
Policy for Distributed Self-Organizing Infrastructure Management in Cloud
Datacenters

Daniela Loreti, Anna Ciampolini
Department of Computer Science and Engineering, Universitá di Bologna

Bologna, Italy
Email: {daniela.loreti, anna.ciampolini}@unibo.it

Abstract—Modern data centers for cloud computing are
facing the challenge of an ever growing complexity due to the
increasing number of users and their augmenting resource
requests. A lot of efforts are now concentrated on providing
the cloud infrastructure with autonomic behavior, so that it can
take decisions about virtual machine (VM) management across
the datacenter’s nodes without human intervention. While the
major part of these solutions is intrinsically centralized and
suffers of scalability and reliability problems, we investigate
the possibility to provide the cloud with a decentralized
self-organizing behavior. We present a new migration policy
suitable for a distributed environment, where hosts can exchange
status information with each other according to a predefined
protocol. The goal of the policy is twofold: energy saving and
load balancing. We tested the policy performance by means
of an ad hoc built simulator. As we expected, our distributed
implementation cannot perform as good as a centralized
management, but it can contribute to augment the degree of
scalability of a cloud infrastructure.

Keywords-Distributed Infrastructure Management; Cloud
Computing; Self-Organization; Autonomic Computing

I. INTRODUCTION

The Cloud Computing paradigm experienced a significant
diffusion during last few years thanks to its capability of
relieving companies of the burden of managing their IT
infrastructures. At the same time, the demand for scalable
yet efficient and energy-saving cloud architectures makes the
Green Computing area stronger, driven by the pressing need
for greater computational power and for restraining economi-
cal and environmental expenditures.

The challenge of efficiently managing a collection of
physical servers avoiding bottlenecks and power waste, is
not completely solved by Cloud Computing paradigm, but
only partially moved from customers’s IT infrastructure to
provider’s big data centers. Since cloud resources are often
managed and offered to customers through a collection of
virtual machines (VMs), a lot of efforts concerning the Cloud
Computing paradigm are concentrating on finding the best
virtual machine (VM) allocation to obtain efficiency without
compromising performances.

Since an idle server is demonstrated to consume around
70% of its peak power [1], packing the VMss into the lowest
possible number of servers and switching off the idle ones,
can lead to a higher rate of power efficiency, but can also
cause performance degradation in customers’s experience and
Service Level Agreements (SLAs) violations.

On the other hand, allocating VMs in a way that the total
cloud load is balanced across different nodes will result in a

higher service reliability and less SLAs violations, but forces
the cloud provider to maintain all the physical machines
switched on and, consequently, causes unbearable power con-
sumption and excessive costs.

In addition, we must take into account that such a system is
continuously evolving: demand of application services, com-
putational load and storage may quickly increase or decrease
during execution. Due to these contrasting targets, the VM
management in a Cloud Computing datacenter is intrinsically
very complex and can be hardly solved by a human system
administrator. For this reason, it is desirable to provide the
infrastructure with the ability to operate and react to dynamic
changes without human intervention.

The major part of the efforts in this field relays on cen-
tralized solutions, in which a particular server in the cloud
infrastructure is in charge of collecting information on the
whole set of physical hosts, taking decisions about VMs
allocation or migration, and operating to apply these changes
on the infrastructure [2], [3]. The advantages of these central-
ized solutions are well known: a single node with complete
knowledge of the infrastructure can take better decisions and
apply them through a restricted number of migrations and
communications. However, scalability and reliability problems
of centralized solutions are known as well. Furthermore, as
the number of physical servers and VMs grows, solving
the allocation problem and finding the optimal solution can
be time expensive, so some other approximation algorithm
is typically used to reach a sub-optimal solution in a fair
computation time [4].

