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Abstract -- Workloads running in a multi-purpose database 

environment often compete for system resources causing 

resource contention, which leads to poor performance.  

Autonomic database systems will be required to recognize that 

the system resources are not being utilized optimally and take 

action to correct the situation.  Workload management 

techniques can be used to choose an appropriate mix of 

concurrent work to reduce resource contention.   We describe 

a resource aware scheduling approach that predicts the 

amount of CPU, I/O and sort heap memory that will be 

required by a query and schedules each query to run only 

when doing so is unlikely to overwhelm the resources.  We 

present experimental evidence that indicates that overall 

system performance can be improved using this technique. 

Keywords- workload management; database management 

systems; autonomic computing; scheduling 

I.  INTRODUCTION 

Database management systems (DBMSs) are an integral 
part of virtually every computing system and with modern 
day demands on such systems to handle diverse data types, 
mixed workloads, and ever-changing demand, it is more 
important than ever to ensure that these complex systems are 
self-managing and self-optimizing.  It is no longer feasible to 
manually reconfigure a system to handle a new workload 
type or a change in workload intensity. The system itself 
must recognize changing conditions and adapt accordingly.   
Maintaining a balance of work in the system is crucial to 
ensure that all the demands and goals are met. 

 The characteristics of a database workload determine 
how the resources are used.  Online Analytical Processing 
(OLAP) workloads, for instance, may access a large quantity 
of data, perform complex calculations and sort large 
quantities of data thus taxing the CPU, the I/O subsystem 
and the sort memory.  Transactional workloads, on the other 
hand, may simply scan a table for a particular result and use 
very little CPU or sort memory.   Two or more workloads 
with similar characteristics running concurrently on the 
DBMS can result in workload interference, often due to 
resource contention.  

Workload interference may lead to performance 
degradation in the DBMS system. Consider a workload that 
is currently executing 300 transactions per second and is 
using 98% of the CPU.  If another workload begins 

executing on the system that is also CPU-heavy, the CPU 
will become overloaded.  The work will continue to be 
processed, but at a slower speed as the CPU must be shared.  
The performance of the initial workload will degrade, 
perhaps violating goals that have been defined for this 
workload.   If the competing workload was sort intensive and 
CPU-light, the two workloads may have executed in 
harmony without detrimental effects to the initial workload. 

Workload control is the process whereby the DBMS 
exerts control over which work is allowed to run in the 
system.  This may be done by admission control (deciding 
whether or not a query will be admitted to the system based 
on some criteria), scheduling (deciding the order that the 
admitted queued queries will be allowed to run) or execution 
control (termination, suspension, or throttling of currently 
executing queries) [9]. An autonomic database system 
incorporates workload control to ensure that the system runs 
in an optimal state where resources are used effectively and 
efficiently while allowing all work to meet its service level 
objectives.   

Over the past several years, we have developed a number 
of workload management techniques [5] [6] [7] [8] and 
defined a framework that combines the various techniques 
into a unified system for autonomic workload management 
[10].  The work described in this paper is a subset of our 
framework and involves a scheduling approach to workload 
management.  In previous work [4], we proposed a method 
of scheduling queries based on estimates of the amount of 
sort heap memory required by each query.  The present work 
extends this work to add additional resources, namely CPU 
and I/O, and bases the scheduling decisions on the predicted 
usage of all three resources. The goal of our work is to 
schedule database queries such that the order of execution 
ensures that system resources are utilized as fully as possible 
while not overloading any one resource.  

The remainder of the paper is structured as follows.  
Section II outlines related work.  Section III describes the 
architecture for our prototype scheduling system and outlines 
the approach.  Section IV presents experimental validation of 
the work.  In Section V, we present the conclusions and 
future directions. 

II. RELATED WORK 

The current work focuses on scheduling as a form of 
workload control for database systems.   Many algorithms 
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such as first-come-first-served, shortest job first and priority 
scheduling are used in operating system job scheduling [16]. 
We make use of the first fit algorithm in our scheduling of 
database queries in the current research.  

  Modeling approaches to predict performance metrics for 
database queries are gaining in popularity [15].  These 
performance metrics are necessary for making scheduling 
decisions.  Ahmad et al [14] take this one step further to 
model the interactions between queries and, using these 
models, select a mix queries to run concurrently that 
minimizes contention in the system.   This work takes 
advantages of the unique characteristics of report generation 
workloads and enforces a fixed multi-programming level 
(MPL).  In contrast, our approach allows the MPL to vary 
during workload execution and allows for a general 
workload mix. 

