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Abstract— The workload dynamicity of internet of things 

devices represents a substantial challenge for edge computing 

environments as it often has limited resources. It requires an 

efficient elasticity framework that aware of its operational 

environment in order to adapt in accordance to workload 

fluctuation which contributes towards efficient resource 

utilisation, high acceptance rate, and avoids quality of service 

violation. The edge computing elasticity can be provided 

through a self-adaptive system that is capable of taking the 

proper elasticity decisions. This self-adaptive system can be 

designed using a proactive-, reactive-, or hybrid-adaptation. 

However, the performance of these adaptation approaches may 

vary according to the domain, application, and workload. 

Therefore, this paper designs an edge computing self-adaptive 

system that can support proactive-, reactive-, and hybrid- 

adaptation. It also conducts simulation-based investigations on 

the performance of the adaptation approaches in an edge 

computing environment under different workloads and 

application scenarios. The experimental results reveal that the 

hybrid adaptation performs at least 10% better than other 

approaches whereas the performance of both proactive and 

reactive adaptations is application scenarios dependent.   

Keywords- Elasticty; Auto-scaling; Proactive; Reactive; 

Hybrid. 

I.  INTRODUCTION 

The Internet of Things (IoT)  [1] has become a part of 
everyday life. This technology provides wide-ranging benefits 
and is extensively used in various domains, such as healthcare 
and industry, for increased efficiency and productivity 
[2][3][4].  The massive growth of the IoT devices besides their 
requirements, such as low latency, location awareness, and 
mobility, represent a bottleneck for Cloud Computing (CC) 
[5]. Thus, Edge Computing (EC) considers a promising 
paradigm to support IoT devices by leveraging the CC 
resources to the edge of the network addressing their 
requirements. However, its workload dynamicity represents a 
main challenge as EC infrastructures often have limited 
resources [5][6][7][8]. This requires an efficient elastic 
resource provision framework to cope with the workload 
dynamicity to support resources scaling up and down in 
accordance to workload demand. Further, the proper elasticity 
decision can contribute to avoid both resources over- and 
under-provisioning.   

An agile elasticity framework can be provided via Self-
Adaptive System (SAS) which is a promising solution that 
provides autonomic resource management in such complex 
systems [9][10][11]. This allows adapting in accordance to the 
workload dynamicity over time. The SAS can be designed 
using proactive, reactive, or hybrid adaptation approaches. 
However, the performance of these approaches vary 
depending on the domain, application, and workload [12].  
Therefore, the investigation of these approaches in the EC 
environment is an obvious research problem that aims to 
design an elastic SAS framework using the most appropriate 
adaptation approach that suites EC requirements.  

Our previous work has proposed a Machine Learning 
Based Context-aware Prediction Framework [13]. This is 
extended in this paper by conducting thorough empirical 
investigations and evaluation of the performance of the 
adaptation approaches in an EC environment. These 
approaches are evaluated under different IoT devices’ 
workload, application scenarios, and hypotheses. 

The main contribution of this paper can be summarised as 
follows: 

• Design an elasticity SAS framework that can support 
proactive-, reactive-, or hybrid-adaptation where the 
most proper approach can be selected. The framework 
itself is supported by four algorithms, namely 
proactive, reactive, hybrid, and admission control 
algorithms.  

• Profile six IoT applications in a containerised edge 
environment which help their simulation in EC 
environments. This profiling considers details about 
applications’ latency requirements, the required 
resources, and the uploading/ downloading data size, 
which are specified based on real scenarios. 

• Investigate the effectiveness of the elasticity SAS in 
the EC environment using the adaptation approaches, 
which shows the suitability of these approaches to the 
EC. This investigation considers three real workload 
and two applications scenarios (i.e., mixed 
applications and single application) and a range of 
evaluation metrics, e.g., task acceptance rate and 
servers’ utilisation. Additionally, some 
recommendations are made accordingly about the 
suitability of the SAS in EC computing environments 
and its design.   
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The rest of this paper is organised as follows. Section II 
discusses the related work and positions the paper. It is 
followed by Section III which presents the elasticity SAS 
framework. Section IV illustrates the experimental design. 
The performance of SAS is evaluated in Section V. The 
conclusion and future work are presented in Section VI. 

