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Abstract—Stability of large-scale systems has been commonly
achieved using centralized and decentralized control configu-
rations. Several graph theoretic protocols have recently been
developed for the distributed stabilization of partially unknown
interconnected multiagent systems, when an upper bound on
the unknown interconnection allocation matrices is provided to
the control designer. The need for such an upper bound can
be relaxed using adaptive control ideas. However, due to the
inaccurate parameter estimation in the absence of the persistency
of excitation for all agents’ regressors, the use of traditional
adaptive control ideas will only ensure the boundedness of all tra-
jectories. We develop a data-assisted distributed protocol which
operates under a new condition, collective finite excitation, in
order to overcome this challenge. Despite the completely unknown
interconnection allocation matrices, we prove the exponential
estimation of all interconnection matrices and exponential con-
vergence of all state trajectories of the interconnected multiagent
systems to the origin.

Keywords–Distributed Control; Decoupling Control; Finite Ex-
citation; Interconnected Systems; Multiagent Systems.

I. INTRODUCTION

Along the advances in low-cost, low-dimension embedded
sensing, computation, and communication systems, graph the-
oretic approaches have received significant attention in the con-
sensus of Multi Agent Systems (MASs). Initial studies focused
on the simple integrators or completely known agents [1].
Recently, the consensus for MASs with completely known
interconnections among agent dynamics [2] and local or agent-
level modeling uncertainties ([3] and [4]) has also been studied.
In particular, [4] discusses that the consensus on zero is a
nontrivial problem for MASs with modeling uncertainties.

Parallel to these efforts, the concept of multilayer control
using graph theoretic approaches was proposed [5]. Egerst-
edt [6] considered the use of graph theory to capture the
architectural aspect of cyber-physical systems for a completely
known MAS of interconnected integrator agents. However,
based on [7], we know that the cyber and physical layers of
cyber-physical systems might be subject to various abnormal-
ities.

With a focus on the modeling uncertainties over the phys-
ical (agent) layer, [8] proposed a graph theoretic decoupling
framework in order to stabilize an interconnected MAS subject
to the nonlinear modeling uncertainties. However, that result is
based on the locally (interconnection-free) stable agents, and
the control layer topology is identical to the completely known
agent layer topology. Rezaei and Stefanovic [9] reformulated
the solution approach in order to capture the architectural
aspect of cyber-physical systems, yet the result was limited

to a special agent layer interconnection topology. This issue
was addressed in [10], however, it was based on a symmetric
control layer topology. Rezaei et al. [11] designed several
structurally nonsymmetric control layers for interconnected
single and double integrator agents, and [12] developed two
design procedures to build structurally nonsymmetric control
layers for interconnected MASs subject to both matched and
unmatched nonlinear modeling uncertainties. Nevertheless, all
of these robust formulations require the knowledge about an
upper bound on the norms of the unknown terms, and may
end in a level of inherent conservatism (see section 4 in [12]).

Adaptive control ideas provide an appropriate framework to
handle a wider range of modeling uncertainties in dynamical
systems including networked systems. While the traditional
adaptive control methods have been reported in several studies
(e.g., see [13] for synchronization and [14] for consensus in
MASs), the need for the Persistency of Excitation (PE) [15]
might be problematic when the control signal depends on the
estimation of the unknown parameters [16]. This might be
serious challenge when dealing with an MAS. This is because
the poor transient performance of each non-PE agent can easily
propagate via the (networked) distributed controller which,
consequently, degrades the performance of the entire MAS.

Motivated by the aforementioned observations, [17] pro-
posed a cooperative PE condition to be satisfied by a group of
agents (vs. each individual agent of an MAS). However, similar
to the conventional PE condition, that cooperative PE condition
must be satisfied in all (future) time windows. Yuan et al. [18]
reported a cooperative Finite Excitation (FE) condition for the
adaptive consensus in non-interconnected MASs. Further, [19]
designed a cooperative FE condition for the stabilization of
interconnected MASs. That method is based on a series of
low-pass filtered signals and the control layer is symmetric.
(See [19] for a more comprehensive survey of the literature.)

