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Abstract—Advancements in on-demand power management of algorithm for agents based on interactions with humans in
renewable energy can be achieved by multi-agent systems. i§h  conflict situations [14]. Taylor et al. [21] present an aigon
paper proposes an innovative approach where a population that combines transfer learning, learning from demoristnat
of autonomous agents are able to cooperate in managing an and reinforcement learning to achieve rapid learning agt hi
accumulator-bank in order to effectively deliver energy inplaces o formance in complex domains. Using experiments in a
where it is required. The distributed and adaptive multi-agent simulated robot in soccer domain, they show that human

approach is able to decrease the interferences by avoidingie demonstrations transferred into a baseline policy for aant
negative interactions and conflicts, using the cooperatiommong poficy g

agents. Our method uses the learning ability of agents to mimize ~ and refined reinforcement learning significantly improvenbo
the number of communications among agents and the central learning time and policy performance.
unit. This adaptive behavior lets the agents minimize the the . . . .
to find the optimal routes during the search. A simulation en- Learning by using GAGenetic algorithms (GA) are pop-
ronment has also been developed for visualizing the movemen  ular tools for implementing heuristic learning policies. the
of the agents and the conflict situations. The operation andhe ~ context of robot movements, GA is applied for route planning
efficiency of the algorithm have been investigated using sipfe using the variants of the well-known Vehicle Routing Prable
case studies. (VRP) with the help of other heuristic methods. These method
are called hybrid GAs [5],[6],[12],[16],[17],[20], wheréhe
improvement can be achieved by imitating biological evolu-
tion for solutions of VRP [2],[8],[15],[18]. It is importanto
emphasize that hybrid GA methods are used for improving the
|. INTRODUCTION result starting from an initial - usually not optimal - satrt.
Hagen et al. [11] present the implementation of a GA based
pPath planning on RoboCup’s small-size league robots. Berau
Hpath planning on mobile robots is a continuous process, the
th planning runs until the robot arrives at its destimatio
ereby, the path is updated according to the environmental
changes, such as moving obstacles.

Keywords—renewable energy; agent; genetic algorithm (GA);
cooperation

Itis widely recognized (see e.g. [3]), that "researchersimu
find a sustainable way of providing the power our moder
lifestyles demand.” Along this line, more and more researc
and development projects are aimed at modernizing ener
sources e.g., [9], [4]. Hadjipascalist al. [10] present an
overview of the current and future energy storage technesog

used for electric power applications. Cooperation:Another way of improving the reactivity of

The problems of applying renewable energy sources ar@n agent system is to develop the cooperation ability of its
widely and extensively investigated because of the need forgents. A multi-agent approach was presented in [7], that
sustainability of energy systems. Solar and wind power ar&!S€S cooperation among the agents, task decomposition and
the two main sources of renewable energy, both of thenfask allocation, and decentralized planning. The paper [1]
suffer from the disadvantage that they are not always ngadilProposes a solution approach of managing roadway network
available on demand. At the same time, the available ways dgfongestion over time based on cooperative multi-agergebas
energy storing are not economic enough and are of limited@rincipled negotiation between agents. In our recent sfRay
capacity. One of the possible ways of storing the energy i§ve proposed a cooperative optimal route planning algorithm
using accumulators that can be placed iraacumulator-bank  in the accumulator-bank servicing model by using a spsciall
An automated service of such an accumulator-bank is désirabconstructed model that will be extended by a learning method
that can be implemented by usirmmitonomous agentf.e.,  in this paper.
robots) that can cooperate with each other to provide optima

on-demand service. Learning and cooperation in renewable energy systems:

Advancements in on-demand power management of renewable

Literature on learning abilities of agentdJsually, in a  energy can also be achieved by multi-agent systems. Many
multi-agent system the agents have specific pre-defined abilresearchers have used this technology recently. In [28&], th
ties to perform a certain task. One of the challenges of aimult effectiveness of the coordination model was analysed by
agent system is to develop agents with the ability to leagir th investigating the effect of the environmental conditiohatt
behaviour from each others. In recent years, more and mo&fect the traveling time. Their approach is based on a multi
researchers focus on the learning ability of agents that caagent system for a road transportation network using supply
improve the efficiency of a multi-agent system. Sagegaal.  chain management. Hrncir et al. [13] present the problem of
[19] developed a learning algorithm for agents to optimizefinding parts of routes, which can be shared by several gavel
walks in both speed and stability in order to improve a rabot’ with different points of departure and destinations. TlEs i
visual object recognition. Nguyen-Thinh presented a learn a complex multi-agent problem, for which a special method
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can be developed. They proposed a three-phase algorithm tha s & g8 |8 |0 |11 |1z 13 14 |15
utilizes performance of single-agent planners to find iitlial
plans in a simplified domain first, then merges them using a B e e e
best-response planner. This planner ensures that thdimgsul 5 |a
solutions are individually rational, and then maps the ltegu
plan onto the full temporal planning domain to schedule @ctu &P
journeys. Tl
The aim:Based on our cooperative optimal route planning = |3
algorithm [22], we aim at developing a novel approach that
allows autonomous agents to carry out learning in conflict %= |If
situations through communication with each others butovith R
the interaction with any human during the operation. Our
approach uses the learning ability of agents to minimize the 5B 3 2 oj1oo 1 f12 13 14 NS
number of communications among agents that is necessary N N o R e e R O o s
to the quick service in an accumulator-bank. The learning is

realized by using GA tailored to this special problem.
Figure 2: Matrix-based representation of a storage place 9imple example
22
Il. BASIC NOTIONS AND TOOLS [22]
A. The model of the accumulator bank and the basic route

planning algorithm this in an optimal way. At the same time we assumed that

In our recent study [22] we proposed a cooperative optimathe agents receive and send the information directly from/t
route planning algorithm in the accumulator-bank sergjcin central processing unit. This is not realistic/economicglrac-
model by using a specially constructed model that guarantedical situations, but a wireless technology should be aersid
the avoidance of collisions. This approach is called théchas instead for communication that allows direct communigatio
route planning algorithm that will be briefly described here among the agents, too. (We selected the TCP protocol because

) this can be applied on WIFI and Bluetooth technologies, so
In order to have a simple model of the accumulator-bank;po adaptation will be easier for future devices.)

we separate the storage place into cells of equal size s@that
transport agent can fit in one cell. These cells are arranged i  The communication system has to deliver to the agents the
a matrix that will be the most important helping tool for the data necessary for the route planning:

transport of the agents: moving from cell to cell to get from
one place to another, and this logical unit will also be used t
avoid collision with other agents.

1) the store layout (the map), that shows, which cells it
can go through and which are prohibited; and
2) the planned route of the other agents (the cell-

The basic route planning algorithm minimizes the cost that reservations), on the basis of which it can determine,
is the number of covered cells from the start to the destinati which cell is free, and when or how long it needs
We added certain cost of eve®9 degrees turns made between to wait for which other agent. We can send these
cells, too. (Figure 1 illustrates the cost calculation ofeathp information in wireless way to the agents.

with turning.)

Figure 2 shows a possible, simple cell matrix (this is theC: Synchronization

map for the accumulator-bank) with the costs in the cell® Th  Because every agent should communicate with the central
green cell is the starting point, the blue cell is the end poinunit, it is practical to build up a connection when the agent

and the red cells mark obstacles (wall/rack). connects the system, this connection is reserved contaiyiou
after that. Every agent needs a personal identifier. When an
FeEviENS Citanees + CBLIRCE NeRued cENS) = e Mitinice agent starts its operation, it connects to a predefined rserve
B T from where the agent asks a serial number and a connection
{2} (30— provious distance identifier. On the server side a separate thread waits for the
4 A+ + agent on a specific IP-address and port. After connectian thi
—W el Suessing) thread manages the communication between the agent and the
l{ 5 cost of turning (1) central unit.
| T e In this process, synchronization plays an important rdle. |

two agents join the name-server at the same time, one of the
connection requests is forced to wait until serving the pthe
but we assume that this waiting time is negligible compared
to the operation times.

