
Extended LALR(1) Parsing

Wuu Yang

Computer Science Department
National Chiao-Tung University

Taiwan, R.O.C.
Email: wuuyang@cs.nctu.edu.tw

Abstract—We identify a class of context-free grammars, called
the extended LALR(1) (ELALR(1)), which is a superclass of
LALR(1) and a subclass of LR(1). Our algorithm is essentially
a smarter method for merging similar states in the LR(1) state
machines. LALR(1) would merge every pair of similar states.
In contrast, our algorithm merges a pair of similar states only
if no (reduce-reduce) conflicts will be created. Thus, when no
conflicts occur, our algorithm produces exactly the same state
machines as the LALR(1) algorithm. However, when the LALR(1)
algorithm reports conflicts, our algorithm may still produce a
(larger) conflict-free state machine. In the extreme case when no
states can be merged, our algorithm simply returns the original
LR(1) machines. An important characteristic of the ELALR(1)
algorithm is that there is no backtracking. On the other hand,
the ELALR(1) algorithm does not guarantee the minimum state
machines.

Keywords–context-free grammar; grammar; extended LALR
parser; LR parser; LALR parser; parsing

I. INTRODUCTION

Parsing is a basic step in every compiler and interpreter.
LR parsers are powerful enough to handle almost all practical
programming languages. The downside of LR parsers is the
huge table size. This caused the development of several
variants, such as LALR parsers, which requires significantly
smaller tables at the expense of reduced capability. We identify
a class of context-free grammars, called the extended LALR (1)
(ELALR(1)), which is a superclass of LALR(1) and a subclass
of LR(1) [1]. Figure 6 is an example of an ELALR(1) machine.

The core of the LR parsers is a finite state machine. The
LALR(1) state machine may be obtained by merging every pair
of similar states in the LR(1) machine [6]. In case (reduce-
reduce) conflicts occur due to merging (note that only reduce-
reduce conflicts may occur due to merging similar states) we
will have to revert to the larger, original LR(1) machine. A
practical advantage of LALR(1) grammars is the much smaller
state machines than the original LR(1) machines. However,
any conlficts will force the parser to use the larger LR(1)
machine. The crux of our approach is to merge only pairs
of similar states that do not cause conflicts.

A simple ELALR(1) grammar can be easily created by
sequentially composing an LALR(1) grammar and an LR(1)
grammar, as follows:

P → U ;S
U → . . . (LALR(1))
S → . . . (LR(1) but not LALR(1))

Assume the subset of production rules starting from the
nonterminal U is completely independent of that starting from
S. Further assume the U rules form an LALR(1) grammar
and the S rules form a LR(1) but not LALR(1) grammar.
The sequential composition of the U and S would form an
ELALR(1) grammar. For parsing, we need to use the much
larger LR(1) state machine.

In this paper, we propose a method that can somehow re-
duce the state machine of a LR(1)-but-non-LALR(1) grammar
because certain parts of the grammar could be LALR(1) and
hence these parts can be handled with the smaller LALR(1)
state machine. The rest will be parsed with the stadard LR(1)
machine.

Our idea is that we start from the LR(1) machine of the
grammar and merge as many (similar) states as possible under
the constraint that no conflict will be created due to merging.
The resulting machine is called the ELALR(1) machine, which
can be used in the standard shift/reduce LR parser.

Our algorithm never backtracks. Once the merging of a
pair of similar states is committed, the pair of states will
remain merged. The algorithm will never undo the merge
later. The contribution of this paper is that we arrange the
order of merging similar states so that no backtracking is
needed. However, our algorithm does not guarantee a smallest
ELALR(1) state machine.