II. RELATED WORK 

This section presents the related work in relation to the 
adaptation approaches which are proactive-, reactive-, and 
hybrid-adaptation. Further, it positions this paper across the 
literature by highlighting its contributions.  

A. Proactive Adaptation 

Proactive-based SAS is a SAS that uses the collected 
historical data to anticipate the future system behaviour or 
environmental changes [14][15][16]. The future anticipation 
can be in different folds, such as workload and performance. 
The main objective of this approach is to act prior to an event 
occurring which helps to optimise the resource utilisation, 
avoid Quality of Service (QoS) violation, and support the 
elasticity [15][17][18].  

This approach has been widely used in the literature. For 
instance, Spatharakis, D. et al. [19] propose a two-layers EC 
system architecture for location-based services which can be 
consumed by IoT or mobile devices. It is supported by an 
offloading decision mechanism and applications’ 
performance requirement profiling mechanism. Furthermore, 
the Kalman Filtering estimation method is adopted for future 
request estimation.  

In [20], an energy-aware cost prediction framework is 
presented using Auto Regression Integrated Moving Average 
(ARIMA) and Linear Regression (LR) as prediction models. 
The ARIMA is used for predicting Virtual Machines (VM) 
Central Processing Unit (CPU) utilisation, Random Access 
Memory-, Disk-write-, and Network-usage. The LR is utilised 
for predicting the physical machines’ CPU utilisation. The 
work in [20] is extended using the same methods to propose a 
performance and energy-based cost prediction framework 
[21]. Support Vector Regression is another Machine Learning 
(ML) method that is adopted in [16] to introduce an auto-
scaling system for web servers. Further, the queuing theory is 
adopted as a performance model. 

An auto-scaling method for containerised micro-services 
in Fog Computing (FC) environment is proposed in [22]. It is 
driven by two ML methods, which are Decision Tree 
Regression and Elastic Net for learning auto-scaling policy 
and workload forecasting using small and large window size. 
A thorough evaluation is performed using both synthetic and 
real workload traces.     

B. Reactive Adaptation 

The reactive-based SAS is a system that monitors 
operational environment continuously to trigger a specific 
event when a condition is satisfied [14]. Although, this kind 
of adaptation may lead to system instability and late decision, 
it is the common approach found in the literature.  

A multi-agent-based resource provision system 
architecture for FC is proposed in [23]. It aims to provide a 

self-adaptive and self-sustainable load-balancing system. It 
mainly relies on a threshold-based categorisation algorithm 
that arranges fog nodes based on their workload (i.e., 
overloaded, underloaded, and balance). The system 
architecture considers both fog and cloud layers where the 
cloud layer can be utilised in case there is a need for further 
processing storage, or the fog layer is fully utilised. The 
system is evaluated using Poisson distribution synthetic 
workload that is conducted on iFogSim. In [24], a container-
as-service system architecture for task selection and 
scheduling for real-time data processing in an EC is proposed. 
This system migrates the containers reactively when 
over/under-utilisation of the servers is triggered aiming to 
maintain the Service Level Agreement (SLA) objectives and 
reduce the energy consumption.  

ML methods can also be used in this approach. For 
example, a resource allocation agent for MEC is developed 
using deep reinforcement learning [25]. It aims to improve the 
end-to-end reliability and avoid QoS violation where the 
decision is made using channel quality, data packet size, and 
waiting time. The reactive adaptation decisions include 
changing the scheduling policy and adding/removing tasks. 

In [26], a reactive method is introduced for allocating the 
web-based resource in a CC. It is performed using the user 
demand targeting the total deployment cost and the QoS. In 
[27], an energy and SLA-aware self-adaptive resource 
management scheme for CC is proposed. It uses size of input 
queue, number of available VMs, and number of provisioned 
VMs to adjust the number of running physical machines.  