As discussed in [12], the use of an adaptive decoupling
approach may reduce the conservatism that inherently comes
with any robust control techniques. Therefore, motivated by
the findings in [19] and inspired by [20] (for single dynamical
systems), we develop a new data-assisted distributed protocol
to stabilize a class of linear time-invariant interconnected
MASs subject to the matched modeling uncertainties. The
control layer is built by two sublayers: A decoupling sublayer
to cancel the effect of the interconnections, and a cooperation
layer to stabilize the interconnected MAS even when the non-
interconnected agents are unstable or to shape the closed-loop
time response. The new data-assisted approach relies on the
use of a few data collection matrices to satisfy a collective
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FE condition which enables us to potentially improve the
performance of the multilayer interconnected MAS using an
appropriate criterion from the literature of matrix algebra.
We theoretically prove that, under the proposed collective
FE condition, all estimated interconnection allocation matrices
exponentially converge to their actual values and, similarly,
all state trajectories of the multilayer interconnected MAS
converge to the origin. We also characterize the boundedness
of all trajectories during the transient time.

We overview the required notation and definitions in Sec-
tion II, provide the main theoretical developments in Sec-
tion III, and summarize the paper in Section IV.

II. NOTATION AND DEFINITIONS

A� B (<) means A−B is a positive (semi) definite matrix.
0 denotes a matrix of all zeros, diag{.} a (block) diagonal
matrix of the scalars (matrices) in {.}, col{xi} an aggregated
column vector, ‖.‖ the (induced) 2-norm of a vector (matrix),
and vec(A) ∈ Rmn is a vectorization of A ∈ Rm×n.

We consider three graph topologies: Ga to represent the
physical interaction of agents’ dynamics over the agent layer,
Gd a communication topology to compensate for the effect
of interconnections on agents’ dynamics using a data-assisted
strategy over a decoupling layer, and Gc a communication
topology for the controllers’ communication over a cooperation
layer. We allow the existence of selfloops over all layers where,
by a selfloop, we refer to an edge outgoing from and returning
to the same node without passing though any other nodes.
Since the standard definitions of adjacency and Laplacian
matrices do not admit selfloops [21], we redefine them in the
rest of this section.

An agent layer digraph Ga with N nodes is characterized
by an adjacency matrix Aa = [aa

i j] ∈ RN×N where aa
i j 6= 0

if the ith agent is affected by the jth agent’s dynamics for
i, j ∈ {1,2, ...,N}, and aa

i j = 0 otherwise. Unlike the standard
definition, j = i is acceptable and each aa

i j is a real valued
scalar with either positive or negative sign. N a

i represents the
set of ith agent’s neighbors over Ga which may include the
number i as well (selfloop). We introduce Sa as the set of
nodes affected by some neighbor agents over the agent layer
(including themselves through the selfloops).

The control layer is divided into two separate (sub-) graphs
with N nodes: Gc and Gd . We do not discuss the communi-
cation topology Gd for the data-assisted decoupling control,
because it is the same as Ga. A cooperation layer digraph Gc
with N nodes is characterized by a modified Laplacian matrix
Hc = Lc +Sc ∈ RN×N . Lc ∈ RN×N is a standard Laplacian
matrix for a digraph G ′c , with non-negative edge weights ac

i j,
to be obtained by removing all selfloops from Gc: L c

i j =−ac
i j,

L c
ii = ∑ j∈N c

i
ac

i j, and N c
i characterizes the ith agent’s (con-

troller) neighbors over G ′c . Also, Sc = diag{sc
i } ∈ RN×N is a

diagonal matrix to represent selfloops: sc
i > 0 when there is a

selfloop around the ith controller, and sc
i = 0 otherwise. These

selfloops and directed one-way communications between the
control nodes create a structurally nonsymmetric control layer.

A typical three-layer (closed-loop) interconnected MAS
is depicted in Figure 1. Both Ga (thus, Gd) and Gc can be
disconnected; however, all control nodes in each connected
component of Gc must have access (direct path) to at least one
node with a selfloop.

Agent (physical) layer

a1

a2

a3

a4
a5

a6

a7

a8

Fixed-gain
cooperation layer

c1

c2

c3

c4
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ted decoupling layer
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d5
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Figure 1. Example of a closed-loop distributed stabilization
framework with separate agent and control layers. Top two
layers form the control layer. Legend: ai are agent nodes, ci
are fixed-gain cooperation nodes, di are data-collection (data-
assisted control) nodes.

