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Abstract— This paper proposes a discrete-time Linear 

Quadratic Gaussian controller (LQG) for speed control in a 

steam turbine coupled to a DC generator. The goal is to keep the 

speed constant despite the changes of pressure in the steam 

pipeline and the field resistance of DC generator. In the first 

part, the mathematical model that describes the dynamic 

behavior of a steam turbine coupled to a DC generator and their 

parameters are calculated using an optimization algorithm. In 

the second part, the discrete LQG controller is designed to 

eliminate the influence of the disturbance in the output signal. 

Finally, in the last part the controller was implemented on a 

distributed control system (DCS), called Delta V (Emerson), and 
tested for different set points.  

Keywords- LQG Controller; steam turbine; distributed control 

system (DCS) 

I.  INTRODUCTION  

Industrial steam turbines have many applications such as 
driving electric generators, small and large ship propellers, 
pumps and compressors. A steam turbine extracts thermal 
energy from pressurized steam to convert it into mechanical 
work using a shaft to drive an electrical generator. The steam 
turbine is a kind of heat engine that derives much of its 
improvement in thermodynamic efficiency through the use of 
multiple stages in the expansion of the steam, which results in 
a closer approach to the most efficient reversible process. An 
ideal steam turbine is considered an isentropic process or a 
constant entropy process, in which the entropy of the steam 
entering the turbine is equal to the entropy of the steam leaving 
the turbine, however, based on the steam turbine application, 
it’s considered a typical isentropic efficiency ranges from 20% 
to 90%. 

The interior of a turbine is composed of several sets of 
blades, commonly named buckets. One set of stationary 
blades is connected to the casing and one set of rotating blades 
is connected to the shaft. The efficiency of the turbine can vary 
depending on the size and configuration of the sets. This inner 
structure of the steam turbine allows it tasks that require high 
rotational speeds, even with widely fluctuating loads. 

The mechanical speed control of the turbine, the governor, 
is essential, as turbines need to be run up slowly to prevent 
damage in some applications (such as the generation of 
alternating current electricity). Uncontrolled acceleration of 
the turbine rotor can lead to an overspeed, which causes the 
nozzle valves that control the flow of steam to the turbine to 

close. If this fails, the turbine may continue accelerating until 
the governor can break. Instead of that, an electronic 
controller and a control valve can be implemented to regulate 
the amount of steam that is going to the turbine. Some 
techniques for regulating the speed of shaft in a steam turbine 
are PID [1][2], FUZZY [3][4] and MPC [5][6].  

This paper is structured as follows: in Section 2, dynamic 
models of steam turbine and DC generator are presented. 
Section 3 presents the design of the LQG control. In Section 
4, the experimental validation of the control system is 
presented, and Section 5 resumes the conclusions of this 
research. 

 

II. DYNAMIC MODEL 

The dynamic model of the system relates the differential 

equations of the steam turbine and the separately excited Dc 

generator. 

A. Steam turbine 

In many cases, the steam turbine models are simplified, 
many intermediate variables are omitted and only map input 
variables to outputs as outlined in [7]. In these conditions, the 
input-output mathematical model (the transfer function) of a 
steam turbine and the expression for mechanical power 
developed by a turbine are based on the continuity equation: 

 
𝜕𝑊

𝜕𝑡
= 𝑉

𝜕𝜌

𝜕𝑡
= 𝐹𝑖𝑛(𝑡) − 𝐹𝑜𝑢𝑡(𝑡)                 (1) 

 

where 𝑊  is the weight of steam in turbine [ 𝑘𝑔 ]; 𝑉  – 

volume of turbine [𝑚3]; 𝜌 – density of steam [𝑘𝑔/𝑚3]; 𝐹 – 

steam mass flow rate [𝑘𝑔/𝑠]; 𝑡 – time [𝑠𝑒𝑐.]. 