Figure 1: Cost calculation

Figure 3 illustrates the exchange of the necessary informa-
tion to build up the connection and to plan the route. The new

In the basic route planning algorithm [22], each agentagent - placed in the system - is connected to the name-server
navigates not only avoiding collisions with each other bot d after that it queries its destined connector reach (IP-esir

B. Communication in the basic route planning algorithm
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Robot | HNamesanee | Connectar ~ 8
\ | connect "
i e Figure 4: An example of the priority giving
in IHN" 1 create !-
“« — — — -IJ “i
- AR A itself a route, the other agents had to respect it. Howekir, t
;J ! policy may not be an optimal one. For example, it may happen
|_ that if an earlier planning agent were yielding precedence
|.J i to a later arriving agent, than the agents could reach their
- destinations quicker. Figure 4 shows an example of such a
situation. The first agent planned earlier (the blue arrowksha
... - | its motion) so this agent can pass through passage first. The
________ ol critical section second agent (the green arrow marks it) passes through this
sty i (1 :I {esitery passage too, however it has to wait until the first agent kave
b e e e i the passage. We suppose that they start at the same time from
' o | the starting point of the arrow representing them. The se&con
N ———— ] agent is nearer to the entrance of the passage so the agént wai
mapHoccupies

more for the first agent than the first agent would wait for the

ﬂ'f;:,',';g second agent if they had reserved their route in reverse.orde
Negotiating is optimal when the agents can directly exckang
data with each other: passing data through the central rserve

P i e —> i takes up twice as much time than sending the data directly.
modified occuppies : crtical section
fal)

T T E. Unexpected events

Figure 3: Building up of the connection and the exchange fafrination If an age’_“ C_annOt .C(.)ntmue the V\.Iay for some re"?‘son' but
that is necessary for planning the communication unit is operable, it has to report its brea
down to the central unit. The central unit then deletes every
seizing of the broken down agent, thereafter it informs gver
agent whose path passes through that cell on which the agent

and port) then it closes this connection. The agent builds ups broken down and waiting. The affected agents then redesig
another connection with its connector then it waits foraskt  their route and bring it again to the central unit.

The connector gives a task to the agent submitting its goal ) _ )
(with x and y coordinate pair). After that the agent asks fora  Of course, a braking down failure can occur in such a way
access to the map for reading. Then, the first synchronizefpat causes the complete stop of the agent and it cannot signa
function is executed on the connector side, which induceds state. We will not deal with this problem in this paper.
the agent to wait until the map is used by another agent.
As soon as the resource gets free, the connector grants tike Advance planning
request and sends the necessary data: the map and the seizing
An agent can move on one route, but we need to pay

Then the agent can plan its route while taking all other agjent . L hil h A
planned movements into consideration. As soon as the age fention to certain situations meanwhile, at the same.time

has performed planning it sends back the modified seizing. AE°T €xample:
a result the connector logs out of thg criti_ca! section are th )  There may be situations in which it is simply not
other agents can reach the map again. It is important thf';lt the enough to avoid another agent because for example
agent can only reach the map for a given short time period. the agent takes up a bottleneck passage and the other
There may be a situation in which two agents both read passage is too far. At that time it is more appropriate
the seizing and thereafter they both load their calculaedlts to wait for the passing of another agent than to choose
back but these are in conflict (because neither could plan the a bypass route.
other agent's route at the retrieving of the seizing). Tlsat i ~ 2) There can be some narrow passages in the storage
why we apply mutual exclusion, which forces agents to wait, for the sake of better utilization of space, therefore
but each agent has to plan their route only once. Finally, the we also need to deal with them. In these passages
agent sends back its route when it reaches the destination, s there can be one agent at a time, this can cause a
it no longer seizes the common resources. traffic-jam. If two agents approach the passage at its
opposite ends then the route search algorithm can
D. Inter-agent communication se|r|1_s¢ only the character of the problem before the
collisions.

