
Towards Elastic Edge Computing Environments: An Investigation of Adaptive

Approaches

Abdullah Fawaz Aljulayfi1, 2 and Karim Djemame1
1School of Computing

1University of Leeds
1Leeds, United Kingdom

2Prince Sattam Bin Abdulaziz University, Kingdom of Saudi Arabia

e-mail: {ml16afa, K.Djemame}@leeds.ac.uk

Abstract— The workload dynamicity of internet of things

devices represents a substantial challenge for edge computing

environments as it often has limited resources. It requires an

efficient elasticity framework that aware of its operational

environment in order to adapt in accordance to workload

fluctuation which contributes towards efficient resource

utilisation, high acceptance rate, and avoids quality of service

violation. The edge computing elasticity can be provided

through a self-adaptive system that is capable of taking the

proper elasticity decisions. This self-adaptive system can be

designed using a proactive-, reactive-, or hybrid-adaptation.

However, the performance of these adaptation approaches may

vary according to the domain, application, and workload.

Therefore, this paper designs an edge computing self-adaptive

system that can support proactive-, reactive-, and hybrid-

adaptation. It also conducts simulation-based investigations on

the performance of the adaptation approaches in an edge

computing environment under different workloads and

application scenarios. The experimental results reveal that the

hybrid adaptation performs at least 10% better than other

approaches whereas the performance of both proactive and

reactive adaptations is application scenarios dependent.

Keywords- Elasticty; Auto-scaling; Proactive; Reactive;

Hybrid.

I. INTRODUCTION

The Internet of Things (IoT) [1] has become a part of
everyday life. This technology provides wide-ranging benefits
and is extensively used in various domains, such as healthcare
and industry, for increased efficiency and productivity
[2][3][4]. The massive growth of the IoT devices besides their
requirements, such as low latency, location awareness, and
mobility, represent a bottleneck for Cloud Computing (CC)
[5]. Thus, Edge Computing (EC) considers a promising
paradigm to support IoT devices by leveraging the CC
resources to the edge of the network addressing their
requirements. However, its workload dynamicity represents a
main challenge as EC infrastructures often have limited
resources [5][6][7][8]. This requires an efficient elastic
resource provision framework to cope with the workload
dynamicity to support resources scaling up and down in
accordance to workload demand. Further, the proper elasticity
decision can contribute to avoid both resources over- and
under-provisioning.

An agile elasticity framework can be provided via Self-
Adaptive System (SAS) which is a promising solution that
provides autonomic resource management in such complex
systems [9][10][11]. This allows adapting in accordance to the
workload dynamicity over time. The SAS can be designed
using proactive, reactive, or hybrid adaptation approaches.
However, the performance of these approaches vary
depending on the domain, application, and workload [12].
Therefore, the investigation of these approaches in the EC
environment is an obvious research problem that aims to
design an elastic SAS framework using the most appropriate
adaptation approach that suites EC requirements.

Our previous work has proposed a Machine Learning
Based Context-aware Prediction Framework [13]. This is
extended in this paper by conducting thorough empirical
investigations and evaluation of the performance of the
adaptation approaches in an EC environment. These
approaches are evaluated under different IoT devices’
workload, application scenarios, and hypotheses.

The main contribution of this paper can be summarised as
follows:

• Design an elasticity SAS framework that can support
proactive-, reactive-, or hybrid-adaptation where the
most proper approach can be selected. The framework
itself is supported by four algorithms, namely
proactive, reactive, hybrid, and admission control
algorithms.

• Profile six IoT applications in a containerised edge
environment which help their simulation in EC
environments. This profiling considers details about
applications’ latency requirements, the required
resources, and the uploading/ downloading data size,
which are specified based on real scenarios.

• Investigate the effectiveness of the elasticity SAS in
the EC environment using the adaptation approaches,
which shows the suitability of these approaches to the
EC. This investigation considers three real workload
and two applications scenarios (i.e., mixed
applications and single application) and a range of
evaluation metrics, e.g., task acceptance rate and
servers’ utilisation. Additionally, some
recommendations are made accordingly about the
suitability of the SAS in EC computing environments
and its design.

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

The rest of this paper is organised as follows. Section II
discusses the related work and positions the paper. It is
followed by Section III which presents the elasticity SAS
framework. Section IV illustrates the experimental design.
The performance of SAS is evaluated in Section V. The
conclusion and future work are presented in Section VI.

II. RELATED WORK

This section presents the related work in relation to the
adaptation approaches which are proactive-, reactive-, and
hybrid-adaptation. Further, it positions this paper across the
literature by highlighting its contributions.

A. Proactive Adaptation

Proactive-based SAS is a SAS that uses the collected
historical data to anticipate the future system behaviour or
environmental changes [14][15][16]. The future anticipation
can be in different folds, such as workload and performance.
The main objective of this approach is to act prior to an event
occurring which helps to optimise the resource utilisation,
avoid Quality of Service (QoS) violation, and support the
elasticity [15][17][18].

This approach has been widely used in the literature. For
instance, Spatharakis, D. et al. [19] propose a two-layers EC
system architecture for location-based services which can be
consumed by IoT or mobile devices. It is supported by an
offloading decision mechanism and applications’
performance requirement profiling mechanism. Furthermore,
the Kalman Filtering estimation method is adopted for future
request estimation.

In [20], an energy-aware cost prediction framework is
presented using Auto Regression Integrated Moving Average
(ARIMA) and Linear Regression (LR) as prediction models.
The ARIMA is used for predicting Virtual Machines (VM)
Central Processing Unit (CPU) utilisation, Random Access
Memory-, Disk-write-, and Network-usage. The LR is utilised
for predicting the physical machines’ CPU utilisation. The
work in [20] is extended using the same methods to propose a
performance and energy-based cost prediction framework
[21]. Support Vector Regression is another Machine Learning
(ML) method that is adopted in [16] to introduce an auto-
scaling system for web servers. Further, the queuing theory is
adopted as a performance model.

An auto-scaling method for containerised micro-services
in Fog Computing (FC) environment is proposed in [22]. It is
driven by two ML methods, which are Decision Tree
Regression and Elastic Net for learning auto-scaling policy
and workload forecasting using small and large window size.
A thorough evaluation is performed using both synthetic and
real workload traces.

