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Abstract—Task-oriented or semantic grasping is important in
robotics because it enables objects to be manipulated appropri-
ately and used for their intended purpose. Many objects are
human designed, therefore, we address the problem of learning
task-oriented grasps by directly observing human behaviour. A
person simply demonstrates the appropriate grasp, which is quick
and convenient for any user in the real world. Our approach uses
RGB images to track the object and hand pose, then employs a
neural network to translate the human hand configuration to a
robotic grasp with fewer degrees of freedom. Analysis shows that
a variety of low-dimensional representations of the hand enable
the mapping to be learned and that the model better generalises
to new demonstrators handling new objects when the training
data is augmented. Experiments with a mobile manipulator show
that a robot successfully observes grasps and imitates the action
on objects in various poses. This is accomplished immediately,
without additional learning and is robust in real-world conditions.

Keywords–Robotic grasping; task-oriented grasping; learning
from demonstration; imitation learning; deep learning.

I. INTRODUCTION

Grasping is an important capability for robots operating
in industry or in homes. The human world is very complex:
objects have a variety of characteristics and the environment
imposes unpredictable constraints. As such, learning generalis-
able grasping strategies that are robust in real-world conditions
is an ongoing and active field of research.

Significant advances have been made by applying deep
learning, which has been enabled by the introduction of large
datasets that are annotated by hand [1] [2], compiled with
3D object models and analytical metrics [3] [4] or generated
using grasp planners in simulation [5]–[7]. Grasping methods
trained on these datasets ignore the semantics of the grasp
and only measure success if an object is securely lifted or
transported. Semantic or task-oriented grasping introduces the
concept that objects should be grasped to enable task-related
manipulation actions [8]. For example, grasping the handle
and not the blade enables a knife to be used for cutting.
Existing approaches exploit manually annotated examples [9]
[10], constrain grasps to parts that afford the task [11]–[13] or
perform self-supervised learning in simulation [14].

In this paper, we address task-oriented grasping by Learn-
ing from Demonstration (LfD) in which a robot learns to repli-
cate a grasp demonstrated by a human, as shown in Figure 1. In
contrast to previous work, we contribute a convenient human-
robot interface that requires no special instrumentation [15],
manual annotation [16], physical interaction with the robot [13]
or an offline learning process [17]. Our system uses only

Figure 1. Human demonstrates how to semantically grasp an object by
lifting a drill by the handle (left). Robot imitates the semantic grasp (right).

the onboard camera to observe a single example of a human
grasp to understand how the grasp is performed, which makes
it easy to be adopted by untrained users in the real world.
Furthermore, we explicitly address the problem of transferring
the human grasp to a robot gripper with fewer Degrees of
Freedom (DoF). We employ a neural network to learn the
mapping between the joints of the human hand and the
parameterisation of the robot grasp to effectively transfer the
observed human grasp to a robotic parallel-jaw gripper.

An analysis of the neural network shows that it has the
capacity to successfully transfer human grasps to the robot
platform. In an ablation study, we show that it is sufficient to
learn from a subset of hand joints to yield high quality robot
grasp pose predictions. Furthermore, learning from interactions
with one object better transfers to other objects when the
training data is augmented. In experiments with a mobile
manipulator, people demonstrate semantic grasps by grasping
the handles of objects, such as mugs and drills. The robot
shows the ability to observe the human and instantly imitate
the demonstrated grasp on the same object when it is presented
in any new pose.

In summary, we make the following contributions:
• A neural network architecture to regress the grasp

parameterisation for a low-DoF robotic gripper from
the human hand configuration;

• evaluation of the grasp regression network for trans-
ferring between different demonstrators and objects;

• a grasp imitation learning pipeline using state-of-the-
art object pose estimation and hand tracking with our
regression network to transfer demonstrated human
grasps to robot grasps for the observed objects; and

• experiments of real-world task-oriented grasp learning
from demonstration with a mobile manipulator.
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The remainder of the paper is organised as follows. Sec-
tion II discusses related work. Section III outlines our approach
for learning to transfer human grasps to robot grasps and Sec-
tion IV describes the imitation learning framework. Section V
presents the experimental results. Section VI concludes the
paper.

