity representing the
total number of users in the system, and workload mixes,
which depict the number of users in each service class.

Finally, some authors investigate the use of mathematical
and performance modelling or optimization approaches to
improve the resource allocation. Bennani and Menasce [8]
addressed the resource allocation problem in autonomic data
centers. The presented solution is based on the use of analytic
queuing network models combined with combinatorial search
techniques. The authors have shown how analytic performance
models can be used in an efficient manner, to design controllers
that dynamically switch servers from one application environ-
ment to another as needed.

In [9], Xu et al. propose a two-level resource management
system to dynamically allocate resources to individual virtual
containers. It uses local controllers at the virtual-container level
and a global controller at the resource-pool level. An important
advantage of this two-level control architecture is that it
allows independent controller designs for separately optimizing
applications performances and the resources use. Autonomic
resource allocation is realized through the interaction of the
local and global controllers. A novelty of the local controller
designs is their use of fuzzy logic-based approaches to effi-
ciently and robustly deal with the complexity and uncertainties
of dynamically changing workloads and resource usage. The
global controller determines the resource allocation based on
a proposed profit model, with the goal of maximizing the total
profit of the data center.

Regarding these proposals, we notice that most of them use
formal modelling for an autonomic online optimization, but
only few work focused on the efficiency of those autonomic
components and performance modelling and prediction of a
whole autonomic system in the context of resource allocation.

We introduce, then, in this paper, a general performance
modelling and analysis approach for the autonomic resource
allocation problem. The main idea is to model the complete
autonomic system behaviour including resource management
and allocation and the autonomic loop. A system configuration
is seen as a distribution of system resources for user requests
and their availability. We illustrate then our modelling method-
ology through a simple typical example of an autonomic server
and a series of experimental results.

III. AN AUTONOMIC RESOURCE ALLOCATION PLATFORM

To explain our modelling approach, we choose a typical
example of an autonomic resource allocation system, based
on a simple monitoring process. We first, in this section,
define the architecture of our example, then we give its general
functionalities which have to be considered in our modelling.
After that,we explain our modelling methodology through the
presentation of our model based on Stochastic Petri Nets
(SPN) [10].

A. System architecture

Our system consists of an autonomic server with a set
of resources and an allocation strategy for those resources
based on a monitoring process. The monitoring process aims

to determine the amount of resources to allocate to the next
user requests.

The main managed element in an autonomic resource allo-
cation system is the resource. A resource may be any element
used or invoked during the processing of a user request: it
may be a server, a processor cycle, a memory space, a used
device, a network bandwidth, an available component, and so
on. An allocation strategy defines the amount of resources
to allocate to a new requests: it could be a static allocation
approach considering a fixed set of resources or a dynamic
one adapting the resource management strategy according to
the system’s state and the user SLAs.

The autonomic loop aim at self-optimize system per-
formances through self-configurations, by switching between
allocation strategies relatively to the changing workload. We
take for our example a simple self-optimization technique
based on the current workload mixes, a continuous monitoring
of processing services is done by the autonomic manager, the
autonomic loop is, then, triggered periodically to analyze the
monitored data, the analysis and plan phases determine the
most present service’s class in the system and choose the most
appropriate strategy for this current class for the next requests.
Finally, the act phase switches from the current strategy to the
new one and reset the autonomic loop periodicity.

B. System features to model

To show how we operate to model an autonomic system,
we take generic concepts of an autonomic resource allocation
system. However, to have a reliable trustworthy model with
accurate results, some key concepts have to appear in our
modelling :

a) System’s resources and allocation strategies: We
need, in our modelling, to represent the system resources, their
states and their distribution over the time and their allocation
mode. A resource may be a server, a processor cycle, a memory
space, a network bandwidth, and so on. A system configuration
is then seen as a state where resources are allocated to different
user requests according to a predefined strategy.