LR(1) parsers are powerful enough to handle most practical
programming languages [8]. The cannonical LR(1) parsers
make use of big state machines. LALR(1) parsers [4] are
deemed more practical in that much smaller state machines are
used. There are several algorithms for computing the LALR
machines and lookaheads efficiently [3][5][10]. None of these
attempted to parse non-LALR grammars. The classical parser
generator yacc [7] is based on the LALR(1) grammars. Yacc
relies on ad hoc rules, such as the order of productions in
the grammar, to resolve conflicts in order to apply an LALR
parser to a non-LALR grammar. In contrast, this paper, which
addresses ELALR(1) grammars, does not employ ad hoc rules.
It is known that every language that admits an LR(k) parser

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 1. The LR(1) machine of G1.

also admits an LALR(1) parser [9]. In order to parse for a
non-LALR(1) grammar, there used to be three approaches:
(1) use the LR(1) parser; (2) add some ad hoc rules to the
LALR(1) parser, similar to what yacc does; and (3) transform
the grammar into LALR(1) and then generate a parser. The
transformation approach may exponentially increase the num-
ber of productions [9] and the transformed grammar is usually
unnatural. Our approach provides a fourth alternative: use the
extended LALR(1) state machines.

The remainder of this paper is organized as follows. Section
2 will introduce the terminology and explain the extended
LALR(1) grammars with examples. Our algorithm is presented
in Section 3. Its correctness is also discussed there. Section 4
concludes this paper. In this paper, we are concerned only with
one-token lookahead, that is, LR(1), LALR(1), and ELALR(1).
We sometimes omit the “(1)” notation if no confusion occurs.
However, our method may be extended to ELALR(k).

II. BACKGROUND AND MOTIVATION

A grammar G = (N,T, P, S) consists of a non-empty set
of nonterminals N , a non-empty set of terminals T , a non-
empty set of production rules P and a special nonterminal S,
which is called the start symbol. We assume that N ∩ T = ∅.
A production rule has the form

A→ γ

where A is a nonterminal and γ is a (possibly empty) string
of nonterminals and terminals. We use the production rules to
derive a string of terminals from the start symbol.

LR parsing is based on a deterministic finite state machine,
called LR machine. A state in the LR machine is a non-empty
set of items. An item has the form A → α • β, la, where
A→ αβ is one of the production rules, • indicates a position
in the string αβ, and la (the lookahead set) is a set of terminals
that could follow the nonterminal A in later derivation steps.
Two states in the LR machine are similar if they have the same
number of items and the corresponding items differ only in the
lookahead sets. For example, states s1 and t1 in Figure 1, each
of which contains three items, are similar states.

LALR(1) machines are obtained from LR(1) machines by
merging every pair of similar states. For example, Figure 2
is the LALR(1) machine obtained from the LR(1) machine in

Fig. 2. The LALR(1) machine of G1.

Fig. 3. The LR(1) machine of G2.

Figure 1 by merging three pairs of similar states: s1 and t1; s2
and t2; and s3 and t3. (Remember two states are similar if they
have the same items, except that the lookahdead sets might
differ. To merge two similar states, we use the same items in
the original states, except that the lookahead set of an item
is the union of the lookahead sets of the two corresponding
items in the original states.) The exact construction of LR and
LALR machines from a context-free grammar is discussed in
most compiler textbooks, such as [2][6].

Consider grammar G1:

R1 P → U$
R2 U → TT
R3 T → aT
R4 T → b

The LR(1) machine of G1 is shown in Figure 1. States s1
and t1 are similar states. So are states s2 and t2 and states s3
and t3. The three pairs of states can be merged. The resulting
machine is shown in Figure 2. Since there is no conflict in the
resulting machine, G1 is LALR(1).

Consider grammar G2:

R5 P → S$
R6 S → (X)
R7 S → [X]
R8 S → (Y]
R9 S → [Y)
R10 X → ab
R11 Y → ab

The LR(1) machine of G2 is shown in Figure 3. Since there
is no conflict in Figure 3, grammar G2 is LR(1).

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 4. The LALR(1) machine of G2, which contains reduce-reduce
conflicts.

There are two pairs of similar states in Figure 3: states
s1 and t1; states s2 and t2. Figure 4 shows the resulting
LALR(1) machine by merging the two pairs of similar states.
Note that there are two reduce-reduce conflicts in state s2/t2
in Figure 4. Therefore, states s2 and t2 should not be merged.
Furthermore, states s1 and t1 should not be merged either
because LR machines are deterministic.