III. MAIN RESULTS

A. Problem statement
We consider a MAS of N agents with the following

interconnected dynamics:

ẋi(t) = Axi(t)+B
(
ui(t)+Ci ∑

j∈N a
i

aa
i jx j(t)

)
(1)

where xi ∈ Rnx denotes the ith agent’s state variable, ui ∈ Rnu

control input, A ∈ Rnx×nx and B ∈ Rnx×nu system matrices,
Ci ∈ Rnu×nx interconnection matrix, and N a

i the set of ith
agent’s neighbors over the agent (or physical) layer graph
Ga. We assume the pair (A,B) is stabilizable and the control
allocation matrix B is full column rank (This stabilizability
assumption is milder than the associated controllability one
and, according to assumption 3.1.2 in [22], is required in order
to have a solvable problem). For all affected agents i ∈ Sa,
the interconnection matrices Ci are completely unknown to the
control layer designer which means the fixed-gain distributed
stabilization ideas of [10] and [11] are no longer applicable
for the distributed stabilization problem of this paper:

lim
t→∞

xi(t) = 0 ∀i ∈ {1,2, ...,N} (2)

which must be achieved (exponentially) by all agents.

B. Design foundation
We propose a distributed stabilization protocol with two

components:

ui(t) = uci(t)+udi(t) ∀i ∈ {1,2, ...,N} (3)

where uci ∈ Rnu denotes the ith agent’s cooperation input
signal over a cooperation layer Gc, to be developed in Subsec-
tion III-C, and udi ∈ Rnu data-assisted decoupling signal over
a decoupling layer Gd whose topology is indeed the same as
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Ga, to be designed in Subsection III-D. Note that udi = 0 if
i /∈Sa. We rewrite the agent model (1) as follows:

ẋi = Axi +B
(
uci +udi

)
+B ∑

j∈N a
i

aa
i j
(
Inu ⊗ xT

j
)
θ
?
i (4)

where θ ?
i = vec(CT

i ) ∈ Rnunx denote the unknown constant
parameters for all i∈Sa. We propose the following fixed-gain
cooperation and data-assisted decoupling protocols:

uci = K
(

∑ j∈N c
i

ac
i j
(
xi− x j

)
+ sc

i xi

)
∀i ∈ {1,2, ...,N}

udi =−∑ j∈N a
i

aa
i j
(
Inu ⊗ xT

j
)
θ̂i ∀i ∈Sa

(5)

in which θ̂i(t) = vec(ĈT
i (t)) ∈ Rnunx denote the data-assisted

time-varying estimates of the unknown constant parameters θ ?
i ,

and Ĉi(t) the estimated matrices of Ci in (1) for all i ∈ Sa.
Accordingly, in addition to the main objective (2), we must
address a side objective for the exact parameter estimation to
be used in udi of (5). We re-state the control objectives as
follows:

lim
t→∞

xi(t) = 0 and lim
t→∞

θ̂i(t) = θ
?
i (6)

To facilitate the theoretical derivations of this paper, we
go one step further and find the dynamics of the closed-loop
agents (4) with the cooperation and decoupling protocols (5):

ẋi = Axi +B∑ j∈N a
i

(
Inu ⊗ xT

j
)
θ?

i
+BK

(
∑ j∈N c

i
ac

i j(xi− x j)+ sc
i xi
)

−B∑ j∈N a
i

aa
i j
(
Inu ⊗ xT

j
)
θ̂i

(7)

to model all agent layer (first row), cooperation layer (sec-
ond row), and data-assisted decoupling layer (third row). We
further partition this multilayer interconnected MAS:

ẋi = Axi +BK
(

∑ j∈N c
i

ac
i j(xi− x j)+ sc

i xi
)

−B∑ j∈N a
i

aa
i j
(
Inu ⊗ xT

j
)
θ̃i

(8)

where θ̃i(t)= θ̂i(t)−θ ?
i represents the the ith agent’s parameter

estimation error.
Remark 1: (Cyber-physical systems) We note that (7) rep-

resents a three-layer interconnected MAS with a data-assited
control layer Gd whose topology is identical to the agent layer
topology Ga, and a cooperation layer Gc whose topology can
be completely different from the agent layer topology Ga.
This framework enables us to distinguish the cyber (commu-
nication) malfunctions from the abnormalities of the physical
components.

