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Abstract—This article focuses on the application of multi-agent
deep reinforcement learning techniques in sequential games. The
main hypothesis is that deep reinforcement learning and collective
behaviour approach demonstrate better performance than classic
reinforcement learning. So autonomous agents are capable of
discovering good solutions to the problem at hand by cooperate
with other learners.

Index Terms—autonomous agents; deep reinforcement learn-
ing; multi-agent systems; collective behaviour

I. INTRODUCTION

We employ deep multi-agent reinforcement learning to

model the emergence of cooperation. The new notion of

sequential social dilemmas allows us to model how rational

agents interact, and arrive at more or less cooperative be-

haviours depending on the nature of the environment and the

agents cognitive capacity. The research may enable us to better

understand and control the behaviour of complex multi-agent

systems.

The mathematical framework for question of unsupervised

learning and autonomous decision making: is Reinforcement

Learning (RL). In RL, a software agent interacts with an

environment and occasionally perceives rewards to learn an

optimal behavioural policy. Deep reinforcement learning com-

bines established reinforcement learning techniques with the

ability of deep neural networks to capture structure in complex

environments and generalize over large state spaces. While

deep reinforcement learning is still in its infancy, researchers

and practitioners are rapidly exploring new applications. We

want to develop this framework in sequential decision making

in game theory. The aim of this paper is to apply this

techniques of Multi-Agent Reinforcement Learning (MARL)

and Multi-Agent Deep Reinforcement Learning (MADRL)

and evaluate results of process of learning in sequential games.

In real life, cooperating require complex behaviours, involving

difficult sequences of actions that agents need to learn to

execute by deep multi-agent reinforcement learning [1] [2].

Since the work on learning ATARI TV games by Google

DeepMind [3], end-to-end reinforcement learning or deep

reinforcement learning is garnering attention. This approach

extends reinforcement learning to the entire process from

sensors to motors by forming it using an artificial neural

network especially a deep network without designing state

space or action space explicitly [4]–[6].

Pursuit-evasion is a problem area in computer science

in which one group of agents attempts to catch members

of another group in an environment [7]. The reinforcement

learning techniques have been used in some of recent studies

in the field of pursuit-evasion games [8] [7]. A survey of actor-

critic reinforcement learning is given in [9].

Sequential decision making under uncertainty is always a

challenge for autonomous agents populating a multi-agent

environment, since their behaviour is inevitably influenced by

the behaviour of others. Further, agents have to constantly

struggle to find the right balance between exploiting current

information regarding the environment and the rest of its

inhabitants, and exploring so that they acquire additional

information. Moreover, they need to profitably trade off short-

term rewards with anticipated long-term ones, while learning

through interaction about the environment and others, employ-

ing techniques from RL, a fundamental area of study within

Artificial Intelligence (AI) [10]–[13].

Coalition formation is a problem of great interest within

game theory and AI, allowing autonomous individually ratio-

nal agents to form stable or transient teams (or coalitions)

to tackle an underlying task. Agents participating in realistic

scenarios of repeated coalition formation need to successfully

negotiate the terms of their participation in coalitions often

having to compromise individual with team welfare effectively

[14].

In our work, we assume that the environment dynamics

or the types (capabilities) of other agents are not known,

and thus the agents have to account for this uncertainty, in

a Bayesian way [2], when making decisions. Handling type

uncertainty allows information about others acquired within

one setting to be exploited in possibly different settings in

the future. The core of our contributions lies in the area

of coalition formation under uncertainty. We studied several

aspects of both the cooperative and non-cooperative facets

of this problem, coining new theoretical concepts, proving

theoretical results, presenting and evaluating algorithms for

use in this context, and proposing a Bayesian RL framework

for repeated coalition formation under uncertainty.
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An essential quality of a cognitive being is its ability to

learn, that is, to gain new knowledge or skills, as well as

to improve existing knowledge or skills based on experience.

Cognitive beings are able to cope with situations they have

been previously confronted with as well as they are able to

adapt to new situations sensibly. Thus, when designing an

artificial agent that shall exhibit cognitive qualitieswhich we

refer to in short as a cognitive agentone central task is to

develop computational means that enable the agent to learn.

In this paper, we subscribe to one of the most influential

paradigms of machine learning, reinforcement learning (RL)

[15]. Reinforcement learning is very valuable when the char-

acteristics of the underlying system are not known and/or

difficult to describe or when the environment of an acting

agent is only partially known or completely unknown.

In recent years, there are many application of reinforcement

learning techniques in multi-agent systems. There are a rep-

resentative selection of algorithms for the different areas of

multi-agent reinforcement learning research [2] [16].

Agents situated in the real world can perceive a great

variety of information. Two situations are unlikely to lead to

the same perception even if the situations are very similar.

Learning requires the agent to acknowledge important details

in a perception, to recognise commonalities across situations,

and, most importantly, to disregard irrelevant information.

In other words, the ability to learn involves the ability to

abstract. Abstraction enables us to conceptualise the surround-

ing world, to build categories, and to derive reactions from

these categories that can adapt to different situations. Complex

and overly detailed circumstances can be reduced to much

simpler concepts and not until then it becomes feasible to

deliberate about conclusions to draw and actions to take.

Abstract concepts explicate commonalities in different scenes

and, thus, can cover new situations [17]–[21].

The question of how the solution, inferred by RL can be

used to enable the cognitive agent to adapt the behavior to new

tasks or similar situations is a great challenge in engineering

machine learning. For this kind of reuse of knowledge, the

term transfer training has become popular [22].

The main goal of this paper is to apply transfer learning

trough reinforcement learning in area of building autonomous

agent behaviour. In the second part of this paper we will briefly

describe the underlying theory of Autonomous Agent, Markov

Decision Process, Reinforcement Learning, Transfer Learning,

Deep Learning and Sequential Games. In addition, we will

describe the implementation of our approach. In the third part

of our study we describe the experiments and gathers evidence

to support our hypothesis.

II. METHODS AND MATERIALS

A. Theory

1) Autonomous Agent behaviour: The information about

past and current states of the agent and environment allow the

agents to estimate its own progress. Moreover, this information

allow the agent to make the corrections in existing pans if any

needed and even to ma make new plans if it is necessary.

However if the agent makes corrections in the existing plans

too often then this could lead to poor overall performance.

Moreover, the frequently dropping and building plans could

make the things even worse. Hence, it is desirable to reduce

(or completely avoid) situations in which the agent should

changes its mind. There are two main approaches to do that:

the first is to make the changing of the plans less recourse

consuming task and the e second is to make such plans that are

able to deal with volatile environment behaviour. This material

is concerning the second approach.

As a key issue in building more efficient plans in rapidly

changing environment we can point the ability of the agent to

makes its plans in accordance not only with past and current

states of the environment but also bearing in mind the future.

To do that the agent needs to predict or forecast the future

states of the environment. So, if we describe the states of

the agent and environment as a time series then the task of

making efficient plans will be significantly aided if the agent

could forecasts the future with desirable accuracy.

An n-tipple (vector) is a result of one cycle of a work of

the agent. It consists of the parameters of the behaviour of

the agent: b(b1, b2, . . . , bn). The data from environment are

collected and transformed into time series in the knowledge

base of the agent.

2) Markov Decision Process: We formulate the transfer

learning problem in sequential decision making domains using

the following framework of Markov Decision Process. We use

the following definition of MDP as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function

and reward function are described. And

P : S ×A → Π(S) (2)

is a transition function that maps the probability of moving to

a new state given an action and the current state,

R : S ×A → R (3)

is a reward function. that gives the immediate reward of taking

an action in a state.

And

γ ∈ [0, 1) (4)

is the discount factor.

So, the MDP of the agent is described in (1), where S is the

set of states, A is the set of actions, P is transition function

and R is a reward function. The transition function P maps the

the probability of moving to a new state given an action and

the current states is shown in (2). The reward functions R that

gives the immediate reward of taking an action is described in

(3). An the discount factor γ is bounded as is shown in (4).
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3) Reinforcement learning: Reinforcement learning [15] is

a popular and effective method to solve an MDP.

In our work we implement the reinforcement learning

algorithm Q-learning as is described in [23]. At each moment

of time, the agent is in a given state s ∈ S, and the agents

view is represented by a feature vector. Upon this information

the agent makes the decision which action a from a set of

all possible actions A to take in order to reach its goal. The

outcome of Q-learning is a Q-function

Q(s, a) (5)

that attaches to any state-action tuple (s, a) the expected

reward over time. We discuss here the overall reward when

starting in s and executing action a. From that Q-function,

one can derive the policy π by always choosing the action

with the highest Q-value:

π(s) = argmax
a∈A

(Q(s, a)) (6)

Under these conditions, Q-learning should converge to an

optimal Q-function

Q∗ = π(s) = argmax
a∈A

(Q(s; a)) (7)

that returns the highest reward for any state-action tuple (s, a).
Hence, in this way we establish an optimal policy π∗.

4) Transfer learning: Machine learning and data mining

techniques have been used in numerous real-world applica-

tions. An assumption of traditional machine learning method-

ologies is the training data and testing data are taken from

the same domain, such that the input feature space and data

distribution characteristics are the same. However, in some

real-world machine learning scenarios, this assumption does

not hold. There are cases where training data is expensive or

difficult to collect. Therefore, there is a need to create high-

performance learners trained with more easily obtained data

from different domains. This methodology is referred to as

transfer learning [24].

There is a hierarchical Bayesian framework for transfer in

sequential decision making tasks of transferring two basic

kinds of knowledge [1] [2].

In our paper, we uses meta-data (e.g., attribute-value pairs)

associated with each task to learn the expected benefit of

transfer given a source-target task pair. An example of such a

metadata is given in [25].

5) Deep Learning: In reinforcement learning, an agent

interacting with its environment is attempting to learn an

optimal control policy. At each time step, the agent observes

a state s, chooses an action a, receives a reward r, and

transitions to a new state s′. Q-Learning is an approach to

incrementally estimate the utility values of executing an action

from a given state by continuously updating the Q-values using

the following rule:

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (8)

Where Q(s; a) denotes the utility of taking action a from

state s. Q-learning can be directly extended to deep reinforce-

ment learning by using a deep neural network function approx-

imator Q(s, a|θ) for the Q-values, where are the weights of

the neural network that parametrize the Q-values. We update

the neural network weights by minimizing the loss function:

L(s, a|θi) = (r + γ argmax
a

Q(s′, a|θi)−Q(s, a|θi))
2. (9)

The backpropogation algorithm is used to update the net-

work weights at iteration i+1 by performing the computation:

θi+1 = θi + α∇θL(θi).
In this work, the stochastic optimization method ADAM is

applied. Deep neural networks are used to approximate the

value function. In addition, using a target Q-network to cal-

culate the loss function significantly accelerates convergence.

The experience replay dataset contains a fixed number of

transition tuples in it that contain (s; a; r; s′) where r is the

reward obtained by performing action a from state s, and s′ is

the state the agent transitions to after performing that action.

The experience tuples are sampled in mini batches, and

are used to update the network. The experience replay have

to prevent correlation between training samples, and helps to

improve convergence. The target network in the loss function

Q(s, a|θ) is kept fixed for a certain number of iterations and

is updated periodically.

We outline outline an extenion of multi-agent deep re-

inforcement learning (MADRL) approach presented in [26].

We identify three major MADRL-related challenges and offer

three solutions that make this approach possible.

The first challenge is to present the problem in such a way

that it is possible to develop an effective implementation. In

other words, the problem is to present the problem in such way,

that it can be used by any number of agents without changing

the deep Q-network architecture. To solve this problem, there

have to be imposed several assumptions: time and space are

discrete quantities, the agent’s agent is 2D and the agents are

divided into two groups of pursuers and evaders. Moreover,

two types of agents are two competing groups (competing

groups of agents).

These assumptions allow us to present the state of the

global system as an image-like tensor. So that each image

channel contains an agent and environmental information. This

presentation allows us to take advantage of the convolutional

neural networks that are proven to work well for image

processing tasks [26].

6) Sequential Games: By highlighting some of the im-

portant issues introduced by learning in a multilingual envi-

ronment, the traditional framework of game theory can not

represent the complete complexity of learning with multiple

agents. An important part of the problem is to make consistent

decisions in a state of transition. This aspect can not be

described by standard normal-form games, as they allow only

stationary, stochastic features that depend solely on the actions

of the players. That is why we are now looking at an expanded

framework that summarizes both sequential games and MDP.
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Introducing multiple agents in MDP significantly com-

plicates the problem. Both rewards and transitions in the

environment now depend on the actions of all agents that are

present in the system. That is why all agents need to learn in a

space for joint action. Moreover, as agents may have different

goals, there may not exist an optimal solution that maximizes

the rewards for all agents at the same time.

As the name suggests, Markov’s game still implies that state

transitions are branded, but both the probabilty of transition

and the anticipated rewards now depend on the joint action

of all agents. Markov’s ganes can be seen as an extension of

MDP to the case of many agents, as well as repetitive games

to multiple state case.

B. Implementation:

We generate a discrete map with predefined dimensions.

Then randomly put obstacles on the map. The next stage

generates two lists: one with the pursuers and one with the

prey. We study the impact of the number of pursuers and booty

on the speed of reinforcement learning. We also investigate the

impact of the number of obstacles on the speed of learning.

And also we study the impact of magnitude of reward on non

catching moves of pursuers on the speed of training.

In our case group of predator pursue a group of preys

(intruders). So, as in a classic Pursue-evasion process we

study our problem as a MDP task. The all members of either

group act after all members of the other group have made

their moves. So, we could describe our approach as a classic

sequential game. Both pursuers and evader have a short range

of view so they have to move continuously.

We define a stochastic behaviour of both of the groups

imposing some additional rules. With a small probability

αevader will miss opportunity to move out and will give some

handicap to the pursuer. From the other hand the pursuer with

small probability αpursuer will lose the evader from site and

thus will give a chance to evader to evade.

In general, predators have a small negative reward for every

empty step and the prey have small positive reward for every

evasion. If a pursuer catch a prey the its reward increases

considerably (at almost two orders of magnitude) and the

prey’s reward will be reduced by the same amount.

The groups are implemented by two lists: one for the

predators and another one for the evaders. And a new prey is

generated in random place on the map but out of sight of the

pursuers. In our implementation, we claim that if the values of

the use of MADRL will superapss MARL approach in mater

of maximum reward. So, we will reach an optimal policy for

a final number of epochs (steps) faster.

In order to speed up the training, it is good that the

coefficients of the P matrix are somewhat closer to the desired

policy. This can be achieved through a TL in a simpler

environment (or just a part of the environment). The classic

reinforcement learning consists of finding an optimal policy

for the whole area with high details.

Our approach is based on following: In our case, group of

predator pursue a group of preys (intruders).

• Loading the whole map and scraping all details but

geometric obstacles

• Find a reinforcement learning solution for this plain map

• Use the MADRL and MARL to train both groups

• Load full map and use learned knowledge to study the

impact of chosen factors in learning speed

Notation and transfer learning: Let G be the set of all

possible tasks. Let Gsource ⊂ G be a set of source tasks for

which the pursuers and evaders has already learned a policy

and let Gtarget ⊂ G be another set of target tasks that have

to be learned by the agents. For each task

gi ∈ G, letDiinR
n (10)

is a descriptor of features for the given agent(either pursuer

or prey). We assume that gi and Di that are known to the all

agents.

So, we define a target task gj ∈ Gtarget, as the goal of

the agents. In both groups this should lead to higher summary

rewards.

We assume that for each pair of tasks (gi, gj) such that

gi, gj ∈ Gsource, the agents could reliable estimate fu(gi, gj).
E.g. the pursuer ”catch” a prey and respectively the evader

”evades”. So both groups of agents can use these similar

policies estimates to predict the expected transfer benefit

between tasks in Gsource and tasks in Gtarget.

III. EXPERIMENTS AND RESULTS

We gather evidence to support the hypothesis that using the

Deep Learning will significantly speed up the training process

of Multi Agent Reinforcement Learning. Hence we claim that

building of Multi Agent Deep Reinforcement Learning for

Autonomous Agent behaviour building is more efficient that

applying the MARL direct approach.

We perform the following experiment: for a given map we

should find an optimal autonomous agent group behaviour.

The map is described by its size nxn and complexity rate Rc.

We have two method: Multi Agent Reinforcement Learning

and Multi Agent Deep Reinforcement Learning. And four

cases:

• case study I - Study the impact of the number of pursuers

and booty on the speed of reinforcement learning

• case study II - The impact of the number of obstacles on

the speed of learning

• case study III -Impact of magnitude of reward on non

catching moves of pursuers on the speed of training

• case study IV - The impact of the map size on the speed

of learning

We study following algorithms:

• case I - Multi Agent Reinforcement Learning (MARL)

• case II - Multi Agent Deep Reinforcement Learning

(MADRL)

We do the following task: for a given map we need to find

optimal behaviour of pursuers. The agent’s task is to travel

on a chased the maximum preys for given amount of time.

The environment is represented as a two-dimensional obstacle
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Fig. 1. We study the impact of the number of pursuers and booty on the
speed of reinforcement learning.

map. The map is described by its size nxn and the rate of

complexity Rc.

From Figure 1 one can see that when nuber of pursuers and

preys are at the same magnitude then MADRL has a better

performance than MARL.
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Fig. 2. We study the impact of the number of obstacles on the speed of
learning.

hen the number of pursuers and prey is roughly the same

then the MADRL is significantly better than the direct MARL.

Moreover, with the rise in the number of ages, the quality of

the gauze is significantly reduced while the deep approach

is weakly affected by re-education. On a map similar to

the first case, but with twice as many obstacles 1, the deep

approach keeps practically the same total payout, while the

direct approach has a considerably lower rewards. In the

third case, there is a significant increase in the dispersion of

the maximum reward MARL, while the deep training has a

relatively stable dispersion.
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Fig. 3. We study impact of magnitude of reward on non catching moves of
pursuers on the speed of training.
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Fig. 4. We study the impact of the map size on the speed of learning.

From the Figure 4, it can be seen that for smaller maps the

two approaches have a more productive performance.

IV. CONCLUSION AND FUTURE WORK

The impact of different factors for building of Multi Agent

behaviour is discussed in this paper. Two different approaches

are presented: Multi Agent Reinforcement Learning and Multi

Agent Deep Reinforcement Learning. The impact of four

factors on Reinforcement Learning performance has studied.

The summary reward is used as a measure of performance. In

all case studies the Multi Agent Deep Reinforcement Learning

demonstrate significantly better performance than Multi Agent

Reinforcement Learning.
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