 Assuming the flow out of the turbine to be proportional to 

pressure in the turbine: 

 

𝐹𝑜𝑢𝑡 = 𝑃
𝐹0

𝑃0
                                   (2) 

 

where 𝑃 – pressure of steam in the turbine [𝑘𝑃𝑎]; 𝑃0  – 

rated pressure; 𝐹0 – rated flow out of turbine. With constant 

temperature in the turbine: 

 

19Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

mailto:hgonzalez7@unab.edu.co
mailto:hgonzalez3@unab.edu.co


𝜕𝜌

𝜕𝑡
=

𝜕𝑃

𝜕𝑡

𝜕𝜌

𝜕𝑃
                                (3) 

 

From (1)-(3), it results the differential equation: 

 

𝐹𝑖𝑛(𝑡) − 𝐹𝑜𝑢𝑡(𝑡) = 𝑉
𝜕𝑃

𝜕𝑡

𝜕𝜌

𝜕𝑃
= 𝑉

𝜕𝜌

𝜕𝑃

𝑃0

𝐹0

𝜕𝐹𝑜𝑢𝑡

𝜕𝑡
= 𝑇𝑇

𝜕𝐹𝑜𝑢𝑡

𝜕𝑡
 (4) 

 

𝑇𝑇
𝜕𝐹𝑜𝑢𝑡

𝜕𝑡
+ 𝐹𝑜𝑢𝑡 (𝑡) = 𝐹𝑖𝑛(𝑡)                 (5) 

 

and, after a Laplace transform, the transfer function of a 

steam turbine unit: 

 
𝐹𝑜𝑢𝑡(𝑠)

𝐹𝑖𝑛(𝑠)
=

1

𝑇𝑇𝑠+1
                                   (6) 

 

where 𝑇𝑇 = 𝑉
𝑃0

𝐹0

𝜕𝜌

𝜕𝑃
 is the time constant [seconds.]. The 

turbine torque is proportional to the steam flow rate: 

 

𝑇𝑚(𝑡) = 𝑘𝐹𝑜𝑢𝑡(𝑡)                                  (7) 

 

where 𝑘 is a proportional constant. The change in density 

of steam respecting to pressure (𝜕𝜌 𝜕𝑃⁄ )   at a given 

temperature may be determined from tables. The steam flow 

(𝐹𝑖𝑛(𝑡)) is regulated by a proportional valve: 
 

𝐹𝑖𝑛(𝑡) = 𝑘𝑝𝑒−𝑇𝑑𝑠𝑢(𝑡)                             (8) 

 

where 𝑘𝑝  is a proportional constant, 𝑇𝑑  is time delay 

[seconds] and 𝑢(𝑡) is percentage of valve opening. 

 

B. Separately excited Dc generator 

Separately excited DC generators are those whose field 

magnets are energized by some external DC source, such as 

a battery. The dynamic of this type of machines is represented 

by the following differential equations:  

 

𝑉𝑓(𝑡) = 𝑅𝑓𝐼𝑓(𝑡) + 𝐿𝑓

𝑑𝐼𝑓(𝑡)

𝑑𝑡
           (9) 

𝐾𝑣𝜔(𝑡) =  (𝑅𝑎 +  𝑅𝐿)𝐼𝑎(𝑡) + 𝐿𝑎
𝑑𝐼𝑎(𝑡)

𝑑𝑡
            (10) 

𝑇𝑚(𝑡) = 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵𝑚𝜔(𝑡) + 𝐾𝐼𝐼𝑓(𝑡)𝐼𝑎(𝑡)           (11) 

 

where 𝑉𝑓  is the voltage applied to field coil, 𝐼𝑓  is the 

current in field coil, 𝑅𝑓 is the resistance in the field coil,  𝐿𝑓 

is the inductance of the field coil, 𝐾𝑣 is the speed constant, 𝜔 

is the shaft speed, 𝑅𝑎 is the resistance in the armature coil, 𝐿𝑎 

is the inductance in the armature coil, 𝐼𝑎  is the armature 

current, 𝑅𝐿 is the load resistor connected to generator, 𝑇𝑚 is 

the mechanical torque of the steam turbine, 𝐽 is the inertia of 

shaft that joins the DC generator to the steam turbine, 𝐵𝑚 is 

the viscous friction coefficient and 𝐾𝐼 is the torque constant. 

C. Parameters of the mathematical model 

The following transfer function corresponds to the type 

Terry steam turbine coupled to a DC generator with a power 

of 1 kW: 

 

𝑇𝑚(𝑠)

𝑢(𝑠)
=

𝑘𝑝𝑘𝑒−𝑇𝑑𝑠

𝑇𝑇𝑠+1
                         (12) 

 
𝜔(𝑠)

𝑇𝑚(𝑠)
=

𝐿𝑎𝑠+ 𝑅𝑇

(𝐽𝑠+𝐵𝑚)(𝐿𝑎𝑠+𝑅𝑇)+𝐾𝑣𝐾𝐼𝐼𝑓_𝑠𝑠
                 (13) 