Definition 1: (Collective FE) A collection of bounded sig-
nals x j ∈ Rn, j ∈ N a

i , satisfies the collective finite excita-
tion (FE) condition if there exist finite scalars nDi ∈N+, ts

l > 0
and te

l > 0 for l ∈ {1,2, ...,nDi}, and γi > 0 such that:
nDi

∑
l=1

∫ te
l

ts
l

∑
j∈N a

i

aa
i jx j(τ)dτ

∫ te
l

ts
l

∑
j∈N a

i

aa
i jx

T
j (τ)dτ ≥ γiInx > 0

where nDi denotes the number of possibly discontinuous inte-
gration intervals based on the data collected by the ith agent.
Also, ts

l ≥ 0 and te
l > ts

l refer to the finite start and end points
of the lth integration time interval, respectively.

Remark 2: (Collective FE vs. PE, FE, and collective PE)
The exact parameter convergence condition in (6) plays a key
role in relaxing the need for an upper-bound on unknown
parameters of the interconnected MAS (vs. [10] and [11]). This
requires a persistency of excitation (PE) condition [15] to be

satisfied by all regressors across the interconnected MAS. A
bounded signal x j ∈ Rn satisfies a PE condition, if there exist
constant scalars Tj,γ j > 0 such that the

∫ t+Tj
t x j(τ)xT

j (τ)dτ ≥
γ jInx > 0 holds for all x j 6= 0 and for all t ≥ 0. We consider
the following modified PE condition which is comparable to
Definition 1:∫ t+Tj

t
x j(τ)dτ

∫ t+Tj

t
xT

j (τ)dτ ≥ γ jInx > 0

Using this modified definition, we note that a bounded signal
x j ∈Rn, j ∈N a

i , satisfies an FE condition, if there exist finite
scalars nDi ∈N+, ts

l > 0 and te
l > 0 for l ∈ {1,2, ...,nD j}, γ j > 0,

such that the following inequality holds:
nD j

∑
l=1

∫ te
l

ts
l

x j(τ)dτ

∫ te
l

ts
l

xT
j (τ)dτ ≥ γ jInx > 0

where nD j denotes the number of possibly discontinuous
integration intervals for the jth agent. We find that a collection
of bounded signals x j ∈Rn for all j ∈N d

i satisfies a collective
(modified) PE condition, if there exist constant scalars Ti,γi > 0
such that the following inequality holds for all t ≥ 0:∫ t+Ti

t
∑

j∈N a
i

aa
i jx j(τ)dτ

∫ t+Ti

t
∑

j∈N a
i

aa
i jx

T
j (τ)dτ ≥ γiInx > 0.

C. Fixed-gain cooperation protocol
Now, we focus on the cooperation protocol uci in (5). We

rewrite the fixed part of (8) as follows:

ẋi = Axi +κBvi +BK
(

∑ j∈N c
i

ac
i j(xi− x j)+(sc

i −κ)xi
)

(9)

where κ > 0 is a design scalar to be discussed in Design
Procedure 1, and vi =Kxi is a virtual (decoupled) control signal
with the same gain K as in the actual (coupled) cooperation
protocol uci in (5). We name the first two terms a “networked
nominal dynamics” and the third term a “fictitious modeling
uncertainty,” and proceed with a set of decoupled dynamics:

ẋ′i(t) = Ax′i(t)+κBv′i(t) ∀i ∈ {1,2, ...,N} (10)

which, indeed, are the same as the networked nominal dynam-
ics in (9) with the new variables x′i ∈Rnx and v′i(t) = Kx′i(t) ∈
Rnu . Note that (10) is a stabilizable system because (A,B)
represents stabilizable dynamics (by assumption) and κ > 0.
For the design purpose, we recommend using a sufficiently
large κ to avoid any singularity (poor controllability) in solving
the design problem of this subsection. It can be easily done
noting the fact that, unlike the agent layer interconnection
topology Ga, the cooperation communication topology Gc
(thus, Hc and κ) is a design degree of freedom.

Let Uvi be the set of all admissible, static linear state
feedback, stabilizing signals v′i for the networked nominal
dynamics (10). The following fact holds for any valid control
layer topology Gc as defined in Section II.

Fact 1: [23] There exists a positive definite matrix ∆ =

diag{δi} ∈RN×N such that ∆Hc+H T
c ∆� 0, where δi =

δ n
i

δ d
i
>

0 with col{δ n
i }= (H −1

c )T 1N and col{δ d
i }= H −1

c 1N .
Design Procedure 1: The candidate Gc and K of the dis-

tributed cooperation protocol (5) are designed as follows:

1) Choose a nonsymmetric control layer topology Gc
with Hc as its modified Laplacian matrix. Let κ > 0
be a real-valued scalar such that ∆Hc+H T

c ∆< 2κ∆.
Let the state weighting matrix Wx ∈ Rnx×nx and the
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control input weighting matrix Wv ∈ Rnu×nu be posi-
tive definite design matrices.