B. Reactive Adaptation

The reactive-based SAS is a system that monitors
operational environment continuously to trigger a specific
event when a condition is satisfied [14]. Although, this kind
of adaptation may lead to system instability and late decision,
it is the common approach found in the literature.

A multi-agent-based resource provision system
architecture for FC is proposed in [23]. It aims to provide a

self-adaptive and self-sustainable load-balancing system. It
mainly relies on a threshold-based categorisation algorithm
that arranges fog nodes based on their workload (i.e.,
overloaded, underloaded, and balance). The system
architecture considers both fog and cloud layers where the
cloud layer can be utilised in case there is a need for further
processing storage, or the fog layer is fully utilised. The
system is evaluated using Poisson distribution synthetic
workload that is conducted on iFogSim. In [24], a container-
as-service system architecture for task selection and
scheduling for real-time data processing in an EC is proposed.
This system migrates the containers reactively when
over/under-utilisation of the servers is triggered aiming to
maintain the Service Level Agreement (SLA) objectives and
reduce the energy consumption.

ML methods can also be used in this approach. For
example, a resource allocation agent for MEC is developed
using deep reinforcement learning [25]. It aims to improve the
end-to-end reliability and avoid QoS violation where the
decision is made using channel quality, data packet size, and
waiting time. The reactive adaptation decisions include
changing the scheduling policy and adding/removing tasks.

In [26], a reactive method is introduced for allocating the
web-based resource in a CC. It is performed using the user
demand targeting the total deployment cost and the QoS. In
[27], an energy and SLA-aware self-adaptive resource
management scheme for CC is proposed. It uses size of input
queue, number of available VMs, and number of provisioned
VMs to adjust the number of running physical machines.

C. Hybrid Adaptation

A hybrid SAS uses both proactive and reactive adaptation.
The reactive adaptation is used as a back-up for unpredicted
occurrences [12]. The benefit of this combination can be seen
in uncertain environments [28]. A limited of research is
conducted considering this approach as it is complex and
requires consistent decisions.

 A Monitor, Analyse, Plan, and Execute over shared
Knowledge (MAPE-K)-based resource provisioning
framework is designed for IoT applications in a FC
environment with the possibility to utilise the cloud layer [7].
It uses several statistical workload forecasting methods (e.g.,
Auto Regression Moving Average (ARMA) and ARIMA).
An evaluation is performed to identify the most appropriate
forecasting model. Further, the scaling decision of the fog
nodes is made based on a Bayesian learning technique. On
the reactive side, a threshold-based technique is used to make
the cloud layer offloading decisions. The evaluation is
conducted on iFogSim using two synthetic workloads (i.e.,
Smooth and bursty workloads) and New York city taxi trip
real workload.

An elastic cloud platform for web applications based on
Docker is designed in [29]. In terms of proactive adaptation,
it uses second order ARMA for forecasting the number of
requests. In terms of reactive adaptation, a resource utilisation
threshold is used. The adaptation actions are adding/removing
and starting/stopping the containers.

A cloud-assisted EC system architecture is proposed in
[30]. It allows monitoring the EC resources by three main

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

strategies. The first strategy is an elasticity provision which is
responsible for forecasting the workload using both ARIMA
and neural network. Another strategy is a dynamic replica
placement across both cloud and edge layers. The last strategy
is the migration of the data from the cloud to the edge once
the edge workload decreases with consideration to data
reliability, migration time, and cost.

The SAS is not only related to elasticity problems but can
also be used to manage the power and energy consumption.
For instance, an energy-aware SAS for CC is presented in [31]
to minimise the power and energy consumption where
adaptation changes are implemented the in the VM level.

D. Related work limitations

Although, a considerable body of research has conducted
using different SAS approaches considering either CC, EC, or
both environments, several limitations and clear research gaps
can be identified. These limitations are related to the hybrid
SAS consideration, SAS design, the suitability of SAS to the
targeted environment, and the adopted workload. In fact, these
limitations become obvious when considering the EC
environments.

The literature limitations can be summarized as follows.
Firstly, a limited research effort has been conducted using the
hybrid SAS which represents a clear research gap, especially
for EC environments. Another limitation is the consideration
of the theoretical perspective when designing and
implementing the SAS using the adaptation approaches where
the adaptation approaches performance may vary based on
environment, application, and workload. This means a
thorough investigation about the adaptation approaches
considering the EC environment, IoT applications, and
workload is an open research problem and not been tackled
yet. Furthermore, the use of real EC workload in the SAS
evaluation represents a significant weakness due to the use of
either synthetic or real cloud workload to perform the SAS
evaluation in EC environments. Therefore, this paper aims to
address the mentioned limitations by designing an elasticity
SAS framework considering the suitability of the adaptation
approach to the EC environments. Further, this design is
driven via thorough investigations on the performance of
proactive, reactive, and hybrid adaptation in the EC
environment considering two applications’ scenarios (i.e.,
single and mixed) and real workload.

III. PROPOSED SELF-ADAPTIVE SYSTEM

This section presents the proposed elasticity SAS
framework of the EC environments.

A. MAPE-based Elasticity SAS Framework

The proposed elasticity SAS framework is designed using
a MAPE-based control loop. The use of this control loop
allows the system to have a full and autonomic management
of the resources over time in order to act in accordance to the
workload variation. This means the system can
instantiate/terminate containers as well as accept/reject
requests in an autonomic fashion where each request
represents an IoT task that needs to be executed by
containerised application. Additionally, the proposed

framework is designed to support three adaptation approaches
which are proactive-, reactive-, and hybrid-adaptation. The
SAS implementation details are provided in Section IV-A.

In this section, the proposed SAS is discussed according
to each activity in the MAPE loop, which are monitor,
analyse, plan, and execute. The SAS is shown in Figure 1 and
divided into regions based on MAPE activities where each
activity is highlighted using different colour. These colours
are red for Monitor, yellow for Analyse, green for Plan, and
blue for Execute. Further, the main contributions of this paper
are highlighted in grey.

Figure 1. MAPE-based elasticity SAS framework.

1) Monitor: is responsible for collecting the data of the
Edge Node (EN) resources and the IoT devices’ workload.
The EN resources include the number of containers which is
used to instantiate/terminate containers by all adaptation
approaches. This data is stored in the Resource Utilisation
(RU) repository. The workload history of IoT devices is
stored in the Request Repository and utilised to forecast the
future IoT workload.

2) Analyse: is responsible for analysing the stored data

by the monitor activity. It consists of two main components.