 

where 𝑅𝑇  is the sum of the armature resistance and load 

resistance, 𝐼𝑓_𝑠𝑠 = 𝑉𝑓 𝑅𝑓⁄  is the current in the field coil in 

stable state. The following parameters are given by the 

technical sheet of the generator: 𝑅𝑓 = 367 Ω , 𝐿𝑓 =

20.6 𝐻 , 𝑅𝑎 = 7.4 Ω , 𝐿𝑎 = 11.38 𝑚𝐻 , 𝑅𝐿 = 20.8 Ω  y 𝑉𝑓 =

213. To evaluate the unknown parameters of the model, an 

optimization algorithm was programmed, the algorithm is 

based on Sequential Quadratic Programming (SQP) method. 

The optimization function is the mean square error between 

experimental data and simulated data, for a control signal 

𝑢(𝑡).  Figure 1 shows the data used for optimization 

algorithm: generator speed (revolutions per minute - RPM) 

and percentage of valve opening. Table 1 presents the values 

obtained for each parameter. 

 

 

Figure 1.  Experimental data. a) Percentage of valve opening, b) Generator 

speed 

The transfer function of the system is: 
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𝜔(𝑠)

𝑇𝑚(𝑠)
=

(0.01879𝑠+46.56)𝑒−9𝑠

0.02574𝑠3+63.8𝑠2+124.5𝑠+1.036
                 (14) 

 
To simplify the model, the delay was approximated to a 

transfer function of first order (Pade approximation). 
 

𝑒−9𝑠 =
−𝑠+2

9⁄

𝑠+2
9⁄

                              (15) 

TABLE I.  PARAMETERS OF MATHEMATICAL MODEL 

𝑇𝑇  119.7 [𝑠𝑔] 

𝑘𝑝𝑘 0.055031[𝑁𝑚
%⁄ ] 

𝑇𝑑 9 [𝑠𝑔] 

𝐽 0.006015527721586  [𝐾𝑔 ∙ 𝑚2] 

𝐾𝑖  0.843524807917543 [𝑁 ∙ 𝑚
𝐴2⁄ ] 

𝐾𝑣  0.620330916257256 [𝑁 ∙ 𝑚
𝐴2⁄ ] 

𝐵𝑚 0.000922377688340 [
𝑁∙𝑚

𝑟𝑎𝑑
𝑠𝑔⁄

]  

 
The model of the steam turbine coupled to DC generator 

was discretized with a sampling period of one second and 
represented in state space. 

 

𝑥(𝑘 + 1) = 𝐺𝐿 𝑥(𝑘) + 𝐻𝐿𝑢(𝑘)           (16) 

𝑦(𝑘) = 𝐶𝐿𝑥(𝑘) 

                                      
where 

 

𝐺𝐿 = [

−0.000117 −0.004559 −0.000102 −0.000003
0.001424 0.055065 −0.042968 −0.001370
0.039239
0.006815

1.519927
0.264122

0.880884
0.238425

−0.003809
0.999629

]     (17) 

 

𝐻𝐿 = [

0.000089
0.039239
0.109044
0.010605

]                             (18) 

 

𝐶 = [0 −0.002851 −1.766304 1.570189]    (19) 

 

III. LINEAR QUADRATIC GAUSSIAN (LQG) CONTROLLER 

For plants with no integrator, the basic principle of the 
design is to insert an integrator in the feedforward path 
between the error comparator and the plant [8], as shown in 
Figure 2. 
 

 
Figure 2.  Block diagram of tracking system 

Assume that a reference input (step function) is applied at 
𝑡 = 0  where 𝑡  is the time [seconds]. Then, for 𝑡 > 0 , the 
system dynamic can be described by:  

 

[
𝑥(𝑘 + 1)
𝑣(𝑘 + 1)

] = [
𝐺𝐿 0

−𝐶𝐿𝐺𝐿 1
] [

𝑥(𝑘)
𝑣(𝑘)

] + [
𝐻𝐿

−𝐶𝐿𝐻𝐿
] 𝑢(𝑘) +

[0
1

] 𝑟(𝑘 + 1)                        (20) 

 
Remark that 𝑟(𝑘)  is a step input, so we have 𝑟(𝑘) =

𝑟(𝑘 + 1) = 𝑟.  When 𝑘 approaches to infinity: 
 

[
𝑥(∞)
𝑣(∞)