It is easy to combine G1 and G2 into a single grammar, in
which some, but not all, pairs of similar states may be merged
without creating conflicts. For instance, consider grammar G3

below, which is a sequential combination of G1 and G2.
Prodcution rules R1 and R6 are combined as a single new
rule.

R1 P → US$
R2 U → TT
R3 T → aT
R4 T → b
R6 S → (X)
R7 S → [X]
R8 S → (Y]
R9 S → [Y)
R10 X → ab
R11 Y → ab

Grammar G3 is clearly not LALR(1). Hence the larger LR(1)
machine must be used in parsing. However, it is still possible
to reduce the size of LR machine for G3. Figure 5 shows the
LR(1) machine of G3. There are five pairs of similar states:
states s1 and t1; s2 and t2; s3 and t3; s4 and t4; and s5
and t5; However, states s5 and t5 cannot be merged due to
a potential conflict. Furthermore, states s4 and t4 cannot be
merged because LR machines must be deterministic. The other
three pairs of similar states may be safely merged, creating
a machine smaller than the standard LR(1) machine. The
resulting machine is shown in Figure 6, which is called the
extended LALR(1) machine of G3.

Definition. A grammar is ELALR(1) if and only if at least
a pair of similar states in its LR(1) machine may be merged
without creating conflicts.

In other words, a grammar is ELALR(1) if and only if it has
a conflict-free state machine that is smaller than the grammar’s
LR(1) machine.

Fig. 5. The LR(1) machine of G3.

Fig. 6. The ELALR(1) machine of G3.

In determining which pairs of similar states may be safely
merged, trial-and-error is a straightforward method. However,
we can do better.

We will start from a few observations and facts. First note
that the LR(1) as well as the LALR(1) machines are all
deterministic.

Theorem 1: Merging two similar states in LR(1) machines
can possibly create reduce-reduce conflicts, but never shift-
reduce conflicts.

For example, in Figure 4, there are reduce-reduce conflicts
in the merged state s2/t2.

Lemma 2: Consider the fragment of an LR machine in
Figure 7. If states s1 and t1 are similar, then (1) states s1 and
t1 have the same number of successor states; and (2) their

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 7. A pair of similar states in an LR(1) machine. States s1 and t1 can
be merged only if states s2 and t2 are merged. There will be an edge

(s1, t1) →a (s2, t2) in the similarity graph.

Fig. 8. The LR(1) machine for the example grammar.

corresponding successor states are also similar, i.e., states s2
and t2 are also similar.

Proof. This is due to the construction of the LR machine.
Q.E.D.

Lemma 3: Consider the fragment of an LR machine in
Figure 7. Assume states s1 and t1 are similar (and hence states
s2 and t2 are also similar). States s1 and t1 can be merged
only if states s2 and t2 are merged.

Proof. This lemma is due to the fact that LR/LALR ma-
chines must be deterministic. Q.E.D.

Corollary 4: Consider The fragment of an LR machine in
Figure 7. Assume states s1 and t1 are similar (and hence states
s2 and t2 are also similar). If states s2 and t2 are not merged,
then states s1 and t1 cannot be merged.

Due to Corollary 4, we should try to merge s2 and t2 before
we try to merge s1 and t1. In general, when similar states in an
LR(1) machine are merged, the order of merging had better be
from leaves to root. However, the LR(1) machine may contain
cycles and is not a tree in general.

Our algorithm, presented in the next section, will take care
of these details. A directed cycle in a directed graph, such as
states s4 and s5 in Figure 8, is called a strongly connected
component (scc). According to Corollary 4, all states in an scc
in the LR(1) machine must be merged with their respective
similar states simultaneously or none should. In Figure 8,
either both pairs of similar states (s4, s11) and (s5, s12) are
merged or no pair should be merged. Due to this restriction,
we use aggregates, which are sets of pairs of similar states,
to represent two separate sccs that might be merged.

III. ALGORITHM

In this section, we explain our algorithm for constructing
the finite state machine for extended LALR(1) grammars. We
will use the following grammar G4 to illustrate our algorithm.
Figure 8 is the LR(1) machine for this grammar.