The first component is the Context-aware Prediction

Framework (CAPF) that represents the core of proactive

adaptation. The CAPF is responsible for forecasting the

future workload by utilising the workload history that is

received from Request Repository and applying the most

appropriate ML algorithm with consideration to the workload

context. In this paper, this component is used as a black box

as a full paper was published about CAPF in [13]. The second

component is RU Analyser which is an important component

for all adaptation approaches. In terms of proactive

adaptation, it is responsible for analysing the run-time EN

resources (i.e., number of idle containers) which can be used

in the elasticity decision-making process. In case of the

reactive adaptation, it is responsible for triggering the number

of containers when it is below the threshold.

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

3) Plan: is responsible for making elasticity decision

(i.e., instantiate/ terminate) where the action is taken by the

Elasticity Decision Maker. In case of the proactive

adaptation, this component uses both the forecasting results

that are generated by CAPF and the RU analyser to make the

elasticity decision. In case of the reactive adaptation, it only

utilises the RU analyser results to make the elasticity

decision. Lastly, in the hybrid adaptation, both CAPF and RU

analyser are important in decision-making process.

4) Execute: this activity is responsible for performing the

decisions that are made by the decision-maker. It has the

admission control which is responsible for accepting/

rejecting the requests based on the resources’ availability.

B. System Model and Assumptions

This section describes the adopted system model using the
layered architecture. It consists of IoT-layer, edge-layer, and
cloud-layer. The cloud layer is out of the paper’s scope.

The IoT layer (i.e., bottom layer) consists of many IoT
devices (e.g., smartphones) and connected to the upper layer
(i.e., edge layer) via a 5G cellular network. The IoT devices
send a set of requests 𝑅 = {𝑟𝑖 𝜖 𝑅 | 𝑖 = 1, 2, 3, … , 𝑁} to the
edge layer where each IoT device demands only one
application type and eligible for sending more than one
request. Further, each request is associated with application
type 𝑎𝑖 where a set of containerised applications are available
𝐴 = {𝑎𝑥 𝜖 𝐴 | 𝑥 = 1, 2, 3, … , 6}, 𝑅𝐶𝑥 , 𝑇𝐿𝑥 , and 𝑈𝑃𝑥 where
these notations are defined in Table I. The specification of
these requirements is made with respect to the implementation
environment which will be discussed in Section IV-C.

On the other hand, the edge layer consists of a set of ENs,

𝐸𝑁 = {𝑒𝑛𝑗 𝜖 𝐸𝑁 | 𝑗 = 1, … ,4} that are located in one cluster

(i.e., a group of ENs) and connected to a centralised
orchestrator that is the brain of the edge layer and hosts the
proposed elasticity SAS framework. Further, we assume that
the 𝐸𝑁𝑠 are homogenous virtualised environment that hosts
containerised applications 𝐴 in a bare-metal manner. Further,
each 𝑒𝑛𝑗 is associated with the following capabilities: 𝐶𝑃𝑈𝑗

and 𝑃𝑆𝑗 , which are defined in Table I.

In case of a request 𝑟𝑖 is accepted, the request maps to a
container instance based on the application type 𝑎𝑖. Once the
request is processed, the results are sent back to the IoT device
associated with the 𝐷𝑊𝑖 that is defined in Table I.

TABLE I. NOTATIONS

Symbol Definition

𝐸𝑁 A set of edge nodes at the edge layer, where 𝑒𝑛𝑗 𝐸𝑁

𝐶𝑃𝑈𝑗 # of CPU cores for each 𝑒𝑛𝑗

𝑃𝑆𝑗 Processing speed of 𝑒𝑛𝑗

𝐴 A set of applications requested by IoT, where 𝑎𝑖 𝐴

𝑅 A set of requests generated by IoT, where 𝑟𝑖 𝑅

𝑅𝐶𝑖,𝑥 Required CPU of 𝑟𝑖

𝑇𝐿𝑖,𝑥 Task length of 𝑟𝑖

𝑈𝑃𝑖,𝑥 Uploading data size of 𝑟𝑖

𝐷𝑊𝑖,𝑥 Downloading data size of 𝑟𝑖

𝑦 # of containers that needs to be instantiated/terminated

C. Proposed Algorithms

There are four algorithms that are developed to support the
proposed framework. These algorithms are explained next.

1) Reactive algorithm (see Figure 2): it is a threshold-
based algorithm that is responsible for reactively triggering
the number of utilised containers and make instantiation
decision. This algorithm is used in both reactive adaptation
and hybrid adaptation. Once a request is accepted (line 1), it
checks the number of stand-by (i.e., up and ready) containers.
If the number of stand-by containers is below the threshold,
it makes an instantiation decision (line 2 and 3).

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥

and Minimum # of containers𝐶𝑜𝑛𝑡𝑀𝑖𝑛

Output: Elasticity decision (instantiate) by 𝑦

0: Begin

1: For after each accepted request of 𝑎𝑖 do

2: If (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥 < 𝐶𝑜𝑛𝑡𝑀𝑖𝑛)

3: Instantiate by 𝑦 from 𝑎𝑥

4: End if

5: End for

6: End

Figure 2. Reactive algorithm (Algorithm 1).

Input: Predicted value 𝑃, # of stand-by containers for each

App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥, maximum number of allowed containers

𝐶𝑜𝑛𝑡𝑀𝑎𝑥, and # of App. 𝐴𝑙𝑒𝑛 .
Output: Elasticity decision (instantiate/ terminate) by 𝑦

0: Begin

1: For each time interval do

2: Compute 𝑃𝑎𝑥 ⌈
𝑃

𝐴𝑙𝑒𝑛
⌉

3: If (𝑃𝑎𝑥 > 𝐶𝑜𝑛𝑡𝑀𝑎𝑥)

4: Set 𝑃𝑎𝑥 𝐶𝑜𝑛𝑡𝑀𝑎𝑥

5: End if

6: For each application 𝑎𝑖 do

7: If (𝑃𝑎𝑥 == 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖)

8: No decision

9: Else if (𝑃𝑎𝑥 < 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖)

10: Terminate by 𝑦 (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥 − 𝑃𝑎𝑥)

11: Else

12: Instantiate by 𝑦 (𝑃𝑎𝑥 − 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥)

13: End if

14: End for

15:End for

16:End

Figure 3. Proactive algorithm (Algorithm 2).