In this work, we investigate the possibility of bringing
allocation and migration decisions to a decentralized level
allowing the cloud’s physical nodes to exchange information
about their current VM allocation and self-organize to reach
a common reallocation plan. To this purpose, we designed a
novel distributed policy, Mobile Worst Fit (MWF), able to
both save power (by switching off the underloaded hosts)
and keep the load balanced across the remaining nodes as
to prevent SLA violations. The policy adopts a decentralized
approach: we imagine the datacenter as partitioned into a
collection of overlapping neighborhoods, in each of which the
local reallocation strategy is applied. Taking advantage from
the overlapping, the VM redistribution plan propagates from
a local to a global perspective. We analyze the effects of this
approach by comparing it with the centralized application of
a best fit policy. In particular, we relay on the definition of the
Distributed Autonomic Migration (DAM) protocol [5], used

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

by cloud’s physical hosts to communicate and get a common
decision as regards the reallocation of VMs, according to a
predefined global goal (e.g., power-saving, load balancing,
etc.).

We tested our approach by means of DAM-Sim, a software
to simulate the behavior of different policies applied in a
traditional centralized way or through DAM protocol on a
decentralized infrastructure.

The article is organized as follows: in Section II, we show
the architectural structure of our system, giving an overview of
the DAM protocol and focusing on the adopted MWF policy;
in Section III, we show the experimental results obtained by
means of the DAM-Sim simulator; Section IV shows the state-
of-the-art of Cloud Computing infrastructure management and
Section V illustrates our conclusions and future works.

II. ARCHITECTURAL FRAMEWORK

We present a distributed solution for Cloud Computing
infrastructure management, with a special focus on VM mi-
gration.

As shown in Fig. 1, the framework is composed of three
main layers:

• the infrastructure layer, specifying a software representa-
tion of the cloud’s entities (e.g., hosts, VMs, etc);

• the coordination layer, implementing the DAM protocol,
which defines how physical hosts can exchange their
status and coordinate their work;

• the policy layer, containing the rules that every node must
follow to decide where to possibly move VMs.

The separation between coordination and policy layer allow
us to use the same interaction model with different policies.
We describe each layer in the following sections.

A. Infrastructure Layer

The infrastructure layer defines which information must
be collected about each host’s status. To this purpose two
basic structures are maintained: the HostDescriptor and the
VmDescriptor.

The HostDescriptor can be seen as a bin with a certain
capacity able to host a number of VMs, each one with a
specific request for computational resources. We only take
into account the amount of computational power in terms of
MIPS offered by each host and requested by a VM. An empty
HostDescriptor represents an idle server that can therefore be
put in a sleep mode or switched-off to save power.

The HostDescriptor contains not only a collection (the
current map) of VmDescriptors really allocated on it, but also

Fig. 1: The three tiers architecture of the Sim-DAM simulator.

Fig. 2: Schema of two overlapping neighborhoods.

a temporary collection (the future map) initialized as a copy
of the real one and exchanged between hosts according to
the defined protocol. During interactions only the temporary
copy is updated and, when the system reaches a common
reallocation decision, the future map is used to apply the
migrations.

In a distributed environment, where each node can be aware
only of the state of a local neighborhood of nodes, the number
of worthless migrations can be very high. Thus, this double-
map mechanism is used to limit the number of migrations (as
we describe in Section II-B), by performing them only when
all the hosts reach a common distributed decision.

Each VM is also equipped with a migration history keeping
track of all the hosts where it was previously allocated. For
the sake of simplicity, we assume that a VM cannot change
its CPU request during the simulation period.

B. Coordination Layer

The coordination layer implements the DAM protocol which
defines the sequence of messages that hosts must exchange
in order to get a common migration decision and realize the
defined policy.

DAM protocol coordination details are explained in-depth
in [5]. The protocol is based on the assumption that the cloud
is divided into a predefined fixed collection of overlapping
subsets of hosts: we call each subset a neighborhood.

We assume that each physical host executes a daemon
process called SlaveServer (SS in Fig. 2), which owns a copy
of the node’s status stored into an HostDescriptor and can
send it to other nodes asking for that.