Until now, a simple policy of ordering the route planning
of agents has been followed: the agent that gets accessrearlirhe possible collisions can be detected in advance, nolfyoca
can send back its seizing first, and from that point it caneot b This requires communication among agents but if every agent
changed by the later arriving agents. So if the first agemesei communicates with each other then it is a lot of time that can
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slow down the operation. The learning ability of agents mayby the GA. With their help we are able to estimate, which
help in such situations. agents are willing to give us priority with high possibilitg
case of a collision.

1. ADVANCED ALGORITHM WITH MACHINE LEARNING The list of collisions contains data about all collision of

The proposed algorithm that uses machine learning iman agent. An element of this list consists of two numbers: the
plemented as a GA problem is described in this section thaserial number of the agent that is collided and éséimation
enables the agents to learn in order to minimize the numbdield of that agent. From this list, we selegt agents with

of communications. the highest "estimation” values (this is called thgent lis)
and we give back the list of these to the agent to which the
A. Learning ability of agents list belongs to. The value aN is typically about5: smaller

. . ) , value may cause that we do not succeed, i.e., we don't get

The basic route planning algorithm provided means onyqrity from any agent, in case of bigger value we may spend
how two agents can yield precedence to each other [22]. Witfyo much time on communication. The order of the agent list
the cooperative communication ability of the agents abédla pas the most important role: if we get priority from an agent
in the advanced algorithm, they can determine which agenis the |ist, it has effect on the complete route search. I thi

is worthwhile to contact. If every agent established contacCcase the total collision list voids and it is not worth to begi
with every other agent at the planning, it would increaseyjscyssions with other agents.

the planning timen — 1 fold in case ofn agents. The
learning ability of the agents is used to minimize the need GA aims at minimizing the number of communications
for communication, i.e., to limit the number of negotiaion among cooperating agenéd yet to achieve the best possible
among agents. For this it is necessary to determine, whicfesult, i.e., to determine optimal routes for the agentss T
agents have a potential conflict against which other ones th&erved by the estimation of the collisions, the amendmest wa
should be contacted. done by the weights4A — F). A GA will be responsible for
) , the determination of these weights. Following a route plen t

For this purpose we store the followingata about @  qrresponding values are calculated and are added to the age

collision: to store, and these values are used to calculate the estmati

e coordinate where the collision occurred of the collisions during the next route planning.

e agentlD identifier of the collided agent In two cases, the GA can be left out:

e distancecovered the time of the traveled route to 1) if we got priority from the agent that is the first in
collision (an expected value) tpe a?jedm list, or o ‘o
. ) ) 2 if we didn’t get priorit any of the agents meanin
e waiting: how much the agent waited in the cell when ) that the ordger ig irrelgvaynt. y g g

the collision occurred

e shutdown it is true, if the thread was shut down C. GA parameters
because of the collision; it is false, if we have to wait

: S We carried out several tests of the algorithm that we can
longer to avoid collision

determine the main parameters of GA, which affect to the
e on_route Is the coordinate on one of the optimal results. We performed tests with different map size ancediff
route? (true/false) ent numbers of agents in our program simulation environment

. . Some important parameters of the used GA are
e manhdistance manhattan distance from the target P P

e maximum number of population$00. This is neces-

estimation a specific value of the collision, which is ) : .
¢ b sary to ensure that we find the optimal solution.

calculated by weighting parameters (equation (1))

. . . . mutation rate.
These variables representing the collision are stored iata d 0.07

structure. The route planner builds up a list for these in the
course of running.