2) Proactive algorithm (see Figure 3): it is responsible
for instantiating and terminating containers proactively using
the CAPF outputs and the number of stand-by containers.
First, for each time interval, it computes the predicted value
for each application type (line 2). Then, it compares this value
for each application type with the maximum number of
allowed containers in the edge (line 3). If the predicted value
is greater than the maximum number of containers, it
considers the maximum (line 4). Then, for each application,
it calculates the required number of containers by comparing
the stand-by containers with the predicted value (line 6- 13).

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

Based on this calculation the decision is made either no
decision, instantiate, and terminate.

3) Hybrid algorithm (see Figure 4): it brings both
proactive and reactive algorithms together in the same SAS.
The proactive algorithm runs at equal time intervals whereas
the reactive is continuously running.

4) Admission control algorithm (see Figure 5): it is
responsible for accepting/rejecting the requests based on the
container’s availability. Once a request is received, it checks
if there is any stand-by container (line 2-6). If there is a stand-
by container from the same application category, the request
will be accepted and executed on the targeted containerised
application. Otherwise, the request will be rejected.

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥

and Minimum # of containers𝐶𝑜𝑛𝑡𝑀𝑖𝑛 , predicted value 𝑃,

maximum number of allowed containers 𝐶𝑜𝑛𝑡𝑀𝑎𝑥, and # of

App. 𝐴𝑙𝑒𝑛

Output: Elasticity decision (instantiate/ terminate) by 𝑦

0: Begin

1: While true do

2: For each time interval do

3: Call proactive algorithm

4: End for

5: Call reactive algorithm

6: End while

7: End

Figure 4. Hybrid algorithm (Algorithm 3).

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖 and the

App. type of received request 𝑟𝑖,𝑥.

Output: Accept or reject decision

0: Begin

1: While true do

2: If (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖 > 0)

3: Accept 𝑟𝑖,𝑥

4: Else

5: Reject 𝑟𝑖,𝑥

6: End if

7: End while

8: End

Figure 5. Admission control algorithm (Algorithm 4).

D. Applications Profiling

This section describes the selection of the adopted
applications. In fact, selecting the application is a critical
decision that must be taken carefully as it plays a major role
in any resource management research. Therefore, we select a
set of applications that are different in terms of latency
requirements where the EC paradigm is mainly emerged to
support latency-sensitive applications and the resource
requirements where the EC has limited resources by nature.
In other words, both latency- and resource-requirement are
important concepts for EC environments as it emerges to
support latency-sensitive applications as well as often has
limited resources which represents a bottleneck for IoT
applications. For these reasons, we classify the applications
into latency-sensitive, medium-latency, and latency-tolerant

applications. Similarly, the application requirements are
classified into high, medium, and low requirements. Thus, the
requirements are specified using ranges as these requirements
do not exist in the literature with consideration to the
implementation environment. For example, the required
number of CPU cores ranges between 1-4 cores. Similarly, the
required processing speed and servers’ utilisation ranges
between 500-2000 MIPS and 5%-20%, respectively. In case
of the uploading and downloading data size, the assumptions
are made according to the scenarios below as limited
information is available in the literature. In short, we select 6
different applications, two applications from each category.
This variety of both applications and their requirements is
critical as it shows the effectiveness of the proposed
framework and represents a realistic scenario. The main
configuration parameters of adopted applications are shown in
Table II. They are set to be as realistic as possible based on
the real scenarios below:

TABLE II. APPLICATIONS CONFIGURATIONS

App.
CPU

cores

Avg.
processing

speed (MIPS)

Server’s

utilisation (%)

Avg. upload

size

Avg.
download

size (KB)

FR 4 2000 20 450 MB 5

ETM 4 2000 20 200 MB 5

AR 2 1000 10 1 MB 50

HM 2 1000 10 200 KB 5

IHM 1 500 5 200 KB 20

IP 1 500 5 4 KB 4

1) Face Recognition (FR): Public safety domain includes

a wide range of applications, such as FR and Cars’ plates

identification [32][33][34]. This kind of applications is

important as it helps the authority to track people, find a

missing person, and track cars. It can be implemented by

consuming video surveillance resources. In the context of this

paper, we assume that FR application is used to find or track

a person in any incident, thus, it is considered as a latency-

sensitive application in the sense that the video frames need

to be analysed quickly. Further, due to the type of data (video

frames), the FR is categorised as a data-intensive and

computational-intensive application [32][35][36].

2) Emergency Traffic Management (ETM): Nowadays,

traffic flow management systems are important applications

that help improving traffic efficiency, reduce accidents,

support emergency services, and manage traffic jams [37]. In

this paper, ETM application focuses on supporting

emergency services where the application can be requested

by emergency services (e.g., ambulance and fire trucks) to

perform better traffic management. The ETM can be

classified as a latency-sensitive application as it is related to

emergency cases. It is also considered data-intensive and

computational-intensive in some use cases [38]. However, in

our scenario, we assume that the data size is medium as it

may require gathering data from different sources (e.g.,

infrastructure, vehicles, and pedestrians). At the same time,

ETM is computational-intensive. Based on this scenario, the

application configuration is set as shown in Table II.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

3) Augmented Reality (AR): AR is a well-known

application that can be used in many domains, such as

healthcare, agriculture, and tourism [40][41][42][43]. For the

purpose of this research, we assume that it is used to guide

the people during their mobility in a city by displaying

contextual information about the objects/ directions by

analysing the captured figures (i.e., frames). We also assume

that it requires medium latency as it is not an urgent

application when compared to TFM and FR. It also requires

a medium-requirments of resources.

4) Health Monitoring (HM): It is a common application

that benefits from EC. In general, it is classified as data-

sensitive and latency-sensitive application [41][44][45][46].

However, we assume that the real-time and emergency data

analysis is performed locally on the patients’ smartphones or

wearable devices whereas the edge layer is utilised to perform

a future health prediction in a form of requests. Then, the

alarm will be sent to the hospital in case of any incident is

predicted. This assumption makes this application requires

medium latency and resources.

5) Industrial Health Monitoring (IHM): IHM application

covers a wide number of scenarios. In this research, we

adopted the same scenario that is presented in [3], where the

data is collected and sent to the edge for analysis and

visualisation. In other words, the application is used to

monitor the workers’ health and environment. Further, IHM

is latency-tolerant and low-requirements application.