Each node can monitor its computational load and the
amount of resources used by the hosted VMs; according to the
chosen policy, it can detect either it is in a critical condition or
not. A node can, for example, detect to be overloaded, risking
to incur in SLA’s violations, or underloaded, causing possibile
power waste. If one of these critical conditions happens, the
node starts another process, the MasterClient, to actually make
a protocol interaction begin. We call rising condition the one
that turns on a node’s MasterClient.

Since there is a certain rate of overlapping between neigh-
borhoods, the effects of migrations within a neighborhood can
cause new rising conditions in adjacent ones.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

To better explain the DAM protocol, Fig. 2 shows an
example of two overlapping neighborhoods. Each node has
a SlaveServer (SS in Fig. 2) always running to answer ques-
tions from other node’s MasterClient (MC in Fig. 2) , and
optionally can also have a MasterClient process started to
handle a critical situation. A virtual machine vm allocated
to an underloaded node N1 can be moved out of it on N2
and, as a consequence of the execution of the protocol in the
adjacent neighborhood of N3, it can be moved again from N2
to N3. It is worth to notice that node N2, as each node of
the datacenter, has its own fixed neighborhood, but it starts to
interact with it (by means of a MasterClient) only if a rising
condition is observed.

Note that N1’s MasterClient must have N2 in its neighbor-
hood to interact with it, but the SlaveServer of N2 can answer
to requests by any MasterClient and, if a critical situation is
detected (so that N2 MasterClient is started) its neighborhood
does not necessarily include N1.

As regards this environment, we must remark that the
migration policy should be properly implemented in order to
prevent never-ending cycles in the migration process.

We must ensure that the neighbors’s states the MasterClient
obtains, are consistent from the beginning to the end of the
interaction. For this reason, a two-phase protocol is adopted:

1) DAM Phase 1: The MasterClient sends a message to
all the SlaveServers neighbors to collect their HostDescrip-
tors. This message also works as a lock message: when the
SlaveServer receives it, locks his state, so that no interactions
with other MasterClients can take place. If a MasterClient
sends a request to a locked SlaveServer, simply waits for the
SlaveServer to be unlocked and to send its state.

2) DAM Phase 2: The MasterClient compares all the
received neighbor’s HostDescriptors with a previous copy he
stored. If the future map allocation is changed, performs phase
2A, otherwise increments a counter and, when it exceeds a
certain maximum, performs phase 2B:

• Phase 2A: the MasterClient computes a VM reallocation
plan for the whole neighborhood, according to the defined
policy, and sends back to each SlaveServer neighbor the
modified HostDescriptor. The state is accepted passively
by the slaves, without contradictory. The migration deci-
sions only change the future map of VM allocation. No
host switch-on/off or VM migration is performed in this
phase. After all new states are sent, the SlaveServers are
unlocked and the MasterClient begins another round of
the protocol interaction by restarting phase 1.

• Phase 2B: when the number of round with unchanged
neighbor’s allocation exceeds a defined maximum, the
MasterClient sends an update-current-status request to all
SlaveServers and terminates. This last message notifies
the SlaveServers that information inside the HostDe-
scriptor should be applied to the real system state. The
SlaveServer again executes it passively and unlocks his
state.

Phase 2A and 2B alternatives come from the need for reduc-
ing the number of migration physically performed. Looking

Fig. 3: MWF policy algorithm.

at example in Fig. 2, if hosts only exchange and update
the current collection of VMs, every MasterClient can only
order a real migration at each round, so that vmi on N1
would be migrated on N2 at first, and later on N3. Using
the temporary future map (initially copied from the real one)
and performing all the reallocations on this abstract copy,
real migration are executed only when the N3’s MasterClient
exceeds a maximum number of rounds and vmi can directly
go from N1 to N3.