2) Find the solution v′i = Kx′i of the following Linear
Quadratic Regulator (LQR) problem. Then, K gives
a candidate stabilization gain to be used in the coop-
eration protocol uci in (5).

V (x′i(0)) = min
v′i∈Uvi

∫
∞

0 (x′Ti (τ)Wxx′i(τ)+ v′Ti (τ)Wvv′i(τ))dτ

subject to (10)

This design procedure for structurally nonsymmetric con-
trol layer is modified from [12] such that, now, the state
weighting matrix Wx of the LQR problem is chosen completely
arbitrary. We note that the candidate stabilization gain K is
characterized as follows [24]:

K =−κW−1
v BT P (11)

in which the positive definite matrix P ∈ Rnx×nx is the unique
stabilizing solution of the Algebraic Riccati Equation (ARE):

AT P+PA+Wx−κ
2PBW−1

v BT P = 0 (12)

The existence and uniqueness of P follow from the stabiliz-
ability and observability of (W 1/2

x ,A,κB]).
We use (11) and (12), and find the following equalities:

∆⊗ (AT P+PA+Wx−κ2PBW−1
v BT P) = 0

∆⊗ (K +κW−1
v BT P) = 0 (13)

Fact 2: The following MAS-level equalities hold in an
MAS of networked nominal dynamics and the candidate gains
K and G of Design Procedure 1:

xTW̄xx+ vTW̄vv+V̄ T
x (Āx+κB̄v) = 0

2vTW̄v +κV̄ T
x B̄ = 0

(14)

where x= [xT
1 ,x

T
2 , ...,x

T
N ]

T , v= col{vi}= K̄x=(IN⊗K)x, V T
x =

∂V̄
∂x , V̄ = xT (∆⊗P)x, W̄x = ∆⊗Wx, and W̄v = ∆⊗Wv. (See [24]
for single dynamical systems.)

Remark 3: The results of this section remain valid if we
use a symmetric cooperation layer. In particular, Hc is a
(symmetric) positive definite modified Laplacian matrix with
strictly positive eigenvalues to be sorted as 0 < µc1 ≤ µc2 ≤
...≤ µcN [10]. Then, Fact 1 holds with ∆ = IN . Further, Step 1
of Design Procedure 1 is satisfied with κ = µc1.

D. Data-assisted decoupling protocol
We start the design of udi in (5) for agents i ∈ Sa by

choosing an integration window length δ ti > 0 for each i∈Sa,
and integrating both sides of (4) from t−δ ti to t as follows:

∆gi(t) := xi(t)− xi(t−δ ti)− sgi(t) = BRgi(t)θ?
i (15)

where the subscript “g” distinguishes the integrated variables
from the non-integrated ones, and the system-related signals
sgi ∈ Rnx and regressor-related matrices Rgi ∈ Rnu×nxnu are
defined as follows for i ∈Sa :

sgi(t) = Axgi(t)+Bugi(t) and Rgi(t) = ∑
j∈N a

i

aa
i j
(
Inu ⊗ xT

g j(t)
)

xgi(t) =
∫ t

max(t−δ ti,0)
xi(τ)dτ and ugi(t) =

∫ t

max(t−δ ti,0)
ui(τ)dτ

We define data-collection matrices Di ∈ Rnxnu×nxnu :

Di(nDi) =
nDi

∑
l=1

RT
gi(tl)B

T BRgi(tl) (16)

to be updated at the time tnDi of agent i if it is an “acceptable”
excitation sample instance nDi. This is defined as the sample
nDi ∈ [0,n] that results in the following inequality:

λmin
(
Di(nDi)

)
> λmin

(
Di(nDi−1)

)
(17)

when n ∈ N+ increases in time, as the integration window
moves forward.

For each agent i ∈Sa, we use (15)-(17) and propose the
following update rule for the unknown parameter estimation:

˙̂
θi(t) = Γi

(
RT

i (t)B
T Pxi −γDi

(
Di(tnDi)θ̂i(t)

−∑
nDi
l=1 RT

gi(tl)B
T ∆gi(tl)

)) (18)

where Ri = ∑ j∈N a
i

aa
i j
(
Inu ⊗ xT

j
)
, and Γi ∈ Rnxnu×nxnu and γDi

are two design sets of positive-definite matrices and positive
scalars, respectively, and tnDi is the time associated to the
sample instance nDi.