C. Hybrid Adaptation 

A hybrid SAS uses both proactive and reactive adaptation. 
The reactive adaptation is used as a back-up for unpredicted 
occurrences [12]. The benefit of this combination can be seen 
in uncertain environments [28]. A limited of research is 
conducted considering this approach as it is complex and 
requires consistent decisions.  

 A Monitor, Analyse, Plan, and Execute over shared 
Knowledge (MAPE-K)-based resource provisioning 
framework is designed for IoT applications in a FC 
environment with the possibility to utilise the cloud layer [7]. 
It uses several statistical workload forecasting methods (e.g., 
Auto Regression Moving Average (ARMA) and ARIMA). 
An evaluation is performed to identify the most appropriate 
forecasting model. Further, the scaling decision of the fog 
nodes is made based on a Bayesian learning technique.  On 
the reactive side, a threshold-based technique is used to make 
the cloud layer offloading decisions. The evaluation is 
conducted on iFogSim using two synthetic workloads (i.e., 
Smooth and bursty workloads) and New York city taxi trip 
real workload.  

An elastic cloud platform for web applications based on 
Docker is designed in [29]. In terms of proactive adaptation, 
it uses second order ARMA for forecasting the number of 
requests. In terms of reactive adaptation, a resource utilisation 
threshold is used. The adaptation actions are adding/removing 
and starting/stopping the containers. 

A cloud-assisted EC system architecture is proposed in 
[30]. It allows monitoring the EC resources by three main 
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strategies. The first strategy is an elasticity provision which is 
responsible for forecasting the workload using both ARIMA 
and neural network. Another strategy is a dynamic replica 
placement across both cloud and edge layers. The last strategy 
is the migration of the data from the cloud to the edge once 
the edge workload decreases with consideration to data 
reliability, migration time, and cost. 

The SAS is not only related to elasticity problems but can 
also be used to manage the power and energy consumption. 
For instance, an energy-aware SAS for CC is presented in [31] 
to minimise the power and energy consumption where  
adaptation changes are implemented the in the VM level.  

D. Related work limitations 

Although, a considerable body of research has conducted 
using different SAS approaches considering either CC, EC, or 
both environments, several limitations and clear research gaps 
can be identified. These limitations are related to the hybrid 
SAS consideration, SAS design, the suitability of SAS to the 
targeted environment, and the adopted workload. In fact, these 
limitations become obvious when considering the EC 
environments.  

The literature limitations can be summarized as follows. 
Firstly, a limited research effort has been conducted using the 
hybrid SAS which represents a clear research gap, especially 
for EC environments. Another limitation is the consideration 
of the theoretical perspective when designing and 
implementing the SAS using the adaptation approaches where 
the adaptation approaches performance may vary based on 
environment, application, and workload. This means a 
thorough investigation about the adaptation approaches 
considering the EC environment, IoT applications, and 
workload is an open research problem and not been tackled 
yet. Furthermore, the use of real EC workload in the SAS 
evaluation represents a significant weakness due to the use of 
either synthetic or real cloud workload to perform the SAS 
evaluation in EC environments. Therefore, this paper aims to 
address the mentioned limitations by designing an elasticity 
SAS framework considering the suitability of the adaptation 
approach to the EC environments. Further, this design is 
driven via thorough investigations on the performance of 
proactive, reactive, and hybrid adaptation in the EC 
environment considering two applications’ scenarios (i.e., 
single and mixed) and real workload.          

III. PROPOSED SELF-ADAPTIVE SYSTEM 

This section presents the proposed elasticity SAS 
framework of the EC environments. 

A. MAPE-based Elasticity SAS Framework  

The proposed elasticity SAS framework is designed using 
a MAPE-based control loop. The use of this control loop 
allows the system to have a full and autonomic management 
of the resources over time in order to act in accordance to the 
workload variation. This means the system can 
instantiate/terminate containers as well as accept/reject 
requests in an autonomic fashion where each request 
represents an IoT task that needs to be executed by 
containerised application. Additionally, the proposed 

framework is designed to support three adaptation approaches 
which are proactive-, reactive-, and hybrid-adaptation. The 
SAS implementation details are provided in Section IV-A.  