For instance, the system may reach or approach a saturation
state, becoming unefficient to process new requests; it may also
be in a an unoptimized state not satisfying a required SLA,
even if the available resources are sufficient. It may also give
the expected processing performance while producing a high
consumption cost. All these drawbacks or failures depend on
the allocation strategy and its efficiency to optimally distribute
the system’s resources.

b) Classes of service: As presented in [7], the system
performance and the saturation state do not depend only on
the workload intensity (number of users in the system), but
also on the workload mixes that represent the users number
of each service class. Classifying user requests into different
classes allows us to separate them according to a set of
specificities that may affect differently the system behaviour
and its performances. In fact, a request which needs a database
access in a multi-tier system do not have the same impact
on the system’s performance as a request invoking only an
application process in the same system. In our work, we
consider different service classes classified according to the
needed number of identical resources (i.e., several CPUs or

20Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



Figure 1: Key concepts to appear in the model

more memory space): each class requires a given number of
resources. This consideration comes from the fact that a job
holding a set of resources ends more quickly than if it had
only one resource. Contrariwise, allocating more than needed
resources to a client will waste additional resources for the
same job performances while increasing costs and reducing
concurrency processing for other jobs. Hence, resource provi-
sioning and the resulting system configuration vary according
to the workload mixes in the system.

c) Self-optimization strategy: As explained before, an
allocation strategy have to be defined according to the work-
load mixes. Modelling static and autonomic self-optimization
approaches will allow to compare the efficiency and incon-
veniences of each resource management manner for each
system configuration. Hence, for an autonomic approach, it is
important to represent the system and its autonomic loop in the
same model, this allows to measure autonomic features impact
on the system while measuring the system performance itself.
Grouping the system functioning and the autonomic loop in
the same model is also more appropriate to make tests under
different cases: different system configurations can then be
used to test the autonomic loop influence; the system’s state
and its evolution over time being visible directly in the model.

C. Modelling our autonomic architecture

1) Used formalism: Stochastic Petri Nets: Stochastic Petri
Nets (SPN) [4] are a stochastic temporal extension of Petri
Nets, widely used for performance analysis of complex sys-
tems. Our choice of this formalism is first motivated by the
fact that we need a state based model to be able to evaluate
performance indices related to system configurations (number
of requests in some part of the system, mean usage time of
some resource, etc.). Petri Nets are state based models, which
are well known for being able to model complex systems
with concurrency and conflicts, and the stochastic extension
allows to do a performance analysis based on a Markov chain-
like state space graph. This is in contrast to other perfor-
mance formalisms like Queuing networks or process algebras
models where conflicts cannot be modelled. Moreover, as our
methodology is incremental, we need to compose sub-models
to connect multi-tier sub-models, or servers sub-models. In this
direction, Petri Nets are compositional models and interaction
between Petri nets representing different parts of a system may
be easily defined as transitions or places, which are merged
when interacting sub-models are composed. So, we define an
SPN in the following.

Definition 1 (Stochastic Petri Net). A Stochastic Petri Net is
a couple N = (N ′; θ) where:

• N ′ = (P, T, Pre, Post, Inh, Pri) is a Petri Net

where P is a set of places, T a set of timed tran-
sitions with a stochastic firing delay, Pre, Post, Inh
are respectively the precondition, postcondition and
inhibition functions relating transitions to places, and
Pri the transition priority function.

• θ : T × Bag(P ) → R
+ where θ(t,M) is the firing

rate of t in M, i.e, the parameter of its exponential
law, where θ(t) represents:

◦ The weight of t if Pri(t) > 0 (t is immediate).
◦ The firing rate of t if Pri(t) = 0 (t is

timed): the enabling duration before the firing
of t(c,M) follows an exponential probability
distribution with mean θ(t).

2) System’s modelling: Regarding to the system features
given before, we follow the principles below to model the
autonomic resource allocation system:

• We first model the requests arrival, a request being any
kind of a client service invocation, applied to different
data center applications.

• We then represent system resources, where we abstract
the kind of resources as for requests.

• Resources are allocated to requests according to an al-
location strategy. As in our system, different strategies
are considered, this requires to model each strategy.
However, only one strategy have to be applied at one
time.