C. Policy Layer

The Policy Layer is responsible for the decentralized migra-
tion decision process. This paper presents MWF, a novel policy
aiming to switch off the underloaded hosts to save power,
while maintaining the load of the other nodes balanced. MWF
exploits two fixed thresholds (FTH UP and FTH DOWN) and
two dynamic thresholds (MTH UP and MTH DOWN) used
to detect rising conditions. The fixed thresholds identify risky
situations: if the host is less loaded than FTH DOWN an
energy waste is detected, while, if the host is more loaded than
FTH UP, SLA violations may occur. The dynamic thresholds
(MTH UP and MTH DOWN) represents the upper and lower
values that cannot be exceeded in order to maintain the
neighborhood balanced.

According to the DAM coordination protocol, at each iter-
ation the MasterClient collects the VM allocation map of the
neighbors and executes a MWF optimization as detailed in
Fig. 3: the MasterClient calculates the average of resource
utilization in his neighborhood (calculateNeighAverage() in
line 1 of Fig. 3) and uses it to compute the two dynamic
thresholds (MTH DOWN and MTH UP) by adding and sub-
tracting a tolerance interval t (lines 2-3 of Fig.3). Then the
MasterClient checks its HostDescriptor h and collects the
current computational load u by invoking a specific getLoad()
method on the HostDescriptor (line 4 of Fig. 3).

The computational load u of the host is compared to fixed
and dynamic thresholds: if it is less than the lower thresholds,
the MasterClient attempts to put the host in sleep mode by
migrating all the VMs allocated; otherwise, if the host load
exceeds the upper thresholds, only a small number of VMs are
selected for migration. As we can see in line 5-6 of Fig.3, if
the computational load u is less than the fixed (FTH DOWN)

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

Fig. 4: The selectVms() procedure.

or the dynamic (MTH DOWN) lower thresholds, all the
VMs of the host are collected for migration into an array
vmList. h.getFutureV mMap() in line 6 is the method to
collect the temporary allocation. Indeed in this phase, the
policy only works on a copy of the real VM allocation map,
because according to DAM protocol, all the migrations will be
performed only when the whole datacenter reach a common
decision. If the load u is detected to be higher than the fixed
(FTH UP) or dynamic (MTH UP) upper thresholds, then the
selectV m() operation is invoked to pick (from the host h
temporary state) only the less loaded VMs whose migration
will result in the host load to go back under both MTH UP and
FTH UP. selectV m() is a modified version of Minimization
of Migrations algorithm from Beloglazov et al. [6] and is
detailed in Fig. 4. Differently from [6], we select the threshold
thr as the minimum between FTH UP and MTH UP.

The list of chosen VMs vmList is finally migrated
to neighbors by means of a modified worst-fit policy
(migrateAll(vmList) in line 11 of 3). As shown in Fig.
5, the migrateAll procedure takes as input the list of vm
to move (vmList), the host h where they are currently
allocated, the list offNeighList of switched-off hosts in h’s
neighborhood, the underNeighList of h’s neighbors with
load level lower than FTH DOWN, and otherNeighList
of all the other neighbors of h. The procedure considers
the VMs by decreasing CPU request and, according to the
principles of worst-fit algorithm, tries to migrate it to the
neighbor n with the highest value of free capacity (lines 2-
13 of Fig. 5). If no neighbor in otherNeighList can receive
the vm, the underNeighList is considered with a best-fit

Fig. 5: The migrateAll() procedure.

approach (lines 14-25 of Fig. 5), thus allocating vm on the
most loaded host of the list. This ensure that neighbors with
CPU utilization near to FTH DOWN are preferred, while less
loaded ones remain unchanged and will be hopefully switched-
off by other protocol’s interactions. Finally, if neither hosts
in underNeighList can receive vm (e.g, because the list is
empty), but h is more loaded than FTH UP, then h is in
a risky situation because SLA’s violations can occur. Thus
a switched-off neighbor is woken up (line 27 of Fig. 5).
migrateAll(vmList) operates in a ”all-or-none” way, such
that the migrations are committed on the future maps (line 34
of Fig. 5) only if it is possible to reallocate all the VMs in
the list (i.e., without making other hosts to exceed FTH UP),
otherwise no action is performed (line 29 of Fig. 5).