R1 U → S$
R2 S → pAf
R3 S → qAg
R4 A→ abA
R5 A→ d

We will start from an LR(1) grammar. Draw the LR(1) state
machine of the grammar. Since the grammar is LR(1), there
is no conflict in the LR(1) machine.

Then the strongly connected components in the LR(1)
machine are identified. In Figure 8, states s4 and s5 form
a strongly connected component (scc). So do states s11 and
s12. Strongly connected components in the LR(1) machine
can be traced to (direct or indirect) recursive production rules
in the grammar. In Figure 8, the scc is due to the recursive
rule A→ abA.

We then find all pairs of similar states. In Figure 8, there
are four pairs of similar states: (s4, s11), (s5, s12), (s6, s13),
and (s7, s14).

We then build the similarity graph. The similarity graph for
the example grammar is shown in Figure 9(a). Initially, the
similarity graph contains only vertices; edges are gradually
inserted into the graph. Each vertex in the similarity graph
denotes a pair of similar states taken from the LR(1) machine.
During the construction of the similarity graph, we may add
vertices of the form (s, s) (i.e., a pair of identical states), which
have no outgoing edges. For each pair of similar states (s1, t1),
either (1) s1 and t1 are exactly the same state, or (2) neither
has a successor state, or (3) they have the same number of
successor states. Each successor state of s1 corrresponds to
exactly one successor state of t1. Note that the corresponding
successors of s1 and t1 are s2 and t2 if the edges s1 →u s2
and t1 →u t2 carry the same label, which is u in this case.

In case (3), we add an edge from the vertex representing the
pair (s1, t1) to the vertex representing the pair (s2, t2). This
edge is denoted as (s1, t1)→u (s2, t2) in the similarity graph,
which indicates that s1 and t1 may be merged only if s2 and t2
are merged, according to Lemma 3. (Note that a pair of similar
states could be written either as (s, t) or (t, s). In constructing
the similarity graph, we had better fix the order of the pair
of states. The first time the pair is encountered, the order of
s and t is determined from the already constructed part of
the similarity graph. When the pair is encountered again, we
should use the order determined previously. Otherwise, a part
of the similarity graph may be duplicated. Duplication only
makes the algorithm spends more time but has no effect on
the final result.)

Figure 9(a) is the similarity graph for the LR machine in
Figure 8. Note that there may or may not be cycles in a

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 9. (a) The similarity graph for Figure 8, in which each vertex represents
a pair of similar states in the LR(1) machine. (b) The aggregation graph, in
which each node (called an aggregate) represents a set of pairs of similar

states. The aggregation graph must be acyclic.

similarity graph. Since each vertex in the similarity graph
represents a pair of states, we can switch the order of every pair
of states, that is, from (s, t) to (t, s), resulting in an isomorphic
graph.

Now consider the similarity graph. If vertices (i.e., pairs
of states), say (p1, q1), (p2, q2), . . . , (ph, qh), form a strongly
connected component in the similarity graph (this implies that
the states p1, p2, . . . , ph form a strongly connected component
in the LR(1) machine. So do the states q1, q2, . . . , qh), then
mark these adjacent vertices as an aggregate. Finally, the pair
of similar states which does not belong to any aggregates will
form an aggregate by itself. We may say that the set of all pairs
of similar states are partitioned into aggregates. In Figure 9(a),
the two pairs of similar states (s4, s11) and (s5, s12) form an
aggregate. Each of the remaining two pairs forms an aggregate
by itself. These three aggregates, which are labeled A1, A2,
and A3, constitute the aggregation graph, which is shown in
Figure 9(b). Note that each pair of similar states (i.e., a vertex)
belongs to exactly one aggregate. We say one aggregate, say
Ai, is a successor of another aggregate, say Aj , if there is an
edge Aj → Ai in the aggregation graph. In Figure 9(b), A1
and A3 are successors of A1.

An aggregate is a set of pairs of similar states. These states
are closely related to the strongly connected components in
the LR(1) machine. According to Lemma 3, every pair of
similar states in an aggregate must be merged if any pair of
similar states in the same aggregate are merged or none will
be merged.