6) Intelligent Parking (IP): IP is a smart city application

which is used to search for parking slots [37]. It is assumed

that the driver submitted a search request to the edge layer

which is responsible for retrieving the relevant data about

parking slots and suggestions to the user as a list of nearest

parking spaces. Based on this scenario, IP is considered as a

latency-tolerant and low-requirements application.

IV. EXPERIMENTAL DESIGN

This section presents the experimental design, which
includes implementation scenarios, dataset, workload,
evaluation metrics, and hypothesis.

A. Implementation Scenarios

The proposed elasticity SAS is implemented considering
the proactive, reactive, and hybrid adaptation, separately. For
instance, in the implementation of proactive adaptation, the
reactive adaptation components are deactivated.

To evaluate the effectiveness of these approaches two
application-based scenarios are considered as summarised in
Table III. The experiments are conducted considering 1)
mixed applications, 2) single application. Further, in each
scenario, the adaptation approaches are evaluated using three
real workloads which will be discussed in the next section. In
the single application scenario, the adaptation approaches are
evaluated considering one application in each experiment.
This means each adaptation approach is evaluated using FR
application as a heavy load, AR application as a medium load,

and IHM application as a low load. The consideration of these
scenarios is important to design the most suitable SAS for EC
environment considering the adaptation approaches,
workload, and applications.

TABLE III. IMPLEMENTATION SCENARIOS

Scenarios
Adaptation

approaches

Considered

applications

1: Mixed applications

Proactive All

Reactive All

Hybrid All

2: Single

application

A

Proactive FR

Reactive FR

Hybrid FR

B

Proactive AR

Reactive AR

Hybrid AR

C

Proactive IHM

Reactive IHM

Hybrid IHM

B. Workload

This paper adopts the Shanghai Telecom dataset [46]
which is ideal for the consideration of IoT workload as
previously used by [48][49][50][51]. It provides six months of
mobile phones records accessing the Internet and connecting
to base stations that are distributed over Shanghai city.

The same workload pattern will be used as in our previous
work [13]. In [13], the workload is divided into three patterns,
which are decreasing, increasing, and fluctuating. Each
pattern consists of a set of hours as each pattern represents a
part of the day (i.e., late night and early morning as a
decreasing pattern, morning as an increasing pattern, and
afternoon to evening as a fluctuating pattern). Further, one
hour from each pattern is selected (2nd hour from decreasing,
12th hour from increasing, and 14th hour from fluctuating) to
be used in training/ testing the proposed forecasting models.

Figure 6. Workload patterns.

The testing part is used to evaluate the proposed SAS. It
represents the last 12 minutes from each pattern named as
decreasing, increasing, and fluctuating workload, which will
be fed to the simulation environment. The workload is shown
in Figure 6 over time interval. The use of 12 minutes is
considered long enough to evaluate the SAS including the
adaptation approaches and algorithms. Note that the workload
in Figure 6 does not show the overall pattern (i.e., decreasing,
increasing, or fluctuating) as it is a snip from the dataset by
zooming in towards the adopted time frame by this paper. The
patterns are named according to the previous work [13] to
ensure consistency.

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

W
o

rk
lo

ad

Minutes

Workload patterns

Decreasing Increasing Fluctuating

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

C. Simulation Setup

The proposed elasticity SAS framework is implemented
using the EdgeCloudSim simulator [51], which is built upon
the CloudSim simulator. It allows simulating the EC
environment with consideration to the IoT-, edge-, and cloud-
layers. It also can simulate different scenarios with/without
cloud consideration and edge orchestrator. In this paper, two
layers only are considered, the IoT- and edge-layers (the cloud
layer out of our scope). The simulation duration is 14 minutes;
the 1st minute is considered as a warm-up period and the last
minute is waiting time to allow all tasks to be completed. The
12 minutes in-between is the real workload that is fed to the
simulator. Further, six applications are considered with
different requirements to evaluate the proposed SAS. Also,
considering four ENs is deemed sufficient to allow
performing the evaluation process. In terms of the number of
IoT devices and requests, these values are specified for each
workload pattern according to the number of devices and
requests in the dataset. The most important simulation
parameters are shown in Table IV.

TABLE IV. SIMULATION CONFIGURATION

Parameter Value

Simulation time (min.) 14

Warm-up period (min.) 1

of iterations 5

IoT Applications (mixed/ Single) (6/1)

of IoT devices (decreasing/ increasing/ fluctuating) (108/277/271)

of IoT requests (decreasing/ increasing/ fluctuating) (115/331/334)

of edge nodes 4

of cores/edge node 4

Processing speed/edge node (MIPS) 2000

Resource check interval (sec.) 15

D. Evaluation Metrics

Two evaluation metrics are used. They are the acceptance
rate and servers’ utilisation. The acceptance rate evaluates the
effectiveness of each adaptation approach when dealing with
dynamic workload. On the other hand, the servers’ utilisation
refers to the CPU utilisation over the time intervals.

E. Hypothesis

Two hypotheses are considered to evaluate the
effectiveness of adaptation approaches in the proposed
elasticity SAS framework:

Hypothesis 1: The use of the hybrid adaptation in an
elasticity framework will provide the highest acceptance rate
as compared to both proactive and reactive adaptations.

Hypothesis 2: The proactive adaptation will perform
better than the reactive adaptation due to the prediction
ability that helps acting prior (i.e., in advance) events happen.

V. PERFORMANCE EVALUATION

This section evaluates and discusses the results as well as
highlights the main findings.

A. Adaptation Approaches Evaluation

The adaptation approaches are compared with respect to
the stated scenarios in Section IV-A.

Scenario 1- mixed applications: it evaluates the adaptation
approaches using all applications over decreasing, increasing,
and fluctuating patterns.

Scenario 2- single application: it evaluates the adaptation
approaches with respect to the application category (i.e.,
heavy-, medium-, and low-load).

1) Scenario 1 (All Apps.): the hybrid adaptation provides

the highest acceptance rate overall pattern when compared to

other adaptation approaches as shown in Figure 7.a. It

performs about 10% higher than reactive adaptation for the

increasing pattern and 7% for fluctuating pattern. It also

performs about 20%, 14%, and 12% higher than proactive

adaptation in decreasing, increasing, and fluctuating patterns,

respectively. The hybrid adaptation superiority is due to its

ability to trigger unpredicted requests thanks to the reactive

adaptation side. The high acceptance rate leads to efficient

utilisation of the ENs, see Figure 7.b, which shows the

servers’ utilisations over time for the hybrid adaptation as it

has the highest acceptance rate and utilisation.