• After the allocation of the required resources to a
request, the service processing in progress is modelled,
as well as the different service classes to represent
resources consumption and the obtained performances

• Finally, as our example is based on an autonomic
system, we need to model each phase of the auto-
nomic loop: the continuous monitoring of processing
services, the autonomic loop triggering, the analysis
and plan phases, which chooses the most appropriate
strategy for the next requests, and the act phase which
switches from the current strategy to the new one.

The modelling methodology explained above is depicted in
Figure 1, giving the skeleton of a general resource allocation
autonomic system model. This figure shows the key concepts
that should be considered when modelling the system. Each
part of the system is then replaced with the appropriate sub-
model according to the real system to analyze. The merging
of the obtained sub-models gives the whole model of the
autonomic system. We give next the proposed sub-models for
an autonomic server.

Figure 2: The request submitting sub-model

21Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



Figure 3: The resource allocation strategies sub-model

a) The request submitting sub-model: The request is
modelled with a place named Requests, marked with a
number of tokens corresponding to a possible number of
user requests. The system processes a request (represented
by a token) and answers the user, then the token is put
back into the Requests place to model a new request arrival
and keep the testing possibility of the whole system. The
transition NewReq is used to model the arrival and queueing
of the request in the system (see figure 2). This transition is
characterized with a firing rate modelling the arrival request
rate.

b) The resource allocation strategies sub-model: Each
allocation strategy is modelled by a place. We consider in
our model, three strategies: the first one for allocating one
resource to new requests, modelled by a place named Strat−1;
the second one for allocating two resources modelled by a
place named Strat − 2; and the last one for allocating three
resources, represented by a place named Strat−3. This model
is shown in Figure 3.

c) Servers sub-model: The model of servers is com-
posed of two parts:

• The server requests queue part: It is modelled by a
first place, named Queue, connected to the Requests
place. The requests are sorted into different classes to
represent different execution processing times, giving
a number of places equal to the number of service
classes: we associate a place for each request class
to model resource allocation to requests of the corre-
sponding class.

• The servers parts: each server of the system is
modelled by a place, named Server, containing the
server’s resources (see Figure 4). The request process-
ing is modelled by three transitions and three places
for each service class: The transitions are named
Begin−Cli− 1, Begin−Cli− 2, Begin−Cli− 3,
representing the processing beginning for each current
allocation strategy; The places, named Cl1i−1−exe,
Cli−2−exe, Cli−3−exe model the different request
execution states. Three other transitions, named End−

Figure 4: The server sub-model

Figure 5: Global system model

Cli − 1, End − Cli − 2, End − Cli − 3, are used
to model the request processing end (see Figure 4).
The Begin − Cli − s transitions are linked to the
Server, Queue, C1i − exe and Strat − i places.
The End − Cli − s transition consumes resource
tokens from the Cli − s − exe place, and puts them
back in the Server place, and by the way, puts back
the request to the Requests place. This server sub-
model represents a request processing according to a
predefined execution time, given by the firing rates
associated to the Begin − Cli − s transition. These
rates are fixed before analyzing the model, according
to the system under test. As many user classes are
defined in our model, this sub-model is duplicated
for each user class with a slight modification of
the required resources number to consume to get
the best performances. Different processing rates are
associated to their corresponding transitions, to show
a better processing time when using more resources.
Hence, only one beginning transition can be fired at
one time in the same service class, according to the
current strategy.

d) The autonomic loop sub-model: The MAPE-K loop
in our modelling is composed of five parts:

• The first part models the monitoring phase of the auto-
nomic loop. As in our example, the self-optimization
is based on the amount of requests in each service
class, we model the monitoring by a place named,
endRequests − Class − i, for each service class,
each of these places is connected to End − Cli − s
places belonging to the corresponding service class
(see Figure 5).

• Unlike the monitoring phase, which is performed
continuously, other phases of the autonomic loop are,
in our example, triggered periodically. In Figure 5, a
place, named periodicity, models the periodicity of
the autonomic loop by its number of tokens. A token

22Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



is taken periodically by the newRequest transition.
The place named loopallowed contains the token
that will represent the progression of the MAPE-K
loop execution through the model and ensure that is
executed once at a time.