Note that the resulting aggregation graph is acyclic. Thus,
we can find a reverse topological order of the aggregates in
the aggregation graph. For each aggregate A in the reverse
topological order, first check if any of the successor aggregates
of A is marked as unmergable. If so, then mark this aggregate
A also as unmergable. Otherwise every pair of similar states
in A are merged. If any conflicts occur due to the merge, then
undo the merge and mark the aggregate A as unmergable. On
the other hand, when no conflicts occur, this means that all the
pairs of similar states in A can be safely merged. That is, the
merge is comitted. We will proceed with the next aggregate
in the reverse topological order.

In Figure 9(b), a reverse topological order is A1, A3, and
A2. So we will merge the pair of similar states in aggregate
A1 first. Then we attempt to merge the pair of similar states

Fig. 10. The state machine after merging four pairs of states. This is
actually the LALR(1) state machine.

Fig. 11. The similarity graph and the aggregation graph for grammar G3.

in aggregate A3. Finally we attempt to merge the two pairs
of similar states in aggregate A2. Figures 10 shows the final
state machine, which is actually the LALR(1) machine since
this grammar is LALR(1).

If a grammar is LALR(1), that is, every pair of similar
states can be merged without creating conflicts, our algorithm
will eventually construct the LALR(1) machine. In the other
extreme, if no similar states could be merged without creating
conflicts, our algorithm will not merge any states and simply
return the original LR(1) machine.

Example. The similarity graph and the aggregation graph for
grammar G3 are shown in Figure 11 (a) and (b), respectively.
A topological order is A3, A4, A1, A5, A2. The pair of similar
states (s5, t5) cannot be merged due to a conflict. Conse-
quently, the pair of similar states (s4, t4) cannot be merged
either. The resulting ELALR(1) state machine is shown in
Figure 6.

Correctness of the algorithm. There are only finite pairs of
similar states in an LR(1) state machine. The transitions among
pairs of similar states are also finite. Hence, the similarity
graph is finite and can be built in a finite amount of time. The
aggregation graph is essentially a reduced similarity graph.
Thus, it is also finite and can be built in a finite amount of
time.

All the pairs of similar states in the LR(1) machine are
partitioned into aggregates. Merging similar states is attempted
step by step. In each step, all pairs of an aggregate are merged
(if no conflicts occur) or ignored (otherwise). The aggregates
are examined in a reverse topological order.

The starting point of our algorithm is the original LR(1)
state machine, which is deterministic and satisfies the Viable-
Prefix Lemma [6]. Let M be the state machine immediately

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

Fig. 12. Three similar states for grammar G5.

before a step and M ′ be the one immediately after that step.
We may make the following claim:

Claim. If M is deterministic and satisfies the Viable-Prefix
Lemma, then M ′ is also deterministic and satisfies the Viable-
Prefix Lemma.

Let AG be the aggregate considered in the current step. If
no merging is done in the current step, M ′ = M . If some
pairs of similar states are merged in the current step, due to
the reverse topological order of merging, all pairs of similar
states in all successor aggregates of AG in the aggregation
graph have been merged. Therefore, M ′ is still deterministic.
Furthermore, every path in M corresponds to exactly one path
in M ′ and every path in M ′ is a path in M . If M satisfies
the Viable-Prefix Lemma, so does M ′.

Note that merging starts from an LR(1) machine, which
is deterministic and satisfies the Viable-Prefix Lemma. We
conclude that that the state machine eventually produced by
our ELALR(1) algorithm is deterministic and satisfies the
Viable-Prefix Lemma. Hence we may claim the correctness
of our algorithm.

The ELALR(1) machines produced by our algorithm need
not be minimum. Consider the following grammar G5:

R1 U → S$
R2 S → pAf
R3 S → pBg
R4 S → qAg
R5 S → qBf
R6 S → rAm
R7 S → rBn
R8 A→ d
R9 B → d

The LR(1) machine for G5 will contain three similar states
shown in Figure 12. States s1 and s2 may be safely merged.
So do states s1 and s3. But states s2 and s3 cannot. It is hard
to decide which pair of similar states should be merged in
order to achieve the minimum ELALR(1) machine.