] = [
𝐺𝐿 0

−𝐶𝐿𝐺𝐿 1
] [

𝑥(∞)
𝑣(∞)

] + [
𝐻𝐿

−𝐶𝐿𝐻𝐿
] 𝑢(∞) +

[0
1

] 𝑟(∞)                        (21) 

 
By subtracting (20) from (21), we obtain: 

 

[
𝑥𝑒(𝑘 + 1)
𝑣𝑒(𝑘 + 1)

] = [
𝐺𝐿 0

−𝐶𝐿𝐺𝐿 1
] [

𝑥𝑒(𝑘)
𝑣𝑒(𝑘)

] + [
𝐻𝐿

−𝐶𝐿𝐻𝐿
] 𝑢𝑒(𝑘)  (22) 

   
where 

 

𝑥𝑒(𝑘) = 𝑥(𝑘) − 𝑥(∞)                    (23) 

𝑣𝑒(𝑘) = 𝑣(𝑘) − 𝑣(∞)                    (24) 

𝑢𝑒(𝑘) = −𝑲𝑥𝑒(𝑘) + 𝑲𝑰𝑣𝑒(𝑘)             (25) 

 
Define a new (𝑛 + 1) th-order error vector 𝜉(𝑘) by: 

 

𝜉(𝑘) = [
𝑥𝑒(𝑘)

𝑣𝑒(𝑘)
] = (𝑛 + 1) − 𝑣𝑒𝑐𝑡𝑜𝑟        (26) 

 
Then (22) becomes: 

 

𝜉(𝑘 + 1) = 𝑮̂𝜉(𝑘) + 𝑯̂𝑢𝑒(𝑘)               (27) 

𝑢𝑒(𝑘) = 𝑲̂𝜉(𝑘)                           (28) 
 

where 
 

𝐺 = [
𝐺𝐿 0

−𝐶𝐿𝐺𝐿 1
]   𝐻̂ = [

𝐻𝐿

−𝐶𝐿𝐻𝐿
]   𝐾̂ =  [𝐾 −𝐾𝐼]  (29) 

 
The LQG regulator consists in an optimal state-feedback 

gain and a Kalman state estimator [9]. The first design step is 
to seek a state-feedback law that minimizes the cost function 
of regulation performance, (30), it is measured by a quadratic 
performance criterion with user-specified weighting matrices, 
𝑄  and 𝑅 , which define the trade-off between regulation 
performance and control effort, respectively. The gain matrix 

𝑲̂ , to minimize the function 𝐽 , is obtained by solving an 
algebraic Riccati equation. 

 

𝐽 =
1

2
∑ (𝜉𝑇𝑄𝜉 + 𝑢𝑒

𝑇𝑅𝑢𝑒)∞
𝑘=0                    (30) 

 
The next design step is to derive a state estimator using a 

Kalman filter because the optimal state feedback cannot be 
implemented without full state measurement. Since the 
Kalman filter is an optimal estimator when dealing with 
Gaussian white noise, it minimizes the asymptotic covariance 
of the estimation error. Mathematically, the Kalman state 
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estimator can be expressed by (31), with two inputs, controls 
u(k)  and measurements y (k). The gain matrix 𝐿  of the 
Kalman filter is determined solving the Riccati algebraic 
equation. 

 

𝑥(𝑘 + 1) = 𝐺𝐿 𝑥̂(𝑘) + 𝐻𝐿𝑢(𝑘) + 𝐿(𝑦(𝑘) − 𝐶𝐿 𝑥̂(𝑘))   (31) 

 
The following values are assumed for the controller 

design: Q = diag(1, 1, 1, 8.5, 0.009) and R = 5.  By solving 

the Riccati equation gives K̂  = [0.061111, 2.367096, 
1.369298, 1.786684, -0.037269]. To design the observer, the 
variance of experimental data of the control signal and the 
generator speed are determined. The values are Qn =
176.9876  and Rn = 21225 , respectively. By solving the 
Riccati equation gives L = 10-8 [37.59397, -1129.21097, -
51464.655, 1617969.98].  