Like the work of Ahmad et al, scheduling approaches to 
control DBMS workloads often control the multi-
programming levels; that is, workload control is achieved by 
controlling the number of queries running concurrently in the 
system.  The work by Schroeder et al. [12] uses queuing 
theoretic models and a feedback control loop to predict the 
relationship between throughput, response time and multi-
programming levels to optimize the MPL. Although 
Schroeder et al. evaluate this approach using query priorities 
in which high priority queries should be chosen to run first, it 
is also relevant in terms of scheduling for resource control. If 
the queue is larger, then a query with resource requirements 
suitable to the currently available resources is more likely to 
be found. Mehta et al. [13] focus on scheduling business 
intelligence (BI) batch workloads and attempt to optimize 
overall response time for the workload.   Queries are 
admitted based on their priority and memory requirements. 

Our approach uses models based on information from the 
optimizer to predict the CPU, I/O and Sort Heap memory 
required by individual queries.  These resources are 
considered “high impact” resources in a DBMS.  We use 
these predicted measures along with scheduling algorithms 
to choose which queries will be allowed to run concurrently 
in the system so as to make efficient use of the system 
resources and avoid resource overload.  Our work is 
distinctive in that we are considering multiple resources in 
scheduling decisions. 

III. ARCHITECTURE AND APPROACH 

Our system can be considered a “load control system”, 
that is, one which controls the current workload executing on 
the DBMS.  The architecture of the load control system is 
shown in Figure 1.  Clients submit queries to the DBMS 
which are intercepted by the scheduler which consults the 
DBMS to collect pertinent information regarding potential 
resource usage.  Using this information, a prediction is made 
by the Resource Requirements Estimator for CPU and I/O 
usage and the memory requirements for the sort heap.   The 
query is then queued for admission.  The Requirements 
Model contains the policies that rule how the scheduling 
decisions are made.  The Scheduler constantly checks the 
queue and, if a query can be admitted into the system based 
on its requirements and the current state of the system, then 

the query is allowed to proceed.  We outline the various 
components in more detail in the following sections. 

 
  

 
 

Figure 1.  Prototype Architecture 

 

A. Requirements Estimator 

The requirements estimator predicts the amount of CPU, 
I/O and sort memory that will be used by a query.   The 
system uses these estimates along with an estimate of the 
current resource usage to determine whether or not the query 
can be admitted to the system at a specific point in time. 

Estimates are derived from statistics provided by the 
DB2 Explain tool [1] which generates an access plan for a 
given query complete with statistics pertaining to the cost of 
execution of the plan.  Relevant statistics for our work 
include the cumulative CPU cost (measured in the number of 
instructions required to execute the query), the cumulative 
I/O cost (the total number of seeks and page transfers 
executed by the query), the total cost (a weighted sum of I/O 
and CPU costs for the query expressed in a measurement that 
IBM calls “timerons”) and sort-related costs such as the 
number of rows to be sorted and the approximate length of 
each row.  Details of how the estimates for each resource are 
derived are described below.  

 

CPU 
The CPU is at maximum capacity when it is nearing 

100% utilization.  DB2 Explain provides an estimate of the 
cumulative CPU cost (in number of instructions) of 
executing a particular query plan. The cumulative estimate is 
the total amount of CPU that will be used during query 
execution.  For our estimates, it is more useful to know the 
average amount of CPU that will be used over the lifetime of 
the query.  To estimate the average CPU cost during the 
query execution, we divide the cumulative CPU cost by the 
overall cost of the query provided by DB2 Explain.  To 
estimate the average CPU cost for each individual query, we 
ran each of our experimental queries (of which there were 
17) alone (without competing workload) 100 times while 
noting both the estimated and the actual CPU cost (average 
percentage CPU used during query execution).   We have 
found that there is a relatively high correlation (r =0.7, n = 
1700, p=0.05) between the estimated value and the actual 
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measured average CPU.   We used linear regression to find a 
formula to predict the percent utilization of CPU for a query 
given the estimates from DB2 Explain tool.   The equation 
used was: 

 
%CPU = (0.0001 * cumulative_cpu/overall_cost) + 8.39   (1) 
 

I/O 

To determine when the I/O subsystem was nearing 
capacity, we measured the maximum throughput for our I/O 
channel using a large database table scan with a small buffer 
pool.  The maximum observed throughput was 
approximately 190MB/s. A reasonable (r = 0.65, n=1700,  p 
= 0.05) correlation exists between the cumulative number of 
I/Os predicted by the DB2 Explain facility and the average 
measured throughput of each query run alone.  To calculate 
this correlation, each of the 17 queries was run alone 
(without competing workload) 100 times while measuring 
the average measured throughput.  Linear regression was 
used to derive a formula to estimate the average throughput 
for a query as follows: 

 
Throughput(MB/s) = (0.00004 * cumulative_io) + 19.2     (2) 
 

Sort Heap 

The amount of sort heap memory allocated in a DBMS is 
important to performance because extending the sort heap 
leads to spills to disk requiring additional I/O and increased 
response times.   

The estimation of the sort heap required by a query, like 
for CPU and I/O estimation, uses the information contained 
in the query execution plan. The plan consists of nodes in a 
tree structure with each non-leaf node representing an 
operator.  Two DB2 operators require sort heap space; sort 
and hash join.  The amount of sort heap required by each of 
these operators is determined by the query execution plan 
which provides the number of rows to be sorted as well as 
the approximate width of each row in bytes. We 
experimentally determined that there is approximately 75 
bytes per row of overhead.  Therefore, the estimate for a 
single sort operator is  

 
RequiredSortMemory = #Rows * (RowWidth + 75)          (3) 

 
The DB2 sortheap parameter limits the amount of sort 

heap space that can be assigned to a single sort or hash join.  
Therefore, the minimum of the value of the sortheap 
parameter or RequiredSortMemory is used as the estimate 
for the sort requirements.   

Given that not all nodes in a plan are active at the same 
time, we cannot simply sum the sort requirements for all the 
nodes in a query [4].  We determine which nodes can be 
active at the same time by the types of nodes (blocking, not 
blocking) and the relationships between them (ancestor, 
descendant). The sort heap estimation process for a complete 
query plan can be separated into two steps: calculating sort 
heap sets and using the sort heap sets to calculate sort heap 

requirements. Both sorts and hash joins are blocking 
operations. Hence, any node that requires sort heap is a 
blocking node. This means that when node N becomes 
active, the sort heap demand is constant for a period of time, 
until N starts to produce output. Specifically, the amount of 
sort heap required while N is blocking is the amount that N 
requires plus that which its active descendants require. This 
total amount of sort heap is referred to as the sort heap set of 
N. Conceptually, a sort heap set for node N is calculated by 
starting at N and traversing towards the leaves of the query 
execution tree, summing the sort heap requirements of the 
traversed nodes, until blocking nodes are encountered. 

The amount of sort heap required varies throughout its 
execution.  In other work, we evaluate different estimations 
including the average usage, the dominant usage and the 
maximum usage [2]. In the current work, we use the average 
estimate, that is, the average amount of sort heap that a query 
will use during its execution time.    

B. Requirements Model 

The Requirements Model represents the current resource 
status of the system, that is, how much of a particular 
resource is available in total as well as the amount that is in 
use by currently running work.    A model is used for each of 
the CPU, the I/O subsystem and the sort memory.    

For the CPU, we assume that the maximum amount of 
CPU utilization is 100 percent. Our goal is to keep the 
resource busy, but not overload it.  Our model states that a 
query “fits” in terms of CPU if the CPU estimate of the 
current query plus the total sum of the CPU estimates for all 
currently executing queries is less than or equal to 90 percent 
and the actual measured CPU usage is less than 100 percent. 

The I/O model is based on our measured maximum 
throughput which was 190MB/s.  To avoid overloading the 
I/O system, we use 185MB/s as our maximum desired 
throughput.    

Our resource estimator provides us with the worst case 
I/O estimate; that is, all data that is requested will need to be 
read from disk. In a DBMS, however, recently requested 
data will often be found in the bufferpool, a main memory 
cache managed by the DBMS.  The data in the bufferpool 
may be reused by other queries requesting the same data, 
thus reducing the amount of necessary I/O.   To account for 
data sharing, we measure and incorporate the buffer pool hit 
rate (expressed as a value between 0 and 100), which is the 
measure of how often a page access is satisfied without a 
physical I/O.   A hit rate of 50 (percent) means that a 
requested page is found in the buffer pool 50% of the time.   
We then calculate the maximum throughput that will be 
allowed into the system as: 

 
Total_Throughput = 185 + current_hit_rate * 185/100       (4) 

 
The theory is that if the buffer pool hit rate is high, we can 
allow more work into the system without overloading the 
disk.  If it is low, it means that more physical I/O is 
occurring, therefore, less work should be allowed into the 
system.    
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Our Requirements Model admits a query based on I/O if 
its estimated I/O plus the sum of the I/O usage of currently 
running queries is less than Total_Throughput (as calculated 
above).   

A query is admitted into the system in terms of sort heap 
requirements if the sort heap requirements estimate for the 
current query plus the sum of the sort heap requirement 
estimates for currently running queries does not exceed the 
value specified by the DB2 parameter, sheapthres_shr, 
which limits the total amount of sort heap used by all 
running queries. 

C. Scheduler 

The scheduler makes decisions as to which query to run 
next based on the rules defined by the Requirements Model.  
We have considered several different scheduling algorithms 
in previous work [4].  In the current work, we use the First 
Fit Scheduling algorithm.  Queries are queued in the order in 
which they arrive for execution.   The scheduler traverses the 
queue (from earliest arrival to most recent arrival) and 
considers the requirements of each query.  In order to fit into 
the system, all conditions must be met for each of the three 
resources.  That is, the query must fit in terms of predicted 
CP, I/O and sort heap usage in order to be admitted to the 
system.  The first query found that meets all the requirements 
is admitted to the system for execution. 
 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Environment 

Our database workload consisted of 17 OLAP queries 
based on the TPC-H benchmark [3].  The ordering of the 
queries was randomly assigned (on a per client basis) prior to 
the run, but was kept constant throughout all subsequent 
runs.  Our OLAP workload was sort-intensive and the 
queries varied in their use of CPU and I/O.   

In order to ensure that the CPU and the I/O subsystems 
were heavily utilized at some points, we simulated a CPU-
intensive workload by running a simple program that 
consumed approximately 30 percent of the CPU when run 
alone. We simulated an I/O intensive workload by 
performing multiple repeat scans on a table not used by our 
OLAP workload.  We used a very small (and separate) 
bufferpool for the I/O intensive workload to ensure that the 
I/O subsystem was being used extensively. 

Twelve clients each sent the 17 OLAP queries to the 
system for processing.   The workload was varied every two 
minutes in the following pattern: 

 
1. OLAP workload alone 
2. CPU intensive workload + OLAP workload 
3. I/O intensive workload + OLAP workload 
4. CPU intensive workload + I/O intensive 

workload + OLAP workload 
 
Each run was repeated 8 times and average values 

reported.  Between each run, the database system was 
restarted to clear all monitor elements and a sample 

workload was run to warm up the bufferpool and to bring the 
database system to a steady state. 

DB2 V9.7 was used to house the 3GB database for the 
OLAP workload.  The bufferpool was configured to 1GB.   
The parameters sortheap (the maximum sort heap allocated 
to any single query) and sheapthres_shr (the limit on the total 
amount of sort heap used by all running queries) were set to 
500 and 2500 4K pages respectively.  The DBMS was run on 
a dedicated Windows 8 Server machine configured with 8 
GB of RAM and a quad core CPU. The clients and the 
scheduling system were run on a remote machine.  

We compared our proposed scheduling approach to a) a 
system running with no control where queries were run on a 
first come, first serve basis and, b) to a system where we 
fixed the maximum multi-programming level (MPL) to four, 
that is, the maximum number of queries that were allowed to 
run concurrently was four.  This number was determined 
experimentally to be an optimal setting for steady 
performance in our configuration [2]. We expected that the 
scheduling approach would yield better performance than the 
system running with no control and that it would perform at 
least as well as when the optimal multiprogramming level 
was used.  We compare our approach with a limited MPL as 
setting the MPL is a common approach to reducing the 
amount of resource contention in a database system.  

B. Results 

The results are summarized in Tables 1, 2 and 3.  Table 1 
shows general metrics including the total run time for the 
204 queries (12 clients each running 17 queries) in minutes 
(including wait time), the average wait time per query 
(minutes), the maximum wait time (minutes), the average 
execution time (minutes) and the maximum multi-
programming level (MPL).   Table 2 shows CPU Usage and 
I/O metrics such as the average disk queue length, the 
maximum disk queue length, the average throughput in MBs 
per second, and the buffer pool hit rate (percentage).  Table 3 
presents the sort metrics including the number of post 
threshold sort operations, the sort overflows, and the number 
of hash join overflows and small hash join overflows.    Sort 
and hash join overflow operations are an indication of sort 
heap contention.  Overflows occur when not enough memory 
can be granted to perform a sort in memory.  In this case, 
temporary results are often written to (and re-read from) disk 
resulting in increased I/O.   
 

