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Abstract—Nowadays, the semiconductor industry has become 

fully automated during the manufacturing process where 

abundant process parameters are collected on-line by sensor for 

the Fault Detection and Classification (FDC) purpose. To analyze 

these parameters and identify a smaller set of key parameters 

that have crucial influence on wafer quality must bring great 

benefits in stabling the manufacturing process and enhancing the 

production yield. Therefore, this article considers an alternative 

approach to use image processing techniques for analyzing the 

raw trace data. First, the one-dimensional time series data of a 

wafer batch was transformed into a two-dimensional image. 

Fisher’s Criterion (FC) ratios of the labelled good and defect 

wafer images are computed. The parameters that have high FC 

ratios are deemed the key parameters. The nine key parameters 

were identified by using the proposed image processing technique, 

which concurs with the technical experiences from the process 

engineers.  
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I.  INTRODUCTION AND PROPOSED METHOD  

Nowadays, in the semiconductor manufacturing practice, 

wafer manufacturing is a complicated multiple-step sequence 

of photolithographic and chemical processing steps during 

which electronic circuits are gradually fabricated on a wafer 

made of pure semiconducting material; that is, the so-called 

“raw trace data.” Likewise, a gigantic amount of data with a 

wide variety of process parameters are simultaneously 

generated. Raw trace data are automatically recorded in every 

sensor during manufacture processes, so multiple time series 

data are produced wafer by wafer. The final wafer quality 

should be, in essence, highly related to some key parameters. In 

ordinary practice, the engineers use their practical experiences 

gained from extensive experimental results and historical 

testing data to decide on potential key parameter. Therefore, 

the investigation of possible key parameters among the raw 

trace data poses a challenging task for process engineers in 

semiconductor manufacturing. 

To improve the production yield and maintain the 

process stability, identifying the key parameters from the raw 

trace data is an important issue in routine manufacturing. 

Feature selection aims to downsize the amount of the raw trace 

data but still maintains the key information. In the Advanced 

Process Control (APC) practice, the raw trace data are collected 

by sensor continuously. The process control engineer will use 

this kind of data to perform the Fault Detection and 

Classification (FDC) and process control/monitoring tasks. 

Traditional FDC approaches in semiconductor manufacturing 

use univariate statistics for monitoring, which is tedious and 

might be misleading if key parameters cannot be correctly 

identified. Although the APC of semiconductor manufacturing 

has advanced considerably in the past decade, this paper 

attempts to propose an alternative approach by means of image 

processing techniques to analyze the raw trace data for 

identifying key parameters.  

In the open literature, there exist many researches that 

transform a two-dimensional image data into one-dimensional 

data and apply traditional statistical methods for post hoc 

analysis. For instance, Bartlett et al. [1] proposed using 

Independent Component Analysis (ICA) to study face 

recognition. On the contrary, from a reverse point of view, the 

one-dimensional raw trace data collected for this article will be 

recast into a two-dimensional image, and then existing image 

processing methods can be readily employed.  

A semiconductor manufacturing process that consists of 

38 parameters in the raw trace data set was under investigation. 

In the data set, there are 155 wafers monitored, labelled with 

134 good and 21 defect wafers. For each parameter, the 
155 180  measurements of 155 wafers and 180 readings are 

placed in an image as shown in Figure 1.  
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Figure1. Parameter Image. 

 

These 38 parameters are BufPurge N2 MFC Flow, Buffer 

Chamber Robot Correct EXT, Buffer Chamber Robot Correct 

ROT, CHILLED WATE R TEMP, CH Inner Heater Zone 

Temp, CH Outer Heater Voltage Ratio Mode, Chamber heater 

pid error, H2_Flow Setpoint1, H2_MFCFlow, Heater servo 

fwd, N2 Flow Setpoint1, N2 MFC Flow, N2 PURGE Flow 

Setpoint1, N2 PURGE_MFC Flow, NF3_MFCFlow, Number 

Wafer In Periodic Clean Process, PH3 Flow Setpoint1, PH3 

MFC Flow, SiH4 Flow Setpoint1, SiH4 MFC Flow, 

Temperature Power, Chamber fore line pressure, Chamber 

heater lift spacing, Chamber heater lift step number, Chamber 

inner heater zone current, Chamber inner heater zone power, 

Chamber inner heater zone resistance, Chamber inner heater 

zone voltage, Chamber lift position, Chamber misc number of 

wafer count, Chamber outer heater current, Chamber outer 

heater power, Chamber outer heater resistance, Chamber outer 

heater voltage, Chamber pm current wafer count, Chamber 

pressure reading, Chamber recipe elapsed time, and Chamber 

throttle valve position. 

In this study, the raw trace data was transformed into an 

8-bit gray-level representation. The maximum value is 255, so 

the grey level range would be from 0 to 255. The minimum 

value 0 represents black and the maximum value 255 

represents white.  

For each wafer, a univariate statistic, the Signal-to-Noise 

Ratio (SNR) is calculated as in (1). 

SNR



    (1) 

In (1), μ is the mean and σ is the standard deviation. Under a 

particular parameter, the SNR is evaluated wafer-wise, 

generating a transformation from a time series realization into 

the feature of wafer’s parameter. From a practical viewpoint, a 

key parameter must be able to clearly differentiate between 

good and defective wafers. Therefore, it is highly anticipated 

that the SNR of good wafers exhibits an obvious difference as 

compared to that of defective wafers.  