The update law (18) can be rewritten as ˙̂
θi(t) =

ΓiRT
i (t)B

T Pxi− γDiΓiDi(tnDi)θ̃i(t) which justifies the selection
of the criterion (17) to characterize an acceptable excitation
time. While the first part is similar to the traditional adaptive
control laws, the second is a data-assisted one to obviate the
need for the PE condition in parameter estimation.

Assumption 1: For each agent i ∈Sa, there exists a finite
nDi ∈N+ such that the collective FE condition in Definition 1
is gradually satisfied over a finite time interval [tstart

si , tsi].

The emphasis of the above assumption is on the existence
of a “finite” time interval rather than its start point. Thus, while
tsi is chosen as noted below, the start point tstart

si can be any
number equal to or greater than zero. Indeed, a tstart

si > 0 may
refer to the time when an external probing signal is turned on
in order to sufficiently excite the ith agent.

E. Theoretical analysis
We follow similar steps as those of [19] for the analyses

of this subsection.
Properties 1: The data-collection matrix (16) has the fol-

lowing guaranteed properties for all i ∈Sa:

1) Di(nDi)< 0 for all t ≥ 0,
2) Di(nDi)� 0 for all t ≥ tsi where tsi > δ ti
3) λmin

(
Di(n′i)

)
≥ λmin

(
Di(nDi)

)
using each new sample

n′i > nDi.

Proof: To prove the first property, we note that for
any vector z∈Rnxnu , zT Di(nDi)z=∑

nDi
l=1 zT RT

gi(tl)B
T BRgi(tl)z=

∑
nDi
l=1 ‖BRgi(tl)z‖2 ≥ 0 which means either Di(nDi) or each

new arrived matrix RT
gi(tl)B

T BRgi(tl) is a positive semidefinite
matrix, even if the collective FE condition is not satisfied.

Regarding the second property, we start with

Di(nDi) =
nDi

∑
l=1

RT
gi(tl)B

T BRgi(tl)≥ λmin(BT B)
nDi

∑
l=1

RT
gi(tl)Rgi(tl)

where λmin(BT B)> 0 because B is a full column rank matrix,
and ∑

nDi
l=1 RT

gi(tl)Rgi(tl) is equal to

Inu ⊗
nDi

∑
l=1

∫ tl

tl−δ ti
∑

j∈N a
i

aa
i jx j(τ)dτ

∫ tl

tl−δ ti
∑

j∈N a
i

aa
i jx

T
j (τ)dτ
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which, when the collective FE Assumption 1 is satisfied, means
∑

nDi
l=1 RT

gi(tl)Rgi(tl)� 0.
The third property is guaranteed by the definition of

acceptable excitation time (17) which acts as a criterion to
decide whether we should consider new data in the update
law (18) or not. Therefore, the proof is immediate. We note
that at least one update exists for each data collection matrix if
the collective FE conditional is met. This is because we start
from Di = 0 and Di(nDi)� 0 when the ith agent is sufficiently
and collectively excited at time tsi.

To facilitate the analysis of the main theorem, we aggregate
the cooperation signal uci of (5), and find

uc = (Hc⊗K)x

where uc = col{uci} for all i ∈ {1,2, ...,N}, and Hc is the
modified Laplacian matrix associated to the nonsymmetric co-
operation layer Gc. We further find the following representation
of the three-layer (closed-loop) interconnected MAS:

ẋ = Āx+κB̄v+κB̄Ēcv+ B̄ua + B̄C̄ ¯Aax (19)

where Ēc =
(
(Hc

κ
− IN)⊗ Inu

)
, ¯Aa = Aa⊗ Inx , C̄ = diag{Ci},

and ua = col{uai} for all i∈{1,2, ...,N} (if i /∈Sa, we consider
zero for the associated interconnection allocation matrix Ci and
data-assisted decoupling signal udi). We also define:

Ωb(t) = xT (t)P̄x(t)+
1

λmin(Γ)
‖θ̃(t)‖2 (20)

ρω = min
(λmin(WxK)

λmax(P)
,2γ

min
D λmin(Γ)λmin(D(nD))

)
(21)

where θ̃ = col{θ̃i} and Γ = diag{Γi} for all i ∈ Sa, and
WxK = Wx + KTWvK � 0, γmin

D = mini{γDi} ∀i ∈ Sa, and
λmin(D(nD)) = mini{λmin(Di(nDi))}.