II. RELATED WORK

Learning from demonstration or imitation learning is a
paradigm in which a robot learns skills by imitating the actions
shown by an expert [18] [19]. The approach is popular because
it enables robots to learn complex tasks that are otherwise
difficult to program. In the robotics context, recent work has
shown successful learning of highly advanced skills such as
dispensing water from a thermos [20], making coffee [21],
preparing a food platter [22] and transferring small items with
a kitchen ladle [23].

Human expertise is also a fruitful source of knowledge for
learning robotic grasping. This is especially useful for robots
operating man-made objects designed for human manipulation.
Human knowledge is exploited by physically moving the robot
arm and kinesthetic teaching [24], controlling the robot by
teleoperation [25] or virtual reality [26], or using a hand-
held replica of the robot end-effector [27]. It is cumbersome
and time consuming to annotate or physically interact with
hardware, therefore, learning from observation [28] is more
appropriate because the human involvement is kept to a min-
imum. But despite this advantage, learning from observation
introduces other issues. Most prominent is how to track the hu-
man arm and hand while the grasp is performed and secondly
how to overcome the disparity between the human and robot
hand kinematics. For tracking the hand, many approaches use
data gloves or markers with a motion capture system [29] [30]
but this is inflexible because the tracking apparatus must be set
up and calibrated. This prevents the easy and quick use of the
systems by people in real-world home or office settings. Some
approaches directly use vision and thus do not require extra
hardware to learn and transfer grasps. Do et al. [31] use a single
camera to estimate the joints of the human body but simplify
the task of estimating the state of the hand. They use a proxy in
which the orientation and grasp type are estimated to predict
a robot grasp. Therefore, they do not estimate the full hand
pose. Palli et al. [32] estimate the wrist and finger tip locations
to transfer the demonstrated human grasp to the DEXMART
anthropomorphic hand. Due to the high kinematic similarity,
the transfer is simplified; it only requires an additional scaling
factor between the length of the demonstrator’s fingers and
the robot fingers. The current solution to transfer grasps to
robot end-effectors with significantly different kinematics is to
use a predefined mapping between known human and robotic
grasp shapes [29]. No work thus far learns a mapping between
arbitrary human grasp poses and robotic grasps for grippers
with fewer DoF.

Semantic grasping is a special case of grasping in which the
grasp enables task-related manipulation [8]. The most common
approach is to compute grasps and then introduce constraints
or affordances to select grasps that satisfy the task [11]–[13].
Learning semantic grasps directly from observation has been
studied in [15]–[17] but these transfer the demonstrated grasps
to anthropomorphic hands and some use data gloves to localise
hand joints. In this work, we address the problem of observing

(a) Each point passes through a separate MLP (all with shared weights). Feature maps
transformed to a global feature with a pooling operation (maximum or average). Global

feature passes through another MLP.

(b) Input points are sorted and concatenated. The concatenated feature vector passes
through a single MLP.

Figure 2. Network architectures for regressing robot grasp from human
grasp. Layer sizes are shown beneath the MLP blocks.

and imitating semantic grasps only using a camera and provide
a learning-based solution to map the human hand to a low-DoF
robotic gripper configuration.

III. LEARNING ROBOTIC GRASP POSES FROM
HUMAN HAND CONFIGURATIONS

Imitating a human demonstrated grasp by a robot equipped
with a parallel-jaw gripper requires the mapping between
the human hand and the gripper’s degrees of freedom to be
determined. This mapping is represented as a function F that
transforms a human grasp H ∈ RH to a robot grasp G ∈ RG,
i.e., G = F(H), and where H > G. We choose to model this
function as a neural network. The architecture for the network,
the loss function and the training procedure are discussed in
the following.

A. Network Architecture

An overview of the network architecture is shown in
Figure 2a. This architecture is based on the PointNet archi-
tecture [33] that is developed for classification or point-wise
segmentation of unstructured 3D point cloud data. We modify
PointNet to instead regress a 6-DoF pose that represents a
grasp for a parallel-jaw gripper. PointNet also includes a spatial
transformer network that makes the learned representations
invariant to geometric transformations. This is necessary for
classification since transformations of the points should not
result in different class predictions. For our work, different
poses in the input should generate different poses of the grasp,
therefore, the spatial transformer network is removed.

The input to the network is a set of points representing
the joints of the hand in the camera coordinate system. The
joint coordinates are shifted and scaled to fit in the unit sphere.
They are then fed to a Multilayer Perceptron (MLP) with layer
output sizes [64, 128, 1024]. The output is max-pooled to
create a global feature descriptor with 1024 units. The global
feature is passed to the second stage of the pipeline to generate
the output. This is an MLP that progressively reduces the
global feature to the desired size. Our goal is to estimate the
6-DoF pose for a gripper, i.e., translation and rotation. The

81Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-787-0

ICAS 2020 : The Sixteenth International Conference on Autonomic and Autonomous Systems



translation is represented by the x, y and z coordinates of the
centroid of the grasp pose. The rotation is represented as unit
vectors of the approach and closing directions. The output,
therefore, consists of nine values by passing through the MLP
with layer output sizes [512, 256, 9]. Batch norm and ReLu
activation function are used for all layers except the last that
uses linear activation. Dropout with a rate 0.7 is applied to the
second last layer (i.e., layer before the pose prediction).

The output y = [t,a, c] represents the robot grasp pose.
The first three components t = (x, y, z) is the translation of the
gripper with respect to the centre of the hand. The next three,
a = (ax, ay, az) where ||a|| = 1, represent the grasp approach
direction as a unit vector. The last three, c = (cx, cy, cz) where
||c|| = 1, represent the closing angle of the gripper as a unit
vector. The rotation of the gripper pose is obtained by

R =
[
(c× a)

T
, cT ,aT

]
, (1)

and the final transformation matrix is thus G = [R|tT ]. This
represents the transformation of the gripper to the grasp pose
in the camera coordinate system.

Since the input for the regression is a consistent config-
uration of finger joints, it is in fact unnecessary to account
for unordered input with a symmetric function (i.e., pooling
operation). Therefore, we also investigate a simplified network,
as shown in Figure 2b. The joint values are concatenated
and processed by a single MLP with layer output sizes
[64, 128, 1024, 512, 256, 9] to be consistent with the baseline
approach.

B. Loss

For regression, the l2 loss is used between the vectors of
the estimated, y, and the ground truth, yGT, gripper poses
according to

L
(
yGT,y

)
=

1

n

n∑
i=1

(
yGT
i − yi

)2
. (2)

A grasp pose for a parallel-jaw gripper is 180◦ symmetric
around the axis of the approach direction. This has two impli-
cations. First, grasps rotated by 180◦ around the axis should
not be penalised but treated the same. Second, annotation does
not need to be perfectly consistent for this degree of freedom.
To account for the symmetry, the loss is computed for the
output y, as well as the same output with the negative of the
closing angle, i.e., yflipped = [t,a,−c]. The symmetric loss
function is thus the minimum of the two,

Lsym
(
yGT,y

)
= min

(
L
(
yGT,y

)
,L
(
yGT,yflipped)) . (3)

C. Training

The HO-3D dataset [34] is used to train the network. This
dataset consists of multiple sequences of people manipulating
an object in their right hand. The dataset consists of many
different subjects and objects, as well as different perspectives
from multiple cameras. The objects used for the data collection
are a subset of the YCB object set [35]. The joints of the
hand and the pose of the objects are accurately annotated using
a joint optimisation procedure (see [34] for more details). A
sample of the dataset is shown in Figure 3.

To learn the robot gripper pose corresponding to hand con-
figurations, gripper poses are annotated for the corresponding

Figure 3. Example of the annotated data for training the gripper pose
regression network. Annotation of the hand pose and object from [34] (left).

Annotation of the corresponding robot grasp pose (right).

hand pose, as shown in Figure 3. The transformed object model
and hand mesh, as well as the gripper model are loaded into
Blender. The gripper model is manually adjusted to align its
centre with the wrist position and its direction to approximate
the angle between the thumb and the other fingers of the human
hand. Fine adjustments are made such that the closure of the
gripper tips coincides with the centre of the human grasp.
Grasp poses from a single camera perspective (i.e., one subject-
object pair) are annotated and the poses are transformed to the
other camera perspectives.

Augmentation is applied to the input. This consists of a
global rotation applied to both the input 3D coordinates of
the hand joints and to the ground truth pose. The purpose of
this augmentation is to generalise the predictions to a larger
variety of input pairs. Local augmentation is also applied to
the 3D coordinates of the hand joints. This applies both a
small rotation, as well as random jitter to individual joints.
The purpose of this augmentation is to robustify the network
to noisy hand pose estimates.

IV. IMITATING GRASP DEMONSTRATIONS

To imitate grasps with the robot requires the human hand
to be estimated online, the hand pose to be translated to a
gripper pose and then the gripper pose to be associated with
the object of interest. In this work we assume the target objects
are known and have a designated local frame of reference.
Therefore, every observed grasp is transformed to the local
reference and retrieved for new positions of the object.

Pseudo-code for the grasp estimation procedure is given in
Algorithm 1. During a demonstration, the pose of the object
and the human hand are estimated in each camera frame, It,
until the pose of the object is observed to move above a set
threshold θo; in other words, until the object is moved by the
human demonstrator; or when the object is not detected and
thus the pose cannot be estimated due to the occlusion created
by the grasp (line 13). This frame, at time tend, establishes the
end of the demonstration.

The hand pose at tend is ideal to estimate the robot grasp
because it represents the time instant when the human has a
solid hold of the object. However, the quality of the estimated
pose may be low due to the occlusion that occurs during the
physical interaction. Therefore, throughout the demonstration,
the hand pose is estimated in every frame (line 7). The nearest
frame to the final frame with a valid hand pose, at time test
where test < tend, is used to generate the robot grasp pose using
the regression network with the relevant hand joints (line 18).
The validity of the hand pose depends on the implementation.
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Algorithm 1: Robot Grasp Pose Estimation
Result: Robot grasp Go in object’s frame of reference

1 P← Object pose in first frame
2 H← Computed hand pose
3 v← Grasp pose offset
4 Loop
5 Get current image It
6 Estimate object pose Pt

7 Estimate hand joints Ht

8 if Ht is valid then
9 H← Ht

10 else
11 v← Update using valid joints in H and Ht

12 end
13 if Pt = ∅ or |Pt −P| > θo then
14 P← Pt

15 break
16 end
17 EndLoop
18 G← Estimate robot grasp pose from hand H
19 G← Adjust position of grasp by offset v
20 Go ← Transform G to object reference frame
21 Return: Go

In this work, we estimate the hand pose using [36] and the
residual of the inverse kinematics optimisation, that lifts the
2D keypoints detections to 3D, scores the quality of the hand
pose estimate. Please see [36] for more details.

In the case that the hand is only valid in a frame before
the final grasp is made (because the hand is less occluded by
the object), the predicted gripper pose needs to be adjusted.
This is because the hand may be located away from the object
and no longer be in an ideal position to associate the robot
grasp. To account for this offset, the estimated robotic gripper
pose is re-positioned according to the distance and direction
between the hand in frames test and tend (line 19). The vector
of the movement in the camera coordinate system for all hand
joints between the two frames are computed and then averaged
(line 11). For robustness, only the vectors of joints that are
visible in every frame between test and tend are used. This
removes spurious estimates that occur due to the occlusion.

Finally, the demonstrated grasp is transformed to the ob-
ject’s frame of reference by Go = P−1G. Once a demonstra-
tion is observed, the robot is expected to replicate the grasp
for any new pose of the target object. When the object is
re-observed, its pose is estimated and the known grasp pose
is transformed using the estimate. More concretely, in a new
frame, where the object has a different pose P′, the grasp pose
that is executed by computing G′ = P′Go.

V. EXPERIMENTS

The performance of the presented method for grasp imi-
tation is evaluated in this section. We first give implementa-
tion details. We then report results of offline experiments to
quantitatively analyse the robot grasp pose prediction. Lastly,
we present results for real-world grasping experiments with a
mobile manipulator.

A. Implementation Details

The regression network for robot grasp pose estimation is
implemented in PyTorch. All models are trained for 120 epochs
with an initial learning rate of 0.001 that is divided by 10 every
50 epochs. A batch size of 64 is used. Training is performed
on an NVIDIA GTX TitanX.

Object poses are estimated with Pix2Pose [37], which
uses only RGB images as input. The network is trained with
the YCB-Video dataset and is therefore compatible with the
data from HO-3D. The pose of the hand is estimated using
the method in [36] and the keypoints of individual joints to
compute the movement offset between the final and valid frame
are determined with the OpenCV implementation of [38],
where the predictions in the RGB image are lifted to 3D using
the corresponding depth image.

Hardware experiments use the Toyota Human Support
Robot [39] [40]. Observation of the demonstrations and the
stand-alone objects for the grasping experiments use the
head-mounted ASUS XTion Pro Live RGB-D camera. The
estimated grasp poses are executed by generating a trajec-
tory using MoveIt [41]. This plans trajectories that avoid
obstacles within the scene. All code runs on the robot in
Ubuntu 16.04 with ROS [42]. Inference for the pose estimation
when running on the robot runs on an external PC with an
NVIDIA GTX 1050 Ti.

Note that since HO-3D contains examples with the right
hand, the applied hand tracking algorithms also use the right
hand model and live demonstrations use the right hand. Adapt-
ing to the left would require flipping the images in HO-3D and
using different models for [36] and [38].

B. Grasp Estimation Analysis

We analyse the quality of the grasp pose estimation using
the data from six subjects (ABF, BB, GPMF, GSF, MDF and
ShSu) in HO-3D. Separation between the data used for training
and testing is maintained by training networks on the data from
five subjects and testing on the sixth subject that was not seen
in training.

The accuracy of grasp pose predictions is measured by the
average distance between all vertices of a 3D mesh (ADD)
when transformed by the prediction in comparison to the
ground truth. This is a common metric for general object pose
estimation [43] because it conveniently unifies translation and
rotation error into a single metric. Similar to (3), the accuracy
is reported for the minimum of the predicted pose and the
180◦ rotation around the approach vector to account for the
symmetry of the gripper. Points are extracted from the gripper
model to compute the metric.

1) Architecture and training procedure: The performance
of different architectures and the inclusion of data augmenta-
tion is compared in Figure 4a, where results are averaged over
all subjects. Considering the different architectures, the best
performing is when the joint positions are concatenated into
a high-dimensional input that is processed by a single MLP
(Figure 2b). This results in 8.8% (at 16% diameter threshold)
improvement over the baseline architecture, that applies sepa-
rate MLPs to each point (Figure 2a). Furthermore, removing
the pooling operation and instead processing the the n× 1024
feature vector improves over the baseline architecture. Having
separate heads to predict the translation and rotation does not
introduce any performance gain, which has been shown in
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(a) Architectures and data augmentation.
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(b) Missing joint sets.
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Figure 4. Grasp pose estimation accuracy at varying ADD thresholds for different architectures, data augmentation and configurations of hand joint inputs.

similar work such as [44]. The data augmentation provides a
substantial performance boost. At the 12% diameter threshold,
the accuracy drops by 5.5% without data augmentation.

2) Hand configuration: We investigate the relative impor-
tance of different joints for learning grasps from human hand
poses. The joints are grouped into their corresponding occur-
rence on the finger. Starting from the ends of the fingers, these
groups are the tips (TIPs), distal interphalangeal joints (DIPs),
proximal interphalangeal joints (PIPs), metacarpophalangeal
joints (MCPs) and the wrist (W). We train three types of
networks for each group “X”: only with a joint group (X),
only with a joint group and the wrist (X + W) and all inputs
without the joint group (w/o X). The comparison is conducted
for subject ABF (i.e., tested on ABF, trained on all subjects
except ABF). The results in Figure 4b show that the removal
of a single group of joints in fact improves performance.
This is promising for learning grasps from simplified hand
poses, especially considering the strong performance without
the finger tips, which are often difficult to accurately estimate.
In Figure 4c, we show the performance when only specific sets
are input to the network. Surprisingly, the performance can be
better when only using the DIPs or PIPs. Learning only from
the TIPs or MCPs has a noticeable performance loss. This
can be explained by the high level of noise in the TIP joint
estimates and the relative inflexibility of the MCPs in different
hand poses causing a large amount of ambiguity for learning.
Including the wrist improves the performance; most notably,
the performance of learning from TIPs improves the most
when the wrist joint is included and the average performance
is slightly better than learning from all 21 joints.