Next, Fisher’s criterion (FC) ratio is used to identify the 

key parameters from the 38 parameters. As usual, FC tries to 

find a projection direction, attempting to increase the 

separation between classes while minimizing the variance 

within a class [2][3] (see Figure 3). In the paper, the SNR is 

used to compute each parameter’s FC ratio wafer by wafer. 

Firstly, the SNRs are classified into two categories: good and 

defective in that labelling was previously done. The good 

wafers fall into group 1 and the defective wafers fall into group 

2. Since there are 38 parameters in total, there are 38 FC ratios 

as well.  

 

 
Figure 3. FC Ratio Schematic Diagram 

 

Lastly, the K-means algorithm will be used to set up the 

threshold for identifying the key parameters. As a clustering 

method, K-means proposed by MacQueen [4] is a type of 

unsupervised learning algorithms, which solves the problem of 

clustering unlabeled data. The goal of this algorithm is to 

partition the data into K groups, and assign a cluster to each 

data point; K represents the number of clusters.  

The procedure of the K-means algorithm and its flow 

chart (see Figure 4) are shown as follows: 
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Figure 4. Flow chart of K-means algorithm 
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1. Select K the number of clusters; 

2. Assign each data point to the clusters that has the nearest 

to the cluster center; 

3. Updated the new means of each cluster; 

4. Repeat Steps 2 and 3 until no data point moved.  

 

In addition, Figure 5 illustrates the proposed key 

parameter identification process. 
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Figure 5.  Key Parameter Identification Procedure. 

  

In the next section, some preliminary experimental results 

are demonstrated to validate the proposed procedure.  
 

II. EXPERIMENTAL RESULTS OF KEY PARAMETER 

IDENDIFICATION  

The key parameter identification result will be presented 

in this section. Every parameter was investigated by using the 

proposed procedure. An exemplary parameter, Chamber heater 

pid error, is illustrated in Figure 6. In the table, the original data 

profile is shown in (a), and the image representation in (b). In 

(a), the red lines indicate the profiles of the defective wafers, 

whereas the blue lines represent the profiles of the good wafers.  

 

Chamber heater pid error 

 
(a) 

 

 
(b) 

Figure 6. Chamber Heater Pid Error. 

 

In this study, potential key parameters are mainly 

identified based upon Fisher’s Criterion, and then Table I 

tabulates the FC values of all the 38 parameters. To set up a 

threshold for identification, the K-mean algorithm is used to 

classify all the 38 FC values into two clusters: key parameters 

and non-key parameters. As mentioned in subsection D, the 

cluster with a larger FC value is deemed the key parameter 

cluster.  

 

TABLE I. FISHER'S CRITERION LISTS OF 38 PARAMETERS 

Parameter Fisher’s Criterion 

1. BufPurge N2 MFC Flow 0.03922 

2. Buffer Chamber Robot 

Correct EXT 
0.10435 

3. Buffer Chamber Robot 

Correct ROT 
0.01229 

4. CHILLED WATER 

TEMP 
0.01998 

5. CH Inner Heater Zone 

Temp 
3.74436 

6. CH Outer Heater Voltage 

Ratio Mode 
0.001468 

7. Chamber heater pid error 5.01448 

8. H2_Flow Setpoint1 0.001038 

9. H2_MFCFlow 0.000226 

10. Heater servo fwd 0 

11. N2 Flow Setpoint1 0.009865 

12. N2 MFC Flow 0.009985 

13. N2 PURGE Flow 

Setpoint1 
0.022763 

14. N2 PURGE_MFC Flow 0.01684 

15. NF3_MFCFlow 0.013256 

16. Number Wafer In 

Periodic Clean Process 
0 

   
 

 

Figure 7. Identify Key Parameter by Using K-means. 
 

Figure 7 exhibits the classification result via K-means as 

2K  . The red points denote the key parameters as the black 

point represents the non-key parameters. In the figure, the Y 

axis stands for the FC value and the X axis denotes the 

parameter ID. The identified 9 key parameters are also shown 

in Table II. The identified parameters are all related to the inner 

heater sensors, which were also confirmed by the on-site 

engineers. Based upon this process investigation, the process 

engineer can proceed to constructing adequate control charts 

for a much smaller set of process parameters. By doing so, the 

false alarm of FDC can be greatly reduced.  
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TABLE II. KEY PARAMETERS IDENTIFIED 

Result of Research Method Engineer’s Experience 

Chamber heater pid error ✓ 

Chamber Inner Heater Zone 

Current 
✓ 

Chamber Inner Heater Zone 

Power 
✓ 

Chamber Inner Heater Zone 

Voltage 
✓ 

   
 

III. CONCLUSION 

In this research, the proposed method clearly identifies 9 

key parameters. This result concurs by the well-known process 

engineer’s domain knowledge and practical experiences. 

Through this case study, the proposed method proves to be a 

viable tool capable of correctly identifying the key parameters 

out of abundant process parameters in the semiconductor 

manufacturing practice. An immediate study for future research 

could be the identification of possible key steps for the key 

parameters revealed from this paper.  
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