In this section, the proposed SAS is discussed according 
to each activity in the MAPE loop, which are monitor, 
analyse, plan, and execute. The SAS is shown in Figure 1 and 
divided into regions based on MAPE activities where each 
activity is highlighted using different colour. These colours 
are red for Monitor, yellow for Analyse, green for Plan, and 
blue for Execute. Further, the main contributions of this paper 
are highlighted in grey. 

 

Figure 1.  MAPE-based elasticity SAS framework. 

1) Monitor: is responsible for collecting the data of the 
Edge Node (EN) resources and the IoT devices’ workload. 
The EN resources include the number of containers which is 
used to instantiate/terminate containers by all adaptation 
approaches. This data is stored in the Resource Utilisation 
(RU) repository. The workload history of IoT devices is 
stored in the Request Repository and utilised to forecast the 
future IoT workload. 

2) Analyse: is responsible for analysing the stored data 

by the monitor activity. It consists of two main components. 

The first component is the Context-aware Prediction 

Framework (CAPF) that represents the core of proactive 

adaptation. The CAPF is responsible for forecasting the 

future workload by utilising the workload history that is  

received from Request Repository and applying the most 

appropriate ML algorithm with consideration to the workload 

context. In this paper, this component is used as a black box 

as a full paper was published about CAPF in [13]. The second 

component is RU Analyser which is an important component 

for all adaptation approaches. In terms of proactive 

adaptation, it is responsible for analysing the run-time EN 

resources (i.e., number of idle containers) which can be used 

in the elasticity decision-making process. In case of the 

reactive adaptation, it is responsible for triggering the number 

of containers when it is below the threshold. 
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3) Plan: is responsible for making elasticity decision 

(i.e., instantiate/ terminate) where the action is taken by the 

Elasticity Decision Maker. In case of the proactive 

adaptation, this component uses both the forecasting results 

that are generated by CAPF and the RU analyser to make the 

elasticity decision. In case of the reactive adaptation, it only 

utilises the RU analyser results to make the elasticity 

decision. Lastly, in the hybrid adaptation, both CAPF and RU 

analyser are important in decision-making process. 

4) Execute: this activity is responsible for performing the 

decisions that are made by the decision-maker. It has the 

admission control which is responsible for accepting/ 

rejecting the requests based on the resources’ availability. 

B. System Model and Assumptions 

This section describes the adopted system model using the 
layered architecture. It consists of IoT-layer, edge-layer, and 
cloud-layer. The cloud layer is out of the paper’s scope.  

The IoT layer (i.e., bottom layer) consists of many IoT 
devices (e.g., smartphones) and connected to the upper layer 
(i.e., edge layer) via a 5G cellular network. The IoT devices 
send a set of requests 𝑅 = {𝑟𝑖  𝜖 𝑅 | 𝑖 = 1, 2, 3, … , 𝑁} to the 
edge layer where each IoT device demands only one 
application type and eligible for sending more than one 
request. Further, each request is associated with application 
type 𝑎𝑖 where a set of containerised applications are available 
𝐴 = {𝑎𝑥  𝜖 𝐴 | 𝑥 = 1, 2, 3, … , 6},  𝑅𝐶𝑥 , 𝑇𝐿𝑥 , and 𝑈𝑃𝑥  where 
these notations are defined in Table I. The specification of 
these requirements is made with respect to the implementation 
environment which will be discussed in Section IV-C.  

On the other hand, the edge layer consists of a set of ENs, 

𝐸𝑁 = {𝑒𝑛𝑗  𝜖 𝐸𝑁 | 𝑗 = 1, … ,4} that are located in one cluster 

(i.e., a group of ENs) and connected to a centralised 
orchestrator that is the brain of the edge layer and hosts the 
proposed elasticity SAS framework. Further, we assume that 
the 𝐸𝑁𝑠 are homogenous virtualised environment that hosts 
containerised applications 𝐴 in a bare-metal manner. Further, 
each 𝑒𝑛𝑗  is associated with the following capabilities: 𝐶𝑃𝑈𝑗 

and 𝑃𝑆𝑗 , which are defined in Table I.  