Figure 3 shows the block diagram of the control strategy. 
An anti-windup gain is implemented because integral term 
accumulates a significant error during the rise (windup), this 
creates a large overshoot, a slow settling time, and, 
sometimes, even instability in the speed response. A method 
used to compensate this phenomenon is tracking back 
calculation [10]. In the linear range, the error is integrated and 
the difference between the saturated and the unsaturated 
control signal is used to generate a feedback signal. This 
signal can control properly the integral state in the saturation 
range. It may seem advantageous to choose a very large value 
for the anti-windup gain 𝐾𝑎  because the integrator can be 
limited quickly. If the anti-windup gain is big, a spurious error 
can cause input saturation and accidentally reset the 
integrator. For the design of the control system, it is assumed 
an anti-windup gain of 𝐾𝑎 = 10 . Evaluating closed loop 
response to a step input, it gets an overshoot of 2.22 % and a 
setting time of 130 seconds. 

 

 
Figure 3.  Block diagram of the control strategy 

IV. RESULTS 

The LQG controller is implemented in Delta V DCS. The 
pseudocode that depicts the operating principle of the 
algorithm is shown in Table 2, where the matrices 𝐺𝐿, 𝐻𝐿 and 
𝐶𝐿  correspond to the state space representation of the 
mathematical model. 

 

TABLE II.  PSEUDOCODE LQG CONTROLLER 

SP = Read Setpoint 

PV = Read process value 

en =  SP – PV 

% Anti-windup gain 

Vk = en + Vk_1 – Ka*Du 

un = Ki*Vk – K*Xob_1 

if un > Umax 

 U = Umax 

If un > Umin & U<Umax 

 U = un 

If un < Umin 

 U = Umin 

% Observer  

Xob = (GL – L*CL)*Xob_1 + HL*U + L*PV 

Vk_ 1 = Vk 

Du = un - U 

Xob_1 = Xob 

 
The strategy of control is suitable for startup procedure 

and it can be applied for nominal work point (the range of 
speed is 0 RPM to 1500 RPM). Figure 4 shows the transient 
response of the generator speed and the signal control for 
different values of the reference signal. As seen in Figure 4, 
the signal that corresponds to generator speed, oscillates 
around the set point when steady state value is reached, this 
oscillations are due to changes of steam pressure in the 
pipeline as shown in Figure 5. 

 

 

Figure 4.  Transient response of LQG control. a) Speed generator b) 

Control signal 

The transient response of the LQG controller is analyzed 
by making variations in the field resistance of the DC 
generator. By decreasing this parameter, the mechanical speed 
of the turbine increases, therefore, it is expected that the 
proportional valve should decrease its opening percentage. As 
seen in Figure 6, for a set point of 1000 RPM, at the 120 
seconds, the field resistance is changed to 60 % over its 
nominal value and the controller stabilizes the signal in 70 
seconds. At the 950 seconds, the resistance value is changed 
to 20 % over its nominal value and the signal stabilizes in 120 
seconds. At the 1400 seconds, the resistance is set to its 
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nominal value and the speed has a strong transient response, 
then the controller stabilizes the signal in 200 seconds. 

 

Figure 5.  Steam pressure in pipeline 

 

Figure 6.  Transient response of the speed generator due to changes of 
field resistance in the generator  

A proportional integral (PI) controller (32) was designed 
based on the dynamic model of steam turbine coupled to the 
DC generator. Figure 7 shows the transient response of 
generator speed and the control action, for the same speed 
range. The PI controller has a greater overshoot than the LQG 
control and the changes in the steam pressure in the pipeline 
considerably affect the speed around the reference point. 

 

𝐺𝑐(𝑧) = 0.1188 +
0.0012

1−𝑧−1                                (32) 

 

 
Figure 7.  Transient response of PID control. a) Speed generator b) 

Control signal 

V. CONCLUSION 

In this paper, it was presented the design, test and 
comparison of two different control strategies applied to a 
steam turbine coupled to a DC generator. The dynamic model 
of the system was obtained using an optimization algorithm 
that is based on the quadratic sequential programming 
method. The turbine model was approached to a first order 
system with delay and the DC generator model was 
approached to a second order transfer function. Then, two 
control strategies were designed based on the dynamic model: 
PI control and LQG control. The obtained results show that 
the LQG controller has a better performance than the PI 
controller considering three main points: changing the set 
point, the transient response is quicker and smoother with the 
LQG controller; if the pressure changes in the steam line, the 
speed variations around the set point are smaller with the LQG 
controller; making changes in the value of the field resistance 
of the DC generator, results in oscillations in the speed, such 
oscillations are smaller with the LQG controller. For further 
research, it can develop a dynamic model that contemplates 
the thermal effects present in the elements inside the turbine 
and test other control strategies like fuzzy logic and predictive 
control. 
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