• The analyze phase sub-model aims to empty all mon-
itoring places, to reset them for the next period while
computing which service class is the most frequent
in the system in the last period. Hence, a place,
named analyse, models the beginning of the phase.
A transition, named comparing, takes a token from
each monitoring place until some of them become
empty, the one −moreR and three −moreR tran-
sitions are then used to continue the same process
for the remaining monitoring places containing tokens.
Moreover, inhibitor arcs are used to guide the analyze
phase towards the appropriate transitions, when some
monitoring places are empty. Once only one place
is containing tokens, OneMore, EmptP lace1 or
ThreeMore, emptP lace2 places are used to reset
the corresponding place to an empty state. Finally,
transitions goToP lan1 and goToP lan2 guide the
autonomic loop to the associated reconfiguration plan.
The transition goToP lan3 is fired when both service
classes get the same number of requests in the last
period (see figure 5).

• The plan phase sub-model is consisting of a set of
places whose number is equal to the number of service
classes. Each place represents the most appearing class
in the last period (Plan1, Plan3). Moreover, other
places have to be added to the plan, to consider
all equality cases between the class requests: in our
example, the Plan2 place models the equality case
between the two service classes of our system (see
Figure 5).

• Finally, the last part of the MAPE-K loop to model
is the act phase. We model it by a set of transitions
representing all combinations between the current
applied strategy and the current computed plan. The
new strategy, indeed, have to be chosen based on these
two parameters, for instance, if the current strategy
allocates three tokens (resources) to user requests
while these requests belong to the first service class,
the current strategy is then considered as non-cost-
efficient, as it allows two more resources for the same
service performance. A unique transition may be then
fired, switching the strategy to the more appropriate
place strat−1. The same process is repeated for each
combination by a particular transition act− i. A place
loop− ended is reached after the firing of one of the
act transitions; the transition loop−allowed reset, then
the loop periodicity and puts back the loop progression
token to it initial place (loopallowed).

Figure 5 shows the general model of the autonomic server. The
obtained model can be tested using different number of classes
and periodicities for each test, to get more accurate results or
to identify the best requests classification. In the next section,
we analyze the obtained SPN and try to predict the modelled
server behaviour under different configurations.

TABLE I: TRANSITION RATES OF CLASSES OF SER-
VICE

Config Transition Rate value
1 Begin-Cl1-strat 1.00
1 Begin-Cl2-1 0.33
1 Begin-Cl2-2 0.66
1 Begin-Cl2-3 1.00

D. Experimental results

The final model presented in Section III was analyzed using
the GreatSPN package [10], on an Ubuntu linux 12.4 LTS
workstation with 4 GB of RAM.

For performance analysis, we used various configurations
of the system, obtained by varying the initial markings of
the requests number, the available resources and the loop
periodicity when using dynamic strategy. The model used in
our experiments contains two service classes: the first one
needs one resource from the server’s place, while the second
one uses three resources. We performed our tests under each
of the three static allocation strategies and a dynamic strategy
using the autonomic loop.

Table I shows the transitions rates, depending on the
number of consumed resources. Only the second service class
transitions are affected by the available resources. Transitions
not appearing in this table have rate 1 (i.e., faster than all other
transitions, rates being given in the same unit).

To compute performances, we vary the number of requests
and available resources under each configuration. The Great-
SPN tool [10] computes the state space and its steady-state
probabilities. We study the evolution of several metrics from
obtained steady-state probabilities. To evaluate the efficiency
of a configuration, we interested in the following metrics:

• The response time for a user request, being of the first
or second class.

• The throughput of processed requests.

• The relationship between response time and resource
consumption.

We first analyze the SPN for a fixed number of requests (10 in
our example), with varying the resources number of the server
(1 to 40). Figure 6 shows that the mean response time of the
static strategies is unchanged under increasing the number of
available resources, while dynamic resource allocation slightly
improves it taking advantage from the powerful autonomic
system. However, the response time of the autonomic strategy
remains worse than static ones that allocate more resources.