size of population20 entities
e selection: roulette wheel selection

B. The GA problem e recombination: we used one point crossover for gen-
erating the first third of the population, two points
crossover for the second third of the population and
uniform crossover for the third third of the population

Using these data, we use one of the methods of machine
learning, this is the GA to determine from the list of colhiss
which agents should be contacted. For this we need to prior-
itize the collisions. This is stored in thestimationfield, and e coding: binary} bits per weight. So the values of the
calculated as: weights are placed in the-15, 16] interval.

estimation = distance_covered x A + waiting * B +
+shut_down x C + on_route x D +
+manh_distance x E Q)

D. Fitness function

The fitness calculation is based on noting, which was the
first element of the agent list that has succeeiddtie previous
The numbersi, B, C, D, E are the so-called weights to which route planning. Based on this, the elements of the agent list
we give initial values, and their future values are deteedin are classified as:
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Figure 5: A possible instance of the original and optimalusege

1®.
e priority was requested but we didn’t receivé, (in-
stance)
e priority was requested and we received (nstance)
. . =
e priority wasn't requested because we already got it at
a former element of the listl§ instance) Figure 6: Screen shot part from the simulation environment

The goal of the GA is that thestimationfield value of theTls
instance becomes the highest, so next time the algoriths use

it earlier. this way we can save time TABLE I: THE EFFECT OF THE AGENT NUMBER ON THE RUNNING TIME

(BASIC ALGORITHM)

Therefore, the fitness function is determined based on

how much the agent list counted again by the new weights Number of agents  Time of route  Time of planning/
(A,...,E), which were stored by some individuals of the planning (ms)  agent(ms)

GA, approximating the optimal sequence. Optimal sequence 5 144 3,08

is considered to be the one where the instance is in the 10 28 2.8

first place, under it thé; instances (about these we do not 15 16,8 3,12

know if the outcome had been right or wrong), and at the 20 62,6 3,13

bottom are thd; instances (because these are proven wrong),
as Figure 5 shows.

To be able to calculate the fitness of the new agent list IV. CASE STUDIES
-hg|_ven by the GA -t;chek;;\%ents ogtt:/\e/ existing arg];ent list an? Simple case studies were used to test the efficiency of the
their types {3 —T5) should be noted. We retrieve the agents o proposed learning by GA. It is important to emphasize that

the new list from this I_ist, after that we execute the_follng/i the proposed learning by GA method is used ffmproving
_alg_onthm_ (_whe_re type is type of the given agent, serial nemb o regit (usually not an optimal solution).
is its position in the list).

result == 0 The simulation environment has been developed in Delphi
if type = Ty then programming language (see Fig. 6 for a screen shot part), by
result = result + serial number * 2 which we could test the agents’ movements, and we could
end if - compare the operation with and without learning by GA.
if type =Ty then
result := result + (5 — serial_number) % 5 A. Efficiency test
end if

In order to test and compare the route planning algorithm
we recorded the full running time of the algorithms and exam-
ined how this value changed with the increasing complexity
of the planning problem.

if type =Tz then
result := result + (5 — serial_number) * 1
end if
return result
1) Effect of the number of agents using the basic route

Thus, better results are obtained when planning algorithm:In case of the first test the agents

o disadvantageous caseg (type) are placed higher in were arranged randomly in 25225 cell map-file.
the list, Five program runs were performed with each agent
number value, and the running times were averaged.
e advantageous casef;(type) are placed at the top of Table | shows the simulation results without learning,
the list, i.e., by using the basic algorithm [22].
e neutral casesTf type), preferably should be in the 2) Effect of the number of agents using the advanced
lower positions of the list. (Fig. 5) algor!thm with GA: In order to test the effect qf
learning, the agents were arranged randomly in a
The multipliers of positions2, 5, 1) give the weights of 25225 cell map-file, too. Five program runs were
importance. performed with each agent number value, and the
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TABLE II: T HE EFFECT OF THE AGENT NUMBER ON THE RUNNING TIME [3] M. Armand, and J. M. Tarascon, "Building better battetieNature, Vol.
(LEARNING BY GA) 451, 7 February 2008, pp. 452-457.