As shown in Fig. 6, suppose that a protocol execution by
the MasterClient of hb decides to migrate a virtual machine
vmi currently allocated on hc to hb. When the SlaveServer of
hb is unlocked, the policy execution on ha’s MasterClient can
decide to put vmi into ha. Now if hc has a MasterClient

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

Fig. 6: Example of three overlapping neighborhoods.

running, and decides to migrate vmi back to hc, then hc

can take the same decision as before and a loop in vmi

migration starts. If this happens, the distributed system will
never converge to a common decision. In order to face this
problem, the MWF policy exploits the migration history inside
each VmDescriptor to avoid loops in reallocation: a VM can
be migrated only on a host that it never visited before. Once
the distributed autonomic infrastructure reached a common
decision, the migration history of each VM is deleted.

III. EXPERIMENTAL RESULTS

To understand the effectiveness of the proposed model we
developed DAM-Sim [5]: a Java simulator able to apply a
specific policy on a collection of neighborhoods through DAM
protocol and compare the performance with a centralized
policy implementation.

We tested our approach on a set of 100 physical nodes
hosting around 3000 VMs (i.e., an average value of 30 VMs on
each host), repeating every experiment with an increasing av-
erage load on each physical server. We fixed the FTH DOWN
threshold at 25% of computational load and the FTH UP at
95%, while the tolerance interval t for load balancing is fixed
at 8%. We always start from the worst situation for power-
saving purposes, i.e., all the servers are switched on and have
the same computational load within the fixed thresholds. To
make the DAM protocol start we need some lack of balance
in the datacenter, so we forced 20 hosts to be more loaded and
20 hosts to be less loaded than the datacenter average value.

In Fig. 7, we compare the MWF performance with nN=5
and 10 nodes in each neighborhood, with the application of a
centralized best fit policy (GLO in Fig. 7a). We also show the
performance of a best fit policy applied in a distributed way
by means of DAM protocol (BF in Fig. 7d). Details about BF
implementation can be found in [5].

Fig. 7a and 7d show the number of servers switched on at
the end of the MWF and BF executions. As we expected, the
DAM protocol cannot perform better than a global algorithm.
Indeed, the global best fit policy can always switch off a
higher rate of servers resulting in the lower trend. Furthermore,
as regards the power saving objective, we can see that BF

perform better than MWF for all the selected neighborhood
dimensions. This comes from the different objectives of the
two policies: MWF tries to switch-off the initially underloaded
servers to save power, while keeping the load of the working
servers balanced; BF brings into question all the neighborhood
allocation at each MasterClient interaction, considering only
power-saving objectives.

Fig. 7b and 7e show the number of migrations executed.
Since the number of VMs can vary a bit from a scenario to
another and the number of switched off servers influences the
result, in the graph we show the following rate:

nMig
onServers

nVM
(1)

where nMig is the number of migrations performed,
onServers is the number of working servers at the end of
the simulation and nVM is the number of VMs in the initial
scenario.

Since no information about the current allocation of a VM
is taken into account during the policy computation in a
global environment, the number of migrations can be very
high. Indeed is high the resulting trend of migration for the
global policy, while DAM always outperforms it. In particular,
MWF performs better than BF for every selected neighborhood
dimension. Nevertheless, for high value of computational load
the performance of MWF in terms of number of switched off
server are comparable to those of the global best fit policy,
while the migration rate is significantly lower.

Fig. 7c and 7f show the number of messages exchanged
between hosts during the computation. As we expected, it
significantly increases as the number of servers in each neigh-
borhood grows. Even if the number of messages for low
values of neighborhood dimension is comparable to the one
of the global solution, when it grows, the number of messages
exchanged significantly increases.

At the moment, the simulator is not able to give trustworthy
results about execution time for distributed environments,
because the CPU executing the simulator code can only
sequentialize intrinsically concurrent processes of the protocol.
For this reason, no test about execution time is reported.