Theorem 1: In a closed-loop interconnected MAS of
agents (1), the two-layer data-assisted distributed stabilization
protocol (3) and (5), and the update rule (18), the following is
guaranteed under the collective FE Assumption 1:

1) All trajectories xi(t) and θ̃i(t) are bounded ∀t ≥ 0,
2) All trajectories xi(t) and θ̃i(t) exponentially converge

to the origin for t ≥ ts = maxi{tsi} where tsi are
defined in Assumption 1,

3) All trajectories xi(t) and θ̃i(t) are upper-bounded as
in (22) and (23), respectively, where Ωb(ts)≤Ωb(0).

‖xi(t)‖ ≤


√

1
λmin(P)

Ωb(0), ∀0≤ t < ts√
exp−ρω (t−ts)

λmin(P)
Ωb(ts), ∀t ≥ ts

(22)

‖θ̃i(t)‖ ≤

{√
λmax(Γ)Ωb(0), ∀0≤ t < ts√
λmax(Γ)exp−ρω (t−ts) Ωb(ts), ∀t ≥ ts

(23)

Proof: Step 1) We propose a Lyapunov function:

Ω(x, θ̃) = V̄ (x)+ ∑
i∈Sa

θ̃
T
i Γ
−1
i θ̃i � 0

where V̄ (x) = xT P̄x was introduced in Fact 2 and γi � 0 in
the update law (18). Along the unknown trajectories of the
three-layer interconnected MAS (19), we find:

Ω̇= ˙̄V +2 ∑
i∈Sa

θ̃
T
i Γ
−1
i

˙̃
θi = V̄ T

x ẋ+2 ∑
i∈Sa

θ̃
T
i Γ
−1
i

˙̃
θi

The first part of Ω̇ results in the following inequality:

V̄ T
x ẋ= V̄ T

x
(
Āx+κB̄v

)
+κV̄ T

x B̄Ēcv−V̄ T
x B̄C̃ ¯Aax

in which C̃ = ¯̂C− C̄, ¯̂C = diag{Ĉi}, and C̄ = diag{Ci}. Us-
ing the second equality in Fact 2, we know κV̄ T

x B̄Ēcv =

−2vT
(
(∆Hc+H T

c ∆

2κ
− ∆)⊗Wv

)
v 4 0 where the negative semi

definiteness is immediate by definition of κ and Wv in Step 1,
Design Procedure 1.

Using v = −κW̄−1
v B̄T P̄x and W̄xK = IN ⊗WxK , and based

on the second equality in Fact 2:

˙̄V≤−xTW̄xx− vTW̄vv+
2
κ

vTW̄vC̃ ¯Aax

≤−xTW̄xKx−2 ∑
i∈Sa

xT
i PBC̃i ∑

j∈N a
i

aa
i jx j

≤−xTW̄xKx−2 ∑
i∈Sa

xT
i PB ∑

j∈N a
i

aa
i j(Inu ⊗ xT

j )θ̃i

≤−xTW̄xKx−2 ∑
i∈Sa

θ̃
T
i ∑

j∈N a
i

aa
i j(Inu ⊗ x j)BT Pxi

The second part of Ω̇ leads to the following inequality:

2 ∑
i∈Sa

θ̃
T
i Γ
−1
i

˙̃
θi =2 ∑

i∈Sa

θ̃
T
i ∑

j∈N a
i

aa
i j(Inu ⊗ x j)BT Pxi

−2 ∑
i∈Sa

γDiθ̃
T
i Di(nDi)θ̃i

Consequently, for the candidate Lyapunov function and closed-
loop trajectories, we find

Ω̇≤−xTW̄xKx−2 ∑
i∈Sa

γDiθ̃
T
i Di(tnDi)θ̃i 4 0

where the negative semidefiniteness is concluded because
Di(nDi) < 0 for all t > 0 (see the first item in Properties 1).
Thus, all state trajectories and estimated parameter values
remain bounded even in the transient time, when collective
FE Assumption 1 is not satisfied [25]. (See Step 3 for the
transient bounds.)