TABLE I.  GENERAL METRICS 

 
Total 

RunTime 

(mins) 

Average 

Wait 

Time 

(mins) 

Max 

Wait 

Time 

(mins) 

Average 

Execution 

Time 

(mins) 

Max 

MPL 

No 

Control 

135 0.07 1.1 
7.1 12 

MPL 4 133 4.7 12.9 7.8 4 

First Fit 

Schedule 
127 4.9 15.7 

6.8 8 
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TABLE II.  I/O AND CPU METRICS 

 
 

Average 

Disk 

Queue 

Length 

Max  

Disk 

Queue 

Length 

Buffer 

Pool  

Hit  

Rate  

(%) 

Average 

Through- 

put (MB) 

Average  

CPU 

Usage 

(%) 

No 
Control 

10.4 43 83 86 94 

MPL 4 9.8 42 84 78 94 

First Fit 

Schedule 
5.2 30 86 79 91 

 

TABLE III.  SORT METRICS 

 Post 

Threshold 

Sort 

Operations 

Sort 

Overflows 

Hash 

Join 

Overflows 

Small 

Hash Join 

Overflows 

No 

Control 

81 116 62 
24 

MPL 4 77 112 58 21 

First Fit 

Schedule 
21 22 20 

7 

 
The results show that the overall execution time was 

reduced by approximately 6% using the scheduling approach 
over the baseline (no control) or MPL 4 approaches. 
Although the average wait time per query was higher for the 
scheduling approach, the average execution time per query 
was lower, indicating a more efficient use of resources.  The 
load on the I/O subsystem was reduced as indicated by a 
reduction in the average (and maximum) disk queue length 
and a lower average throughput.  The average CPU usage 
decreased slightly.    Sort operations were improved with 
significantly fewer post threshold sort operations, sort 
overflows, hash join overflows and small hash join 
overflows performed in the scheduling approach than either 
the baseline or the MPL 4 cases.  

 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

We have presented and validated a scheduling approach 
to DBMS workload control that we plan to incorporate into 
our framework for autonomic DBMS workload control.  The 
described approach schedules queries based on their 
predicted resource usage.  Based on our experimentation, the 
approach yields reasonable results and appears to be 
promising approach for adapting to workload changes. 

The current work will be integrated as the scheduling 
component of a proposed framework for DBMS workload 
management [10].   This framework provides coordinated 
control of different workload management techniques such 
as admission control, execution control, and scheduling.  
Each component is controlled by a feedback controller which 
monitors system performance and adjusts the amount of 
control exerted by the mechanism accordingly.   For 
example, the execution control component consists of a 

controller that a) determines the type of execution control to 
use (throttling or query canceling) and b) sets the degree of 
control (for example, in the case of throttling, the controller 
would set the amount of throttling based on feedback 
regarding the system performance).   The controller for the 
scheduler will measure actual system resource usage and will 
feed this information back to the system to update the 
requirements estimators, and to set the threshold policies in 
the requirements models accordingly. Building the 
autonomic controller for the scheduler and integrating it into 
our overall workload control framework will be the next step 
in our work. 

 We have presented the results of only the “first fit” 
scheduling algorithm in this paper.  Experiments have been 
conducted with the smallest job first and the blocking query 
scheduling algorithms that were used in our previous work 
[4].   Results using these algorithms are similar to those 
reported here with the main difference being that the average 
and maximum wait times are vastly increased for longer 
queries using a smallest job first algorithm.   

Currently a query is only allowed to run if it fits in terms 
of CPU, I/O and sort memory.  There are many other 
variations of this approach which may prove to be useful.  
The most promising approach currently under investigation 
is scheduling by “critical resource”.    That is, the resources 
are monitored and if the usage of one or more resources 
enters a pre-determined “critical state”, the scheduling 
algorithm considers only the critical resource(s) when 
making scheduling decisions.   We plan to base this work on 
work done by Zeldes and Feitelson [11], who present an 
algorithm for system resource management that focuses on 
bottleneck resources and allocates them to the most 
deserving clients.   
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