In Fig. 8, we can see the distribution of number of servers
along load intervals. In the initial scenario (INITIAL in Fig. 8)
all the servers have 50% load except for 20 underloaded and 20
overloaded nodes. We show the distribution after a global best
fit optimization (GLO in Fig. 8) and the application of MWF
and BF by means of DAM protocol with 5 as neighborhood
dimension.

The application of a global best fit switches-off a large
number of servers to save power, but packs too much VMs
on the remaining hosts. This results in the red distribution in
Fig. 8, where almost all the switched on servers are loaded
at 95s% creating an high risk of SLAs violations. The best
fit (BF) algorithm applied by means of DAM protocol suffers
of the same problem: a large number of servers is switched-
off, but a part is forced to have 95% load. MWF is more

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

effective from the load balancing perspective: it can switch-
off less servers than BF, but is able to decrease the load of the
overloaded nodes leaving all the working servers balanced.

As we expected, Fig. 8 reveals that the median of the MWF
distribution is augmented respect to the initial configuration.
This is due to the fact that a certain number of servers is
switched-off, thus the global load of the remaining servers
results increased.

IV. RELATED WORKS

Our work mainly concern low level infrastructural support,
in which the management of virtualized resources is always a
compromise between system performance and energy-saving.
Indeed, in a cloud infrastructure there are usually well-defined
SLAs to be compliant to and perhaps the simplest solution is to
use all the machines in the cloud. Nevertheless, if all the hosts
of the datacenter are switched on, the energy waste increases
leading to probably too high costs for the cloud provider.

Around cloud environments, with their contrasting targets
of energy-saving versus performance and SLAs compliance,
a lot of work was done in order to provide some kind
of autonomy from human system administration and reduce
complexity. Some of these works involves automatic control
theory realizing an intrinsic centralized environment, in which
the rate of utilization of each host is sent to a collector node
able to determine which physical machines must be switched
off or turned on [2], [3], [7]. Some other solutions concern
centralized energy-aware optimization algorithms [4], [8], [9],
in particular extensions of the Bin Packing Problem [10], [11]
to solve both VMs allocation and migration problems [6].
These approaches focus on finding the best solution and min-
imizing the complexity of the algorithm, without concerning
the particular implementation, but assuming a solver aware of
the whole system state (in terms of load on each physical
host and VM allocation). Thus they particularly lend to a
centralized implementation.

Finally, other approaches involve intelligent, optionally bio-
inspired [12], [13], agent-based system, which can give to
the datacenter a certain rate of independence from human
administration, showing an intelligent self-organizing emer-
gent behavior [14], [15], and also provide the benefits of a
more distributed system structure [16]. As in [14] which is
based on Gossip protocol [17], we adopt a self-organizing
approach, where coordination of nodes in small overlapping
neighborhoods leads to a global reallocation of VMs, but
differently from [14] we created a more elaborate model of
communication between physical hosts of the datacenter. In
particular, while in [14] each migration decision is taken after
a peer-to-peer interaction comparing the states of the only two
hosts involved, in our approach the migration decisions are
more accurate because they comes from an evaluation of the
whole neighborhood state.

V. CONCLUSIONS

We presented a VM migration policy suitable for a dis-
tributed management in a cloud datacenter. To do so, we

relayed on a decentralized solution for cloud virtual infrastruc-
ture management (DAM), in which the hosts of the datacenter
are able to self-organize and reach a global VM reallocation
plan, according to a given policy.

We tested the policy behavior by means of a software
simulator. MWF shows good performances for various compu-
tational loads in terms of both number of migrations requested
and number of switched-off servers. MWF is also able to
achieve an appreciable load balancing among the working
servers, while still some work remain to do to decrease
the number of messages exchanged. Therefore in the near
future, we plan to optimize the DAM protocol in order
to reduce the amount of messages in each interaction. As
we expected, the distributed MWF policy cannot outperform
a centralized global best-fit policy (especially in terms of
number of switched-off hosts and exchanged messages), but
the decentralized nature of our approach can intrinsically
contribute to augment the scalability of the cloud management
infrastructure.