Step 2: When t ≥ ts, the latter inequality on Ω̇ can be rewritten
as follows:

Ω̇≤−λmin(WxK)

λmax(P)
V (x)−2α ∑

i∈Sa

θ̃iΓ
−1
i θ̃i

where α = γmin
D λmin(Γ)λmin(D(nD)) > 0 because Di(nDi) � 0

for all t ≥ ts (see the second item in Properties 1). In fact, we
know that the minimum λmin(Di(nDi)) of each agent i occurs
when at time tsi when it has been just sufficiently excited, and
the future updates will either keep it constant or increase it
(see the third item in Properties 1). Using the definition of
ρω > 0, given prior to the main statement of this theorem, we
find Ω̇≤−ρω Ω which, based on the comparison lemma [25],
indicates Ω(t)≤ exp−ρω (t−ts)Ω(ts) where Ω(t), Ω(x(t), θ̃(t)).
Thus, we find limt→∞ Ω(t) = 0 which implies that all state and
estimation error trajectories of the multilayer interconnected
MAS exponentially converge to the origin ((6)).
Step 3) The Lyapunov function Ω of this theorem satisfies

λmin(P)‖x(t)‖2 ≤V (t)≤Ω(t)
1

λmax(Γ)
‖θ̃(t)‖2 ≤ ∑

i∈Sa

θ̃
T
i (t)Γ−1

i θ̃i(t)≤Ω(t)
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where θ̃ = col{θ̃i} for i ∈ Sa. Thus, ‖x(t)‖ ≤
√

1
λmin(P)

Ω(t)

and ‖θ̃(t)‖ ≤
√

λmax(Γ)Ω(t).
Based on the first step of this proof, Ω̇ 4 0 holds for all

time including 0≤ t ≤ ts. Thus,

Ω(t)≤Ω(0)= V̄ (0)+ ∑
i∈Sa

θ̃
T
i (0)Γ−1

i θ̃i(0)≤Ωb(0)

where Ωb(0) can be found from (20). Consequently, for all
0≤ t ≤ ts:

‖x(t)‖≤

√
1

λmin(P)

(
xT (0)P̄x(0)+

‖θ̃(0)‖2

λmin(Γ)

)
‖θ̃(t)‖≤

√
λmax(Γ)

(
xT (0)P̄x(0)+

‖θ̃(0)‖2

λmin(Γ)

)
Based on the second step of this proof, we know
Ω(t) ≤ exp−ρω (t−ts) Ω(ts) holds for all t ≥ ts. Thus,
Ω(t) ≤ exp−ρω (t−ts)

(
xT (ts)P̄x(ts) + ∑i∈Sa θ̃ T

i (ts)Γ
−1
i θ̃i(ts)

)
≤ exp−ρω (t−ts) Ωb(ts) where Ωb(ts) can be found
from (20). For all t > ts, we have ‖x(t)‖ ≤√

exp−ρω (t−ts)

λmin(P)

(
xT (ts)P̄x(ts)+

‖θ̃(ts)‖2
λmin(Γ)

)
and ‖θ̃(t)‖ ≤√

λmax(Γ)exp−ρω (t−ts)
(

xT (ts)P̄x(ts)+
‖θ̃(ts)‖2
λmin(Γ)

)
. Recalling

that ‖xi‖ ≤ ‖x‖ and ‖θ̃i‖ ≤ ‖θ̃‖, the bounds in (22) and (23)
can be derived. It is also evident that Ωb(ts) ≤ Ωb(0) based
on the first step of this proof. Thus, these inequalities can be
further upper-bounded using Ωb(0) instead of Ωb(ts).

IV. CONCLUDING REMARKS

We develop a distributed protocol to guarantee the expo-
nential convergence of state trajectories to the origin in an in-
terconnected MAS with completely unknown interconnection
allocation matrices. A nonsymmetric cooperation layer whose
topology is completely independent of the agent and data-
assisted decoupling layer is designed using a matrix algebraic
approach. A data-assisted decoupling protocol compensates for
the effect of unknown interconnections among agents’ dynam-
ics. A new finite excitation condition is proposed to relax the
need for either persistency of excitation or the excitation of all
agents in the interconnected multiagent system. We prove that
all interconnection matrices are exponentially estimated under
the proposed collective FE condition. Consequently, exponen-
tial convergence of the state trajectories of the interconnected
multiagent system to the origin is also guaranteed. Extension
of the collective FE-based idea to the output feedback problem
is an interesting future topic [26].
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