[4] J. Baker, "New technology and possible advances in gnstgrage”,
Energy Policy, Vol. 36, 2008, pp. 4368-4373.

Number of agents Time of route Time of planning/
planning (ms) agent(ms) [5] J. Berger, M. Sassi and M. Salois, "A hybrid genetic aithon for the
vehicle routing problem with time windows and itinerary strints”, In:
5 13,9 2,78 Proceedings of the Genetic and Evolutionary Computationf€ence,
10 26,6 2,66 Orlando, USA, 1999, pp. 44-51.
15 44,25 2,95 [6] O. Braysy, "Genetic Algorithms for the Vehicle Routirgroblem with
20 59,6 2,98 Time Windows”, Special Issue on Bioinformatics and Genetigo-

rithms, 2001, pp. 33-38.

[7] K. Fischer, J. P. Muller and M. Pischel, "Cooperativartsportation
. . scheduling: An application domain for DAI”, Applied Artifia Intel-
running times were averaged. Table Il shows the ligence: An International Journal, 1996, pp. 1-34.

simulation results. [8] D. E. Goldberg, "Genetic Algorithms in Search Optimipat and Ma-
. chine Learning”, Addison Wesley, USA, 1989.

It can be seen from the results that the system integratg§; A Geliei, P. Gorbe, and A. Magyar, "Modeling and optiration of
the new agents well, the agent per-planning time is bejow electrical vehicle baterries in complex clean energy systeJournal of
ms independently of the number of agents. This important Cleaner Production, 34, 2012, pp. 138-145.
result shows that the GA scales up well with the size and10] I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, ¥@rview of current

complexity of the problem, thus offering an efficient seevic and future energy storage technologies for electric poeti@ations”,
of the accumulator-bank Renewable and Sustainable Energy Reviews, 13, 2009, pg-1&42.

[11] B. Hagen and S. Ralf, "Implementation of Path Plannisgg Genetic

Algorithms on Mobile Robots”, Evolutionary ComputationEC 2006.
V.  CONCLUSION AND FUTURE WORK IEEE Congress on, 2006, pp. 1831-1836.

A novel GA-based learning method is proposed in this(t2] oy Ho. G- T. S Ho, Phqila”d G W Lau, A hybrid g.e”etiﬁ“’"i.thm
. . . or the multi-depot vehicle routing problem”, EngineeriAgplications
paper for optimal cooperat|ve| routﬁ p'i”_?'r?g of autonolmolus of Artificial Intelligence 21, 2008, pp. 548-557, 2008.
age.nts movmg_ In-an acpumu_atc_)r- anx. e.afgems caicu a%%] J. Hrncir and M. Rovatsos, "Applying Strategic Multeg Plan-
their best possible route in a distributed way giving precee ning to Real-World Travel Sharing Problems” 7th Internatib
to other agents to avoid conflict situations, and commuaicat = Workshop on Agents in Traffic and Transportation, AAMAS, 201
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with a learning ability in order to minimize the number of [14] L. Nguyen-Thinh and N. Pinkwart, "Strategy-based Iréag through
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lets the agents minimize the time to find the optimal routes o » PP 988 _
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b d that the GA d for the | . | Productions Economics, 2001, pp. 175-188.
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; ; ; ; ; ; [18] S. Ronald, and S. Kirkby, "Compound optimization salyitransport
and we plan to build a simulation environment, in which the*™* - routing problems with a multi-chromosome genetic. aligar’ In

agent-robots’ motion as well as the unexpected events can be The 1998 IEEE International Conference on Evolutionary @otation,

tested. ICEC'98, 1998, pp. 365-370.
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