3) Sensitivity to hand pose estimation: The relationship
between the robot grasp pose accuracy and the estimate of the
hand pose is shown in Figure 5. The hand pose is estimated
using [36] and the error of the estimate is computed as
the average distance between the estimated joints and the
ground truth positions. The robot grasps are predicted from
the estimated joints. As the figure shows, there is a clear
correlation between the accuracy of the robot grasp and the
hand pose. Therefore, the final grasp pose estimate strongly
depends on the quality of the input.

C. Real-World Grasp Imitation

Qualitative results of the full grasp imitation pipeline
are given in Figure 6. We use the sorted-input single-MLP
regression network and train it on all six subjects in HO-3D.
The threshold for detecting object movement, θo, is set to 5cm.
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Figure 5. Grasp error (ADD metric) for the estimated hand poses using [36].
Frames in which the hand pose could not be estimated are not included.

TABLE I. GRASP SUCCESS RATE FOR DIFFERENT TARGET
OBJECTS FOR THREE DIFFERENT DEMONSTRATIONS.

RIGHT-MOST COLUMN SHOWS THE AVERAGE FOR ALL OBJECTS.

Demo 1 Demo 2 Demo 3 Average
sugar box 0.6 0.8 0.8 0.73
tomato soup can 0.8 0.8 1.0 0.87
mustard bottle 1.0 0.8 1.0 0.93
mug 1.0 0.4 0.2 0.53
power drill 0.6 1.0 0.8 0.80

The first column in Figure 6 shows the human demonstra-
tion, the second column shows the estimated hand and object
pose, the third column shows the estimated robot grasp in
the object reference frame, and the remaining columns show
successful grasps executed by the robot with the object in
different poses. The examples show that the demonstrations
of semantic grasps, that is, grasps on the handles of the mug
(second row) and power_drill (third row) are directly
transferred to the robot. The robot is able to grasp the relevant
part of the object in a similar pose that the person performed.

Table I reports quantitative results of grasps using the full
pipeline. For each object, three demonstrations are performed
and five grasps are attempted for the object in new poses.
The mug has the lowest grasp success rate due to the grasps
being placed on the thin handle. Consequently, small pose
errors cause grasp failures. Surprisingly, the sugar_box is
also difficult to grasp. This can be attributed to the poor pose
estimation that occurred when the front side of the box was
not visible. For the other objects, our pipeline achieves a high
scoring grasp success rate of over 80%.
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Figure 6. Qualitative results of imitating task-oriented grasp demonstrations for a the mustard_bottle, mug and power_drill. Columns show: (1)
observation, (2) estimated object and hand pose, (3) predicted robot grasp, and (4-6) executed grasps for the object presented in new poses.

VI. CONCLUSION

This work presented an end-to-end system for imitating
human-demonstrated task-oriented grasps with a mobile ma-
nipulator. Our main contribution is a vision-based imitation
learning framework in which the pose of a target object and a
demonstrator’s hand are tracked to estimate the relevant robot
grasp. The robot grasp is derived from the output of a neural
network that learns the mapping from a human grasp pose to
the configuration of a grasp with a low-DoF gripper. Results
show that the predictions of grasps successfully transfer to new
demonstrators and that lower-dimensional representations of
the hand are sufficient for learning. Experiments with a mobile
manipulator demonstrate that a robot is capable of observing a
demonstration and immediately grasping the same object when
presented in new poses in real-world conditions.

Our analysis showed that the error in the hand pose
estimation degrades the quality of the grasp pose. Future
work will overcome this issue by directly estimating the robot
grasp from the observation without the intermediate hand
pose estimation stage. We will also investigate the utility of
including an auxilliary task, such as classifying the grasp type,
to learn richer features and therefore strengthen the grasp pose
estimation task. Lastly, we plan to generalise the framework to
transfer grasps from a demonstration to objects that belong to
the same class or have similar shape (e.g., grasp all mugs after
observing the demonstration for one mug instance) using class-
based pose estimation or geometric correspondence prediction.
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