Figure 6 depicts the throughput of processed requests.
Static strategy allocating one resource gives the best through-
put, but is exceeded by other static strategies allocating more
resources from a certain threshold of available resources. The
autonomic resource allocation gives the worse throughput,
which is partly due to the autonomic loop processing searching
the best strategy. The results can be improved using a separated
server for the autonomic manager. The efficiency of a given
strategy in our case depends, though, more on its ability to
reduce the final system’s cost.

We were also interested in evaluating the total resource
consumption of the system. The results shown in Figure 6 show

23Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems



0,99

1,01

1,03

1,05

1,07

1,09

1,11

1,13

1,15

3 5 7 9 11 15 20 30 40

Mean Response Time

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

3 5 7 9 11 15 20 30 40

Throughput of Requests Processing

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

3 5 7 9 11 15 20 30 40

Response Time versus Resource Consumption

Strat-1

Strat-2

Strat-3

Autonomic

Figure 6: Experimental results depending on available resources

that the dynamic resource allocation gets the best ratio between
the response time and the resource consumption metric, but it
is also due to a less number of processed requests, as it is
shown in Figure 6.

We can conclude that, with these different analysis results,
an autonomic allocation strategy gives a better relationship
between the response time and the resource consumption,
and so less final user cost. It allows, though, to process less
requests, which may make the system less effective. The most
efficient strategy to use for a particular system, depends then,
on the different costs related to each metric and the required
expected quality of service.

IV. CONCLUSION AND FUTURE WORK

This paper addresses a general modelling of resource
allocation strategies for an autonomic server using SPN. The
objective is to show, through the chosen example, how we
can gradually build a formal model for a resource allocation
autonomic system, to be able to analyze it and think about its
performances and efficiency. For this purpose, we have studied
the most important concepts to consider when modelling a
particular system to obtain a reliable model, then construct the
global model of the system example, basing on the building of
sub-models representing parts of the system, then the merging
of constructed sub-models.

To finalize the study, we compared different models of
static and autonomic strategies with the aim of forecasting the
more appropriate allocation strategy for the given system.

Regarding the obtained results of our modelling methodol-
ogy, more research work is still required in several directions,
among which: considering workload mixes in the request
arrival modelling, modelling more specific applications of
resource allocation systems, with specific requirements, such
as a cloud computing system. Finally, more specific autonomic
resource allocation strategies using different techniques have
to be compared.

REFERENCES

[1] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for
cloud computing,” Conference of the Center for Advanced Studies on
Collaborative Research, pp. 101–111, 2009.

[2] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Feedback-based
optimization of a private cloud,” IBM Canada, vol. 28, pp. 10–111,
January 2012.

[3] IBM, “An architectural blueprint for autonomic computing (fourth
edition),” 2006.

[4] S. Natkin, “Stochastic petri nets and their application for computer
systems evaluation,” Ph.D. dissertation, CNAM, Paris, France, juin
1980.

[5] R. Buyya, R. N.Calheiros, and X. Li, “Autonomic cloud computing:
Open challenges and architectural elements,” Third International Con-
ference on Emerging Applications of Information Technology (EAIT),
pp. 3–10, 2012.

[6] H. Goudarzi and M. Pedram, “Multi-dimensional sla-based resource
allocation for multi-tier cloud computing systems,” IEEE 4th Interna-
tional Conference on Cloud Computing, July 2011.

[7] M. Litoiu, “A performance analysis method for autonomic computing
systems,” ACM Transactions on Autonomous and Adaptive Systems,
vol. 2, 2007.

[8] M. N. Bennani and D. A. Menasce, “Resource allocation for autonomic
data centers using analytic performance models,” 2005 IEEE Intl’. Conf.
on Autonomic Computing, Seattle, Washington, pp. 229–240, June 2005.

[9] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,” Cluster Comput’08, vol. 11, pp. 213–227, 2008.

[10] S. Baarir, M. Beccuti, D. Cerotti, M. D. Pierro, S. Donatelli, and
G. Franceschinis, “The greatspn tool: Recent enhancements,” ACM
SIGMETRICS Performance Evaluation Review, vol. 36, pp. 4–9, March
2009.

24Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems


