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Abstract—Decision-making for autonomous robots in real world
applications has to manage uncertainties in order to efficiently
accomplish a mission. Some planning methods deal with un-
certainty by improving the robustness of the plan embedded
in the robot. In this paper, we propose a novel approach to
one of these methods, contingent planning. Most of the existing
approaches are limited by the computation complexity and the
quality of the solutions they return. To deal with these limitations,
we propose to limit the number of observations in the plan as
observations involve an important cost in computation time and
energy. The originality of our approach is that our contingent
planner uses an underlying conformant planner, i.e., a planner
that is not allowed to make observations, to compute conformant
subplans and insert observations between conformant subplans
only when a conformant plan cannot be computed. We evaluate
this approach by comparing its results with respect to Contingent-
FF (Contingent Fast-Forward), a well known contingent planner,
on a set of benchmarks. This comparison reveals that, even if our
approach has some limitations, as it is not complete, it works quite
effectively in terms of solution quality on classic benchmarks of
the planning community.

Keywords–contingent planning; autonomous decision-making;
uncertainty.

I. INTRODUCTION

In our world, where disasters are more and more frequent,
fast and effective victims rescue has become a major issue.
While robots are already used by first responders in such
situations to access difficult terrains or hazardous areas, the
next step would be to use autonomous robots, that would be
able to adapt to the situation in order to provide a fast and
efficient response. This need for autonomous robotics in search
and rescue has been emphasized by [1] and [2]. This capability
to adapt to the environment requires us to embed into the robot
platform some decision-making processes able to reason about
uncertain states of the environment, as stated by [3] while
reporting about the use of robots in earthquake responses.

In this paper, we propose an algorithm for planning under
uncertainty that settles in the contingent planning paradigm:
uncertainty is represented by sets of possible states, and the
objective is to find a conditional plan, i.e., a graph of actions
containing branches allowing an online decision making influ-
enced by the results of observations of some unknown parts
of the environment.

Most of the existing approaches are limited by the com-
plexity of the plan computation and the quality of the solutions
they return. One of the ways to deal with these limitations
is to limit the number of observations in the plan. In fact,
especially in autonomous robots missions, observations have
an important cost in computation time and energy. Conformant

planning [4]–[7] consists in dealing with the uncertainty of the
environment by computing a plan working for every possible
initial state without making any observation. Being able to
solve a problem without observation is an advantage that
we find interesting to study, especially as existing contingent
approaches do not use a background conformant planner and
its advantages.

The originality of our approach is precisely that we use in
the background a conformant planner iteratively, by asking it
to solve subproblems. If the conformant planner cannot find
a conformant plan, then we use counter-examples returned by
this planner to insert observations in-between the conformant
plans obtained for such subproblems. In this version of the
approach, we try to perform the observation as close as
possible from the failing action of a failing plan, assuming
the fact that an observation could potentially be more efficient
close to the issue. The approach described in this paper has
some limitations. In fact, our approach is not yet complete, but
it worked quite effectively so far in terms of solution quality
on classic benchmarks of the planning community.

The rest of the paper is structured as follows. In Section 2,
we present some related works on planning under uncertainty.
In Section 3, we present some background and notation about
the problem formalisation. In Section 4, we describe and eval-
uate theoretically our algorithm. In Section 5, we compare our
approach with respect to Contingent-FF, and we present some
results on some academic benchmarks. Finally, in Section 6,
we conclude this paper.

II. RELATED WORKS

Various planning methods exist to handle uncertainty. We
can separate these methods in different types depending on
how uncertainty is defined. Replanning is a method consisting
in computing a first plan without handling uncertainties and re-
planning if an event occurs during the execution of the plan [8]
[9]. Fast-Forward Replan (FF-Replan) [9] is one of these meth-
ods in which the probabilities of the problem are determinized
and a plan is computed with a classical planning method. If
an unexpected state occurs during the execution of the plan,
then the planner replans in the same determinization of the
problem. When uncertainty can be represented as probabilities
on state transitions or action non-deterministic effects, proba-
bilistic planning is commonly used. Among these probabilistic
methods we can cite Markov Decision Processes (MDPs) [10]
that model the problem as a fully observable stochastic system.
The solution for a MDP is an optimal policy mapping the best
action to each state of the MDP. This optimal policy can be
found by various methods, like dynamic programming [11]
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and some of its variants like Value iteration method or Policy
iteration [12]. When the problem is only partially observable,
Partially Observable MDPs (POMDPs) [13] are used instead
of MDPs. POMDPs introduce a belief over the environment
state which is updated by some observations. This belief is
updated by a function over state transition probabilities and
observation probabilities. Some solving methods for MDPs and
POMDPs follow a forward search approach generally making
some sampling from the initial belief, then computing only a
partial policy [14]–[16]. Chanel et al. [17] have also proposed
an architectural approach to compute partial policy online in
bounded time by making assumptions on the current belief.

When uncertainty is expressed as a set of possible initial
states of the system, symbolic planning methods can be used.
If the agent is not able to perform any observation, conformant
planning can be used to solve the planning problem [4]–
[7]. The plan returned by a conformant planner is generally
an action sequence. Conformant Fast-Forward (Conformant-
FF) [4] is a conformant planner that explores the belief
space using heuristic functions based on a relaxation of the
problem actions, by ignoring the delete lists of their effects.
Conformant-FF then uses the Fast-Forward (FF) planner to
compute a relaxed plan for each search state. Conformant
Planner via Counter-Example and Sampling (CPCES) [7] is
another conformant planner that computes a conformant plan
using only a subset of the initial states, which allows CPCES
to reduce the problem to classical planning.

If the planning problem is (partially) observable, contin-
gent planning can be used to solve the problem. Contingent
planning [18]–[20] consists in computing a conditional plan
containing branches allowing an online decision making in-
fluenced by the results of some observations of the system.
The conditional plan returned by a contingent planner is gen-
erally represented as a decision tree. Contingent Fast-Forward
(Contingent-FF) [18] is a contingent planner that uses the same
belief space representation as Conformant-FF. In Contingent-
FF, the search space is an And-Or tree and the returned plan
is a sub-tree where all leaves are goal states. Belief states are
represented through action-observation sequences.

The approach proposed in this paper is part of the contin-
gent planning approaches. Indeed, in the kind of application
like search and rescue missions by autonomous robots, design-
ing a model of the complete problem by a (PO)MDP is hard,
as most of the uncertainty distributions are either unknown, or
with the occurence of rare events. Online Replanning methods
are not really suitables for autonomous robots missions as the
cost of computing a new plan during the execution has an
important computation and energy cost. Conformant planning
has lots of advantages, but conformant plans do not always
exist for autonomous robots problems, as some observations
must be done to decrease the uncertainty. However, the ap-
proach we propose can be seen as a contingent meta-planner
that uses a conformant planner to compute conformant plans
for subproblems when such a conformant plan exists and add
observations in between the conformant subplans when obser-
vations are needed. Therefore, our approach can be useful for
missions in which we need to limit the number of observations.

III. BACKGROUND

In this section, we introduce some background and no-
tations that we use later to present our approach. First,

we introduce notations to describe the problem, including
a description of states and operators. Second, we introduce
some notations about belief representation, that we use in our
approach to manage uncertainty. In these definitions, all actions
are assumed to be deterministic and the uncertainty is assumed
to lie in the initial situation only. Note that it has been proven
that non-deterministic effects can be eliminated by introducing
artificial initial uncertainty [21].

A. Problem definition
The following notations are adapted from [22] [23].

Definition 1 (Planning Problem). A planning problem P is
defined by a tuple (L,O, I, G) where:

• L = {p1, ..., pn} is a finite set of proposition symbols;
a state s is then represented by a set of propositions
that hold, i.e., that are true, in s; propositions that
do not hold in s are assumed to be false; we denote
W = 2L as the set of all possible world states;

• O is a finite set of operators, partitioned into the set of
actions A and the set of observations O; each operator
op ∈ O is defined by a precondition pre(op) ⊆ L and
a set of effects eff(op);

• I ⊆ W is the set of possible initial states;
• G ⊆ L is the set of propositions defining the goal.

Definition 2 (Action Application). An action a ∈ A is
applicable in state s ∈ W if and only if its preconditions
hold in s, i.e.,

pre(a) ⊆ s (1)

Each effect e of a (i.e., e ∈ eff(a)) is defined by a triple
con(e) ⊆ L, add(e) ⊆ L, del(e) ⊆ L, where:

• con(e) are the conditions in which e is applied (un-
conditional effects are defined by con(e) = ∅);

• add(e) are the propositions that will be added to the
state after applying e;

• del(e) are the propositions that will be deleted from
the state after applying e.

If a is applicable in s, then T (s, a) is the transition function
such that:

T (s, a) = s−
⋃

e ∈ eff(a) s.t. con(e) ⊆ s

del(e)

∪
⋃

e ∈ eff(a) s.t. con(e) ⊆ s

add(e).
(2)

We assume that the problem actions are not self-
contradictory, i.e., when applying action a in state s, for two
effects e, e′ ∈ eff(a), if p ∈ add(e) and p ∈ del(e′), then
con(e) and con(e′) are not both satisfied in state s. We have
con(e) ∪ con(e′) * s. Consequently, we also assume that for
each effect e, add(e) ∩ del(e) = ∅.
Definition 3 (Observation Application). An observation o ∈
O is applicable in state s ∈ W if and only if its preconditions
hold in s (see (1)). The effects o are defined by a proposition
(eff(o) ∈ L) that is observed when applying o, i.e., whose
truth value is known after applying o. The application of an
observation o in state s has no effect over the state s, i.e.,

T (s, o) = s (3)
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The application of an observation o has no effect on the
world state, but it will have an effect on the belief the agent
has on the current state. Notations and definitions about belief
reasoning are described below. Note that we assume that an
observation o observes only one proposition at a time, without
loss of generality.

B. Belief reasonning
As classically done in planning under uncertainty, we

model the uncertain knowledge about the current state as a
belief represented by a set of all the possible states (consistent
with the actions/observations done so far). The following
notations are taken or adapted from [23] [24].

Definition 4 (Belief State). The current belief B =
{s1, . . . , sn} ⊆ W is the set of possible current states s1, . . . ,
sn. The initial belief B0 corresponds to the possible initial
states I of the problem.

Definition 5 (Action Application on a Belief). An action
a ∈ A is applicable in belief B if and only if a is applicable
for each possible state in B, i.e., iff:

∀s ∈ B, pre(a) ⊆ s (4)

The effect of applying action a in B then results in a belief B′
such that:

B′ = {T (s, a), s.t. s ∈ B} (5)

where T (s, a) is computed according to (2). By extension, the
effect of applying a in B can be noted as T (B, a).

Definition 6 (Observation Application on a Belief). An
observation o ∈ O is applicable in belief B if and only if
o is applicable for each possible state in B (see (4)). Let ν(o)
be the observation result, i.e., the observed truth value of the
effects of o. We denote ν+(o) ⊆ L as the set of observed
propositions that hold in the current state, and ν−(o) ⊆ L the
set of observed propositions that do not hold. The application
of observation o in belief B does not modify the state itself, as
described in Def. 3, but results in a new belief T (B, o) such
that:

T (B, o) = {s, s.t. s ∈ B ∧ ν+(o) ⊆ s
∧ ν−(o) ∩ s = ∅}

(6)

As we assume that an observation observes only one
proposition p (see Def. 3), either ν+(o) or ν−(o) is empty,
the other being equal to p. Also, note that (6) would work for
observations whose effect has multiple propositions.

C. Conditional Plan
A conditional plan can be represented as a graph of

operators, leading an initial belief to a resulting belief (then
having a flow network structure). Branchings in this graph
correspond to results of observations, depending whether the
observed properties hold or not in the current belief.

Definition 7 (Conditional Plan). Given a problem P =
(L,O, I, G), a conditional plan is inductively defined by the
following facts:

• The empty plan ε is a conditional plan;
• (op) is a conditional plan ∀op ∈ O;

• if π1 and π2 are conditional plans, then π1;π2 is a
conditional plan representing the sequence of π1 and
π2;

• if π1, π2 are conditional plans and o ∈ O is an
observation, then the plan if o then π1 else π2 is
a conditional plan representing that, according to the
result of observation o, π1 is executed if the observed
proposition is true, otherwise π2 is executed.

A conditional plan π is executable in a belief B if its
root operator is applicable in B, and if all operators in π are
applicable in the belief corresponding to the result of their
previous operators. We denote T (B, π) as the result of applying
an executable conditional plan in belief B. Using a similar
inductive definition, we formally say that a conditional plan π
is executable in a belief B if:

• π = (op), op ∈ O such that op is applicable in B (see
Eq. 4); then T (B, π) = T (B, op);

• π = π1;π2, with π1 applicable in B and π2 applicable
in T (B, π1); then T (B, π) = T (T (B, π1), π2);

• π = if o then π1 else π2, with o applicable in B,
π1 is applicable in B+ and π2 is applicable in B−,
where B+ (resp. B−) = T (B, o) when ν+(o) (resp.
ν−(o)) = eff(o); the result of applying π is then
T (B, π) = T (B+, π1)

⋃
T (B−, π2).

A conditional plan π executable in I and that leads to G
(i.e., G ∈ T (I, π)) is a solution to problem P. We can notice
that the definition of a plan in classical formalism is equivalent
to the three first points of Def. 7.

IV. CONTINGENT PLANNING ALGORITHM

The proposed approach settles on the use of a conformant
planner that is asked to solve subproblems. To be used in
our approach, the conformant planner must return either the
conformant plan it has found, but also, in case no conformant
plan exists, a counter-example (i.e., an initial state that caused
the failure) and information about why the planner is failing
on this counter-example, in the form of a plan (i.e., a sequence
of actions) that fails for this counter-example.

Based on such a conformant planner, the principle of our
approach is to give a problem to solve to the conformant
planner and, in case of failure, use the counter-example and
the failing plan to determine which observation to perform,
and when, and then split the problem into subproblems taking
this observation into account to reduce the uncertainty on
the subproblems, and then ask the conformant planner to
solve these subproblems. This process is used iteratively on
the subproblems if the conformant planner fails in finding a
solution. In this version of the approach, we try to perform
the observation as close as possible from the failing action
of the failing plan returned by the conformant planner, as-
suming the fact that an observation could potentially be more
efficient close to the plan issue. As a conformant planner, we
use CPCES [7], which fulfills our assumption: it provides a
counter-example and a failing plan in case of failure. Note that
we could use any conformant planner returning the same kind
of information, and for conformant planners that would instead
return for instance a proposition that makes the solver fail, we
could integrate it with slight modification of the algorithm,
without reconsidering the approach.
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In subsection A. of this section, we present the CPCES
algorithm and the data it provides. Then, we present and
describe the main algorithm of our approach, before analysing
some properties.

A. CPCES
CPCES [7] is a conformant planner that follows an iterative

approach, in which a deterministic planner, namely FF [25],
is used to find a plan π (an action sequence) for a subset
of the initial belief, and then the validity of this plan on
the complete initial belief is checked by solving a boolean
satisfiability (SAT) problem with Z3 [26]. If the plan is not
valid, Z3 provides a counter-example γ, i.e., a possible initial
state for which the plan is not valid. This counter-example is
integrated into the initial subset, and FF is asked to solve it
again. This process is used iteratively, starting from one single
state of the belief, until either a valid plan is found, or FF finds
no plan for the subset, in which case the counter-example and
the previous plan found by FF are returned.

Figure 1 contains the CPCES algorithm taken from [7] and
adapted to the notations introduced in the previous section. FF
is called to compute a new plan in line 9 and Z3 is used to
check the plan validity in line 4.

Input: P = (L, A, I,G)
Output: π, γ

1: B := ∅
2: π := ε
3: loop
4: check validity of π
5: if π is a solution for P then
6: return π, ∅
7: let γ be a counter-example
8: B := B ∪ {γ}
9: compute a new plan π′ for P′ = (L, A,B, G)

10: if no such π′ exists then
11: return π, γ
12: π := π′

Figure 1. CPCES Algorithm

B. Contingent planner

Input: P = (L,O, I, G)
Output: πc

1: π, γ := conformantPlanner(P)
2: if γ = ∅ then
3: return π
4: Bo, o := findObservation(I,O, π, γ)
5: πo := ContingentPlanning((L,O, I,Bo))
6: B+ := T (Bo, o) with ν+(o) = eff(o)
7: πp := ContingentPlanning((L,O,B+, G))
8: B− := T (Bo, o) with ν−(o) = eff(o)
9: πn := ContingentPlanning((L,O,B−, G))

10: return (πo ;if o then πp else πn)

Figure 2. Contingent Planning Procedure

Figure 2 illustrates our main contingent plan computa-
tion algorithm. This algorithm takes as input the contingent

problem P and returns a contingent plan πc. We first ask
a conformant planner (in our implementation, CPCES, as
described in Alg. 1) to compute a conformant plan π (line 1).
If such a conformant plan exists, (line 2), we return this plan.
Otherwise, the conformant planner returns a counter-example
γ and a plan π that fails for this counter-example. From these
pieces of information, we look for an observation to include
in the plan. The findObservation function (further detailed in
Alg. 3) returns an observation o and a belief Bo in which this
observation could be performed (line 4).

Finally, we call our algorithm again on the subproblems
corresponding to: reaching the belief states in which to perform
the observation from the initial state (line 5), and reaching
the goal from both cases where the belief has been updated
after a positive observation (line 7) and a negative observation
(line 9). We finally return a plan made of the subplan to reach
Bo followed by a branching conditionned by the observation
result (line 10).

Input: I,O, π, γ
Output: (Bo, o)

1: beliefList := [I]
2: B := I
3: for a in π do
4: if a applicable in γ then
5: γ := T (γ, a)
6: B := T (B, a)
7: beliefList := beliefList+ B
8: else
9: let unsatPre be the unsatisfied preconditions of a

10: break
11: for p in unsatPre do
12: let o be an observation for p in O
13: for Bo in beliefList do
14: if o applicable in Bo then
15: return (Bo, o)
16: return (B, None)

Figure 3. findObservation Algorithm

Figure 3 describes the findObservation algorithm. This
algorithm is used to determine which observation o we need to
perform to discriminate the counter-example γ from the other
possible states and in which belief Bo we need to perform the
observation. The inputs are the set of operators O, the failing
plan π previously computed by the conformant plan and the
counter-example state γ. The outputs are the observation o we
need to perform and the belief Bo in which we need to perform
the observation o.

We first look for the action a in π that is not applicable
in γ (lines 4 to 7) by iteratively applying each action of the
plan to the counter-example γ (line 5). We also keep track of
the beliefs computed by the application of each action of π to
the initial belief (lines 6 and 7). Once the failing action has
been found, we get the set of propositions unsatPre in the
preconditions of a that does not hold in the state γ (line 9). We
can notice that unsatPre will never be empty because there
is necessarily a failing action in the failing plan π returned by
the conformant planner. Each proposition of unsatPre is a
potential observable proposition allowing to discriminate the
counter-example and the other states in which this proposition
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does not hold from the other possible states. We then try to
find an observation able to observe one of these propositions
in one of the beliefs computed in the belief list (lines 11
to 15). We scan the possible observations in O to find an
observation performing an observation effect over the value of
the proposition p (line 12).

Finally, we verify if the observation o is applicable in one
of the computed beliefs in beliefList (lines 13 to 15). If o is
applicable in the current belief Bo, then we return Bo and o. In
the other case, we verify if the observation o is applicable in
one of the previously computed beliefs in beliefList. If o is
not applicable in any belief of beliefList, then we try to find
another observation able to observe another proposition p of
unsatPre. If there is no observation able to discriminate the
counter-exemple, then we return None, meaning that there is
no possible observation.

C. Theoretical evaluation
Our method is sound because, if there is a solution to

the problem, then the plan found is a contingent or confor-
mant solution to the problem under the assumption that the
conformant planner used is sound. If there is no solution,
then the method terminates returning a no solution message
that does not appear in the algorithms above. The algorithm
always terminates because, if there is a contingent solution,
then the size of the search space is convergent due to the
splitting of the search space after each observation. If there
is a conformant solution, then it is returned directly after the
first call of CPCES, and if there is no solution, the algorithm
terminates with an exit message. Our method is not complete,
particularly because there is no backtracking. We are currently
working on a version including backtracking, but it will be a
second version of the algorithm.

V. RESULTS

We have evaluated our algorithm by comparing its perfor-
mance with respect to Contingent-FF on a set of benchmarks
provided by Contingent-FF. The results are given on Table
I. Computation times are given in seconds. TO indicates that
the computation timed out after 5 min. NO indicates that the
planner did not find an applicable observation. Size gives the
number of actions in the plan, depth the maximal depth of
the plan, and observations the number of observations. For
our approach, we also compute the depth of the shortest path
of the plan. This comparison is especially interesting given
that Contingent-FF uses the same PDDL (Planning Domain
Description Language) input language as our method. For
this evaluation, we limited the computation time of the two
approaches to 5 minutes, and we used the heuristic option of
Contingent-FF that provided the fastest results (otherwise, the
solver times out on most of the benchmarks). The results are
given on Table I.

First, we can notice that for some benchmarks we find
the same results as Contingent-FF, except for computation
time, namely ebtcs, grid p2, egrid p2, elogistics p1 and
p3. Sometimes neither Contingent-FF nor our approach are
able to find a solution, like in egrid p3 and p4, where our
approach does not succeed to find an applicable observation
and Contingent-FF times out.

We can notice in Table I that Contingent-FF has clearly
better results in blocks where our approach finds plans with

the same number of observations, but with a bigger size and a
longer depth. In erovers p4, we obtain the same result in size
as Contingent-FF, but our approach computes a longer plan in
depth. Moreover, in erovers p6, Contingent-FF finds a solution
with less observations, even if our solution is shorter.

We can observe in Table I that our approach is better than
Contingent-FF in benchmarks where a conformant solution
exists, namely btcs, grid, rovers, logistics. In that case, as
we rely on CPCES, we find a conformant plan whereas
Contingent-FF includes observations in its solution. Moreover,
it generally results in finding a shorter plan, except for logistics
and btcs where Contingent-FF finds a plan with a shorter depth.
In problems like elogistics p5, p7 and erovers p2 and p8,
we find plans having the same number of observations than
Contingent-FF, but the plans we find are shorter in size and
depth. Moreover, our approach succeeds in solving egrid p5
problem, while Contingent-FF times out.

One of the only drawbacks of our approach with respect to
Contingent-FF is the computation time needed to solve some
of the problems. First, we can notice these computation times
have the same order of magnitude than Contingent-FF and do
not seem to grow exponentially when increasing the size of the
problems. Second, this computation time partly comes from the
fact that we use CPCES as a ”black-box” conformant planner,
itself considering FF as a ”black-box” planner. This induces
a lot of access to files for writing/reading problems for these
solvers during our process, while Contingent-FF does all the
computation in memory. Our approach is not complete, which
implies that in some problems we cannot find any applicable
observations. In fact, in the current version of the approach,
there is no backtracking in the failing plan computation and
in the observation computation process. Our approach does
not succeed when no observation is applicable in any belief
computed from the application of the failing plan computed
by CPCES. However, an interesting fact we can notice in
these results is that our approach is better on benchmarks
rovers, logistics and elogistics, which are closer to autonomous
robots problems in which we need to navigate and explore an
environment in order to pick or analyze some items.

A simulation of an autonomous robot scenario is currently
in development. This simulation will allow us to evaluate the
performance of our approach and see the behavior of the robot
during the plan execution.

VI. CONCLUSION

In this paper, we have proposed a new contingent planner
with an original approach, as we use a conformant planner
to find conformant subplans when possible. Our approach
consists in asking CPCES, a conformant planner, to solve
a problem. If no conformant plan exists for this problem,
CPCES returns a counter-example and a failing plan for this
counter-example. We use this information to first add an
observation in the plan to reduce the uncertainty related to
this counter-example, and second to decompose the problem
into subproblems with less uncertainty. These subproblems are
sent to CPCES again to find a conformant plan, and the process
iterates until a complete conditional plan has been found.

We compared our approach with Contingent-FF on a set
of benchmarks and, despite the fact that we generally have
higher computation time, we get some concluding results.
First, on benchmarks where a conformant solution exists, we
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TABLE I. RESULTS OF A COMPARISON WITH CONTINGENT-FF ON SOME BENCHMARKS.

Problem Contingent Planning with counter-examples Contingent-FF
time (s) size depth shortest observations time (s) size depth observations

blocks/p3 0.94 6 4 3 1 0.00 6 4 1
blocks/p7 5.6 89 16 10 7 0.05 55 9 7
blocks/p11 6.4 169 29 20 7 0.43 117 18 7
blocks/p15 8.05 244 39 27 7 3.20 163 25 7
btcs/p10 0.76 19 19 19 0 0.02 19 10 9
btcs/p30 2.36 59 59 59 0 0.8 59 30 29
btcs/p50 8.13 99 99 99 0 9.79 99 50 49
btcs/p70 24.11 139 139 139 0 57.31 139 70 69
ebtcs/p10 6.21 19 10 2 9 0.01 19 10 9
ebtcs/p30 22.73 59 30 2 29 0.42 59 30 29
ebtcs/p50 56.8 99 50 2 49 4.93 99 50 49
ebtcs/p70 156.11 139 70 2 69 29.10 139 70 69
grid/p2 3.61 9 9 9 0 0.01 9 9 0
grid/p3 4.05 19 19 19 0 9.78 174 43 15
grid/p4 21.24 45 45 45 0 227 464 68 17
grid/p5 18.64 31 31 31 0 TO - - -
egrid/p2 3.96 9 9 9 0 0.01 9 9 0
egrid/p3 NO - - - - TO - - -
egrid/p4 NO - - - - TO - - -
egrid/p5 73.24 185 31 23 7 TO - - -
rovers/p2 0.38 8 8 8 0 0.00 13 10 1
rovers/p4 0.52 13 13 13 0 0.00 23 14 3
rovers/p6 0.86 23 23 23 0 0.11 448 66 11
rovers/p8 0.65 23 23 23 0 0.03 170 83 3
erovers/p2 1.09 11 9 5 1 0.00 13 10 1
erovers/p4 3.39 23 17 5 3 0.00 23 14 3
erovers/p6 15.52 144 27 21 11 0.09 346 48 7
erovers/p8 3.34 44 21 15 3 0.01 95 36 3
logistics/p1 0.39 9 9 9 0 0.01 10 7 1
logistics/p3 0.49 14 14 14 0 0.01 18 8 2
logistics/p5 0.58 29 29 29 0 0.054 172 26 7
logistics/p7 0.75 31 31 31 0 0.2 247 27 11
elogistics/p1 1.07 10 7 4 1 0.00 10 7 1
elogistics/p3 1.8 18 8 5 2 0.00 18 8 2
elogistics/p5 9.02 138 22 20 7 0.12 172 26 7
elogistics/p7 10.63 185 26 21 11 0.13 247 26 11

always find a conformant plan. Second, on most of the other
benchmarks, we either get solutions with less observations, or
with less actions in the plan. Moreover, ou approach is better
on benchmarks close to autonomous robots problems in which
we need to navigate and explore uncertain environments.

Future works consist first in improving the completeness
of our method by performing a backtracking in the failing plan
computation and in the observation computation process if we
fail to find an observation applicable in a belief computed from
the current failing plan. Second, we would like to apply our
method to autonomous robots problems closer to reality with
navigation and exploration by implementing it on a real robot.
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