In our algorithm, s1 and s2 will be in one aggregate;
s1 and s3 will be in another; and s2 and s3 will be in a
third aggregate. Exactly which pair is merged depends on
the reverse topological order in which the aggregates in the
aggregation graph are visited.

For grammar G5, the resulting state machine after merging
states s1 and s2 has the same size as that after merging states
s1 and s3. From this example, we know that there may not
be a unique minimum ELALR(1) machine in general.

An obvious approach to produce a minimum ELALR(1)
machine is to try all possible reverse topological orders of

aggragates in the aggregation graph. To find the minimum
state machines, a naı̈ve algorithm may try all possibilities
of merging similar states. However, our algorithm will try
all reverse topological orders of aggregates instead of all
combinations of pairs of similar states. Since there are fewer
reverse topological orders of aggregates than combinations of
pairs of similar states, our aggregate-based algorithm should
be faster than the pair-of-states-based exhaustive search.

If trying all reverse topological orders is out of the question,
we can choose a plausible topological order, as follows: We
assign a weight to each aggregate in the aggragation graph.
The weight of an aggregate A is the total number of pairs
of similar states in all the aggregates that can reach A in the
aggregation graph. For example, in Figure 9, the weights of
A1 and A3 are 3 and the weight of A2 is 2. If there are more
than one reverse topological order, the one in which un-related
aggregates, such as A1 and A3 in Figure 9, are arranged in
decreasing weights is chosen. This implies that we prefer to
visit heavier aggregates first. This is based on the observation
that more pairs of similar states depend on heavier aggregates.

IV. CONCLUSION

We identify the class of extended LALR grammars and
the associated algorithm in this paper. ELALR is located
between LR and LALR. Our algorithm is essentially a smarter
method for merging similar states in the LR(1) machines. Our
algorithm can be extended to ELALR(k), for any k, in a
straightforward manner.

ACKNOWLEDGEMENT

This work is supported, in part, by Ministry of Science and Technol-
ogy, Taiwan, R.O.C., under contracts MOST 103-2221-E-009-105-
MY3 and MOST 105-2221-E-009-078-MY3.

REFERENCES

[1] A.V. Aho and S.C. Johnson, “LR Parsing,” ACM Computing Surveys,
vol. 6, no. 2, June 1974, pp. 99-124.

[2] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers: Principles,
Techniques, and Tools. (2nd Edition) Prentice Hall, New York, 2006.

[3] T. Anderson, J. Eve, and J. Horning, “Efficient LR(1) parsers,” Acta
Informatica, vol. 2, 1973, pp. 2-39.

[4] F.L. DeRemer, Practical translators for LR(k) languages. Project MAC
Tech. Rep. TR-65, MIT, Cambridge, Mass., 1969.

[5] F.L. DeRemer and T. Pennello, “Efficient Computation of LALR(1)
LookAhead Sets,” ACM Trans. Programming Languages and Systems,
vol. 4, no. 4, October 1982, pp. 615-649.

[6] C.N. Fischer, R.K. Cytron, and R.J. LeBlanc, Jr., Crafting A Compiler.
Pearson, New York, 2010.

[7] S.C. Johnson, Yacc: Yet Another Compiler-Compiler. Bell Laboratories,
Murray Hill, NJ, 1978,

[8] D. E. Knuth, “On the translation of languages from left to right,”
Information and Control, vol. 8, no. 6, July 1965, pp. 607-639.
doi:10.1016/S0019-9958(65)90426-2.

[9] M.D. Mickunas, R.L. Lancaster, V.B. Schneider, “Transforming LR(k)
Grammars to LR(1), SLR(1), and (1,1) Bounded Right-Context Gram-
mars,” Journal of the ACM, vol. 23, no. 3, July 1976, pp. 511-533.
doi:10.1145/321958.321972

[10] D. Pager, “A practical general method for constructing LR(k) parsers,”
Acta Informatica, vol. 7, no. 3, 1977, pp. 249-268.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-555-5

ICAS 2017 : The Thirteenth International Conference on Autonomic and Autonomous Systems