In the near future, we will use DAM-Sim to test different
and more elaborate reallocation policies, taking into account
not only computational resources, but also memory and band-
width requirements. We will introduce variations of VM load
requests at simulation time to better mirror real datacenter
environments. Furthermore, in this work, we avoid loops in
VM migrations by preventing the allocation on nodes that
already hosted the same vm before. We plan to relax this
restrictive constraint by means of a Most Recently Used queue
of hosts.

Finally, we plan to test our implementation on a real
cloud infrastructure and compare the time to get a common
distributed decision with the centralized implementation of the
same reallocation policy. Furthermore, on a real cloud infras-
tructure we expect to face low level architectural constraints
in overlapping neighborhoods definition, which will request
deeper investigations.

REFERENCES

[1] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in The 34th ACM International Symposium
on Computer Architecture. ACM New York, 2007, pp. 13–23.

[2] Jung, “Mistral: Dynamically managing power, performance, and adap-
tation cost in cloud infrastructures,” in International Conference on
Distributed Computing Systems, IEEE, Ed., June 2010, pp. 62–73.

[3] H. C. Lim, S. Babu, and J. S. Chase, “Automated control in cloud
computing challeges and opportunities,” in ACDC ’09, Proceedings of
the 1st workshop on Automated control for datacenters and clouds.
ACM New York, 2009, pp. 13–18.

[4] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, September 2012.

[5] D. Loreti and A. Ciampolini, “Green-dam: a power-
aware self-organizing approach for cloud infrastructure
management,” Università di Bologna, Tech. Rep., 2013 -
http://www.lia.deis.unibo.it/Staff/DanielaLoreti/HomePage files/Green-
DAM.pdf.

[6] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, May 2012.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

(a) (b) (c)

(d) (e) (f)

Fig. 7: MWF end BF performance comparison.

Fig. 8: Distribution of servers on load intervals.

[7] E. Kalyvianaki, “Self-adaptive and self-configured cpu resource provi-
sioning for virtualized servers using kalman filters,” in ICAC ’09 Pro-
ceedings of the 6th international conference on Autonomic computing,
ACM, Ed., 2009, pp. 117–126.

[8] R. Jansen, “Energy efficient virtual machine allocation in the cloud,”
in Green Computing Conference and Workshops (IGCC), 2011 Interna-
tional. IEEE, July 2011, pp. 1–8.

[9] A. J. Younge, “Efficient resource management for cloud computing
environments,” in Green Computing Conference, 2010 International.
IEEE, August 2010, pp. 357–364.

[10] J. Levine and F. Ducatelle, “Ant colony optimisation and local search
for bin packing and cutting stock problems,” Journal of the Operational
Research Society, pp. 1–16, 2003.

[11] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of
virtual machine instances in clouds,” in 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom),
IEEE, Ed., December 2010, pp. 127–134.

[12] R. Giordanelli, C. Mastroianni, and M. Meo, “Bio-inspired p2p sys-
tems: The case of multidimensional overlay,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 7, no. 4, p. Article
No. 35, December 2012.

[13] S. Balasubramaniam, K. Barrett, W. Donnelly, and S. V. D. Meer, “Bio-
inspired policy based management (biopbm) for autonomic communi-

cations systems,” in 7th IEEE International workshop on Policies for
Distributed Systems and Networks, IEEE, Ed., June 2006, pp. 3–12.

[14] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolidation in
clouds through gossiping,” Technical Report UBLCS-2011-01, 2011.

[15] A. Vichos, “Agent-based management of virtual machines for cloud
infrastructure,” Ph.D. dissertation, School of Informatics, University of
Edinburgh, 2011.

[16] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “A distributed approach
to dynamic vm management,” in Network and Service Management
(CNSM), 2013 9th International Conference on, October 2013, pp. 166–
170.

[17] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dinamic networks,” ACM Transaction on Computer Systems,
vol. 23, no. 3, pp. 219–252, August 2005.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-331-5

ICAS 2014 : The Tenth International Conference on Autonomic and Autonomous Systems