(a)

(b)

Figure 7. Scenario 1.

2) Scenario 2.A (FR): in this scenario, the hybrid

adaptation also outperforms both proactive and reactive

adaptation overall patterns as shown in Figure 8.a thanks to

the consideration of both proactive and reactive adaptations

where the reactive adaptation side can deal with unpredicted

events. However, the proactive adaptation outperforms the

reactive adaptation overall patterns. This due to the use of

single application scenario. This means that all the submitted

requests will be from the same type of application whereas in

scenario 1 the predicted value will be divided over the

0

20

40

60

80

100

Decreasing Increasing FluctuatingA
cc

ep
ta

n
ce

 R
at

e
(%

)

Dataset

Acceptance rate
Proactive Reactive Hybrid

0

2

4

6

8

1
5

7
5

1
3

5

1
9

5

2
5

5

3
1

5

3
7

5

4
3

5

4
9

5

5
5

5

6
1

5

6
7

5

7
3

5

7
9

5

Se
rv

er
s'

 u
ti

lis
at

io
n

s
(%

)

Time intervals (Sec.)

Servers utilisations - Hybrid

Decreasing Increasing Fluctuating

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

number of considered applications assuming that all these

applications come on the same probability. In terms of

servers’ utilisation, the FR application is considered as a

heavy-load application. This means a higher workload is

expected as compared to Scenario 1 which considers all

applications. Figure 8.b shows the servers’ utilisation over

thensimulation time for the hybrid adpatation which can

reach about 15% in this scenario as a heavy-load application

is considered.

(a)

(b)

Figure 8. Scenario 2A.

3) Scenario 2.B (AR): in this scenario, the results are

similar to Scenario 2.A where the hybrid adaptation

outperforms all the adaptation approaches over different

patterns as shown in Figure 9. The proactive adaptation also

outperforms the reactive adaptation. The main difference is

the average server utilisation which is lower than the avergae

servers utilisation in the FR scenario where the AR

application is considered as medium-load.

4) Scenario 2.C (IHM): the acceptance rate of this

scenario is similar to Scenario 2.B which is not presented due

to space limitation. In terms of the servers’ utilisation, it is

the lowest as compared to all previous experiments in the

sense that it considers applications with low-load.

B. Hypothesis Evaluation

This section tests the hypotheses based on the considered
scenarios.

1) Hypothesis 1: The use of the hybrid adaptation in an

elasticity framework will provide the highest acceptance rate

as compared to both proactive and reactive adaptations. This

holds true in all scenarios. The hybrid adaptation shows a

great performance as compared to both proactive- and

reactive-adaptation. This is due to the consideration of the

proactive adaptation to prepare the containers prior receiving

the requests as well as the use of threshold-based in the

reactive adaptation to maintain the number of stand-by

containers.

2) Hypothesis 2: The proactive adaptation will perform

better than reactive adaptation due to prediction ability that

helps acting prior (i.e., in advance) events happen. This

hypothesis is disproved for the mixed scenario (i.e., Scenario

1), while correct for the single scenarios (i.e., Scenarios 2A,

2B, and 2C). In terms of the mixed scenario, the predicted

workload by the CAPF is divided by the number of

applications and assuming that all applications have the same

arrival probability. This means the CAPF predicts the overall

workload without any consideration to the applications’

arrival probability. This assumption is made as there is no

previous information available in the real dataset about the

type of applications that will be requested. In contrast, the

proactive adaption outperforms the reactive in single

scenarios as the predicted workload will be utilised by the

same application.

Figure 9. Scenario 2B.

C. Findings and Recommendations

The main findings of this paper can be summarised as
follows with some recommendations:

1) Although the hybrid adaptation is complex and

requires bringing both proactive and reactive adaptation

together in a consistent manner, it provides the best

performance over different scenarios and workload patterns

and has the ability to adapt in a highly fluctuating

environment. According to this finding, the hybrid SAS is

recommended to be used in highly fluctuating environments,

such as EC, as it provides a full monitoring loop with the

ability to deal with unpredicted events. In other words, using

either proactive or reactive adaptation approaches in a highly

fluctuating environment may lead to low performance as

there is a need to anticipate the future behaviour as well as

using reactive adaptation for backup. The use of hybrid

adaptation is also important even when the prediction models

show great accuracy.

0

20

40

60

80

100

Decreasing Increasing Fluctuating

A
cc

ep
ta

n
ce

 R
at

e
(%

)

Dataset

Acceptance rate
Proactive Reactive Hybrid

0
3
6
9

12
15

1
5

7
5

1
3

5

1
9

5

2
5

5

3
1

5

3
7

5

4
3

5

4
9

5

5
5

5

6
1

5

6
7

5

7
3

5

7
9

5

Se
rv

er
s'

 u
ti

lis
at

io
n

s
(%

)

Time intervals (Sec.)

Servers utilisations - Hybrid
Decreasing Increasing Fluctuating

0

20

40

60

80

100

Decreasing Increasing FluctuatingA
cc

ep
ta

n
ce

 R
at

e
(%

)

Dataset

Acceptance rate
Proactive Reactive Hybrid

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

2) The hybrid adaptation efficiently utilises the EC

resources as it is able to accept more requests and contributes

to avoid over/under-prevision cases thanks to the use of the

reactive adaptation as a back-up for the proactive adaptation

to deal with the unpredicted workload. Its efficiency can be

seen clearly in Scenario 1 when there is no previous

knowledge about the request types. Thus, the hybrid

adaptation is recommended in EC environments as these have

limited resources by nature.

3) The available information about submitted requests to

the edge layer plays an important role in designing the

elasticity SAS framework. In fact, the proactive adaptation is

preferable as compared to the reactive adaptation as it acts

prior the event occurrence and prepares the resources in

advance. However, in case limited information about the

predicted events is available, this may lead to low

performance as compared to the reactive adaptation as well

as unpredicted results. This can be seen in scenario 1 when

using mixed applications where the predicted value

represents the overall workload without the consideration of

the arrival probability for each application type.

4) It is important to evaluate the performance of the

adaptation approaches in the implementation domain as their

performance may vary according to the scenario and

workload.

VI. CONCLUSION AND FUTURE WORK

This paper has presented and evaluated an elasticity SAS
which is supported by proactive, reactive, hybrid, and
admission control approaches as well as various application
scenarios. The experiment results show that the most
appropriate adaptation approach in an EC environment is the
hybrid where its performance is at least 10% better than other
approaches. The results also reveal that the performance of the
adaptation approaches is domain, application, and scenario
dependent.

As future work, the proposed SAS will be evaluated using
different workloads aiming to stress the SAS with higher
request rates. In fact, the use of higher request rate to evaluate
the proposed framework is important as some experiments
show small servers utilization. Additionally, both the
scalability and QoS will be considered with the aim to
maximise the number of running applications with adequate
QoS. Moreover, a policy management will be investigated to
identify the trade-off between the service acceptance
maximisation from the perspective of the service provider and
the QoS from the consumer, respectively.

REFERENCES

[1] P. Parwekar, “From Internet of Things towards cloud of
things”, The 2nd International Conference on Computer and
Communication Technology, 2011, pp. 329–333.

[2] I. Yaqoob et al., “Internet of Things Architecture: Recent
Advances, Taxonomy, Requirements, and Open Challenges”,
IEEE Wirel. Commun., vol. 24, no. 3, pp. 10–16, 2017.

[3] F. Wu, T. Wu, and M. R. Yuce, “An Internet-of-Things (IoT)
Network System for Connected Safety and Health Monitoring

Applications”, Sensors (Switzerland), vol. 19, no. 1, pp. 1–21
2018.

[4] J. Cheng, W. Chen, F. Tao, and C. L. Lin, “Industrial IoT in 5G
environment towards smart manufacturing”, Journal of
Industrial Information Integration, vol. 10 , pp. 10–19, 2018.

[5] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V.
Stankovski, “Monitoring self-adaptive applications within
edge computing frameworks: A state-of-the-art review”,
Journal Systems and Software, vol. 136, pp. 19–38, 2018.

[6] G. Li, J. Song, J. Wu, and J. Wang, “Method of Resource
Estimation Based on QoS in Edge Computing”, Wirel.
Commun. and Mob. Comput., vol. 2018, pp. 1–9 ,2018.

[7] M. Etemadi, M. Ghobaei-Arani, and A. Shahidinejad,
“Resource provisioning for IoT services in the fog computing
environment: An autonomic approach”, Comput. Commun.,
vol. 161, pp. 109–131, 2020.

[8] B. Liu, J. Guo, C. Li, and Y. Luo, “Workload forecasting based
elastic resource management in edge cloud”, Comput. & Ind.
Eng., vol. 139, pp. 1–12, 2020.

[9] R. Kavanagh, K. Djemame, J. Ejarque, R. M. Badia, and D.
Garcia-Perez, “Energy-aware Self-Adaptation for Application
Execution on Heterogeneous Parallel Architectures”, IEEE
Trans. Sustain. Comput., vol. 5, no. 1, pp. 81–94, 2019.

[10] M. D’Angelo, “Decentralized Self-Adaptive Computing at the
Edge”, IEEE/ACM The 13th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, 2018, pp. 144–148.

[11] M. Xu and R. Buyya, “Brownout Approach for Adaptive
Management of Resources and Applications in Cloud
Computing Systems: A Taxonomy and Future Directions”,
ACM Comput. Surv., vol. 52, no. 1, pp. 1–27, 2019.

[12] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C.
Becker, “A survey on engineering approaches for self-adaptive
systems”, Pervasive Mob. Comput., vol. 17, pp. 184–206,
2015.

[13] A. F. Aljulayfi and K. Djemame, “A Machine Learning Based
Context-aware Prediction Framework for Edge Computing
Environments”, The 11th International Conference on Cloud
Computing and Services Science, 2021, pp. 143–150.

[14] G. Galante and L. C. E. de Bona, “A Survey on Cloud
Computing Elasticity”, IEEE/ACM The Fifth International
Conference on Utility and Cloud Computing, 2012, pp. 263–
270.

[15] M. Amiri and L. Mohammad-Khanli, “Survey on prediction
models of applications for resources provisioning in cloud”,
Jou. Netw. Comput. Appl., vol. 82, pp. 93–113, 2017.

[16] R. Moreno-vozmediano, R. S. Montero, E. Huedo, and I. M.
Llorente, “Efficient resource provisioning for elastic Cloud
services based on machine learning techniques”, Jou. Cloud
Comput. Adv. Syst. and Appl., vol. 8, no. 1, pp. 1–18, 2019.

[17] D. F. Kirchoff, M. Xavier, J. Mastella, and C. A. F. De Rose,
“A preliminary study of machine learning workload prediction
techniques for cloud applications”, The 27th Euromicro
International Conference on Parallel, Distributed and Network-
Based Processing (PDP), 2019, pp. 222–227.

[18] S. Ajila and A. A. Bankole, “Cloud Client Prediction Models
Using Machine Learning Techniques”, in International
Computer Software and Applications Conference, 2013, pp.
134–142.

[19] D. Spatharakis et al., “A scalable Edge Computing architecture
enabling smart offloading for Location Based Services”,
Pervasive Mob. Comput., vol. 67, pp. 1–15, 2020.

[20] M. Aldossary, I. Alzamil, and K. Djemame, “Towards Virtual
Machine Energy-Aware Cost Prediction in Clouds”, in
GECON: International Conference on the Economics of Grids,
Clouds, Systems, and Services, 2017, pp. 285–299.

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

[21] M. Aldossary and K. Djemame, “Performance and Energy-
based Cost Prediction of Virtual Machines Auto-scaling in
Clouds”, The 44th Euromicro Conference on Software
Engineering and Advanced Applications, 2018, pp. 502–509.

[22] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A.
Erradi, “Predictive Autoscaling of Microservices Hosted in
Fog Microdata Center”, IEEE Syst. Jou., pp. 1–12, 2020.

[23] A. V. Chandak and N. K. Ray, “Multi Agent Based Resource
Provisioning in Fog Computing”, Trends Comput. Intell.
Secur. Internet Things. Commun. Comput. Inf. Sci., vol. 1358,
pp. 317–327, 2020.

[24] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, “Container-as-
a-Service at the Edge: Trade-off between Energy Efficiency
and Service Availability at Fog Nano Data Centers”, IEEE
Wirel. Commun., vol. 24, no. 3, pp. 48–56, 2017.

[25] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar,
“Deep Reinforcement Learning based Resource Allocation in
Low Latency Edge Computing Networks”, The 15th
International Symposium on Wireless Communication
Systems, 2018, pp. 1–5.

[26] S. Mireslami, L. Rakai, M. Wang, and B. H. Far, “Dynamic
Cloud Resource Allocation Considering Demand
Uncertainty”, IEEE Trans. Cloud Comput., pp. 1–14, 2019.

[27] E. Ataie, R. Entezari-Maleki, S. E. Etesami, B. Egger, D.
Ardagna, and A. Movaghar, “Power-aware performance
analysis of self-adaptive resource management in IaaS clouds”,
Futur. Gener. Comput. Syst., vol. 86, pp. 134–144, 2018.

[28] G. Anders, F. Siefert, M. Mair, and W. Reif, “Proactive
Guidance for Dynamic and Cooperative Resource Allocation
under Uncertainties”, in International Conference on Self-
Adaptive and Self-Organizing Systems, 2014, pp. 21–30.

[29] C. Kan, “DoCloud: An Elastic Cloud Platform for Web
Applications Based on Docker”, The 18th International
Conference on Advanced Communication Technology, 2016,
pp. 478–483.

[30] C. Li, J. Bai, Y. Ge, and Y. Luo, “Heterogeneity-aware elastic
provisioning in cloud-assisted edge computing systems”,
Futur. Gener. Comput. Syst., vol. 112, pp. 1106–1121, 2020.

[31] K. Djemame et al., “PaaS-IaaS Inter-Layer Adaptation in an
Energy-Aware Cloud Environment”, IEEE Trans. Sustain.
Comput., vol. 2, no. 2, pp. 127–139, 2017.

[32] L. Soh, J. Burke, and L. Zhang, “Supporting Augmented
Reality: Looking Beyond Performance”, Proc, of The 2018
Morning Workshop on Virtual Reality and Augmented Reality
Network, 2018, pp. 7–12.

[33] F. Faticanti, F. D. Pellegrini, D. Siracusa, D. Santoro, and S.
Cretti, “Cutting Throughput with the Edge: App-Aware
Placement in Fog Computing”, The 6th IEEE International
Conference on Cyber Security and Cloud Computing, and The
5th IEEE International Conference on Edge Computing and
Scalable Cloud, 2019, pp. 196–203.

[34] E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, “Foggy: A
Framework for Continuous Automated IoT Application
Deployment in Fog Computing”, Proc. IEEE The 6th
International Conference on AI and Mobile Services, 2017, pp.
38–45.

[35] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge and
Fog computing environments”, Softw.: Pract. and Exp., vol.
47, no. 9, pp. 1275–1296, 2017.

[36] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing:
Concepts, Applications and Issues”, Proc. of The 2015
Workshop on Mobile Big Data, 2015, pp. 37–42.

[37] A. Shahzad, J. Choi, N. Xiong, Y. Kim, and M. Lee,
“Centralized Connectivity for Multiwireless Edge Computing
and Cellular Platform: A Smart Vehicle Parking System”,
Wirel. Commun. and Mob. Comput., vol. 2018, pp.1–23, 2018.

[38] S. Kekki et al., “MEC in 5G networks”, ETSI white Paper No.
28, pp. 1–28, 2018.

[39] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M.
Satyanarayanan, “Towards Wearable Cognitive Assistance”, in
Proc. of The 12th annual international conference on Mobile
systems, applications, and, services, 2014, pp. 68–81.

[40] G. White, C. Cabrera, A. Palade, and S. Clarke, “Augmented
Reality in IoT”, In: Liu X. et al. (eds) Service-Oriented
Computing- ICSOC 2018 Workshops, Lecture Notes in
Computer Science, vol. 11434, Springer, Cham , 2019, pp.
149–160.

[41] J. Dolezal, Z. Becvar, and T. Zeman, “Performance Evaluation
of Computation Offloading from Mobile Device to the Edge of
Mobile Network”, in IEEE Conference on Standards for
Communications and Networking, 2016, pp. 1–7.

[42] J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht,
“Towards Pervasive Augmented Reality: Context-Awareness
in Augmented Reality”, IEEE Trans. Vis. Comput. Graph., vol.
23, no. 6, pp. 1706–1724, 2017.

[43] G. Rahman and C. W. Chuah, “Fog Computing, Applications,
Security and Challenges, Review”, Int. Jou. Eng. Technol., vol.
7, no. 3, pp. 1615–1621, 2018.

[44] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How Can Edge
Computing Benefit from Software-Defined Networking: A
Survey, Use Cases, and Future Directions”, IEEE Commun.
Surv. Tutorials, vol. 19, no. 4, pp. 2359–2391, 2017.

[45] T. N. Gia, M. Jiang, A. Rahmani, T. Westerlund, P. Liljeberg,
and H. Tenhunen, “Fog Computing in Healthcare Internet of
Things: A Case Study on ECG Feature Extraction”, Proc. IEEE
International Conference on Computer and Information
Technology, Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing, 2015, pp. 356–363.

[46] Sguangwang.com, “The Telecom Dataset”, 2018. [Online].
Available from: http://sguangwang.com/TelecomDataset.html.
[Retrieved: 2021.5.27].

[47] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C. Hsu, “Edge server
placement in mobile edge computing”, Jou. Parallel and
Distrib. Comput., vol. 127, pp. 160–168, 2019.

[48] S. Wang, Y. Zhao, L. Huang, J. Xu, and C. Hsu, “QoS
prediction for service recommendations in mobile edge
computing”, J. Parallel Distrib. Comput., vol. 127, pp. 134–
144, 2019.

[49] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C. Hsu, “User
allocation-aware edge cloud placement in mobile edge
computing”, Softw.: Pract. and Exp., vol. 50, no. 5, pp. 489–
502, 2019.

[50] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen,
“Delay-aware Microservice Coordination in Mobile Edge
Computing: A Reinforcement Learning Approach”, IEEE
Trans. Mob. Comput., vol.20, no. 3 pp. 939–951, 2021.

[51] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An
environment for performance evaluation of edge computing
systems”, Trans. Emerg. Telecommun. Technol., vol. 29, no.
11, pp. 1–17, 2018.

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-854-9

ICAS 2021 : The Seventeenth International Conference on Autonomic and Autonomous Systems