In case of a request 𝑟𝑖 is accepted, the request maps to a 
container instance based on the application type 𝑎𝑖. Once the 
request is processed, the results are sent back to the IoT device 
associated with the 𝐷𝑊𝑖  that is defined in Table I. 

TABLE I.  NOTATIONS 

Symbol Definition 

𝐸𝑁 A set of edge nodes at the edge layer, where 𝑒𝑛𝑗   𝐸𝑁 

𝐶𝑃𝑈𝑗 # of CPU cores for each 𝑒𝑛𝑗  

𝑃𝑆𝑗 Processing speed of 𝑒𝑛𝑗  

𝐴 A set of applications requested by IoT, where 𝑎𝑖  𝐴 

𝑅 A set of requests generated by IoT, where 𝑟𝑖  𝑅 

𝑅𝐶𝑖,𝑥 Required CPU of  𝑟𝑖 

𝑇𝐿𝑖,𝑥 Task length of  𝑟𝑖 

𝑈𝑃𝑖,𝑥 Uploading data size of  𝑟𝑖 

𝐷𝑊𝑖,𝑥 Downloading data size of  𝑟𝑖 

𝑦 # of containers that needs to be instantiated/terminated 

C. Proposed Algorithms 

There are four algorithms that are developed to support the 
proposed framework. These algorithms are explained next. 

1)  Reactive algorithm (see Figure 2): it is a threshold-
based algorithm that is responsible for reactively triggering 
the number of utilised containers and make instantiation 
decision. This algorithm is used in both reactive adaptation 
and hybrid adaptation. Once a request is accepted (line 1), it 
checks the number of stand-by (i.e., up and ready) containers. 
If the number of stand-by containers is below the threshold, 
it makes an instantiation decision (line 2 and 3). 
 

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥   

and Minimum # of containers𝐶𝑜𝑛𝑡𝑀𝑖𝑛  

Output: Elasticity decision (instantiate) by 𝑦 

0: Begin 

1: For after each accepted request of 𝑎𝑖 do 

2:       If (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥  < 𝐶𝑜𝑛𝑡𝑀𝑖𝑛) 

3:              Instantiate by 𝑦 from 𝑎𝑥       

4:        End if               

5: End for 

6: End 

Figure 2.  Reactive algorithm (Algorithm 1). 

Input: Predicted value 𝑃, # of stand-by containers for each 

App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥, maximum number of allowed containers 

𝐶𝑜𝑛𝑡𝑀𝑎𝑥, and # of App. 𝐴𝑙𝑒𝑛 . 
Output: Elasticity decision (instantiate/ terminate) by 𝑦  

0: Begin 

1: For each time interval do 

2:        Compute 𝑃𝑎𝑥 ⌈
𝑃

𝐴𝑙𝑒𝑛
⌉  

3:        If (𝑃𝑎𝑥 > 𝐶𝑜𝑛𝑡𝑀𝑎𝑥) 

4:                Set 𝑃𝑎𝑥 𝐶𝑜𝑛𝑡𝑀𝑎𝑥 

5:        End if 

6:        For each application 𝑎𝑖 do 

7:                If (𝑃𝑎𝑥 == 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖 ) 

8:                        No decision 

9:                Else if (𝑃𝑎𝑥 < 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖 ) 

10:                      Terminate by 𝑦   (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥 − 𝑃𝑎𝑥) 

11:              Else  

12:                      Instantiate by 𝑦  (𝑃𝑎𝑥 − 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥) 

13:              End if 

14:       End for 

15:End for 

16:End 

Figure 3.  Proactive algorithm (Algorithm 2). 

2) Proactive algorithm (see Figure 3): it is responsible 
for instantiating and terminating containers proactively using 
the CAPF outputs and the number of stand-by containers. 
First, for each time interval, it computes the predicted value 
for each application type (line 2). Then, it compares this value 
for each application type with the maximum number of 
allowed containers in the edge  (line 3). If the predicted value 
is greater than the maximum number of containers, it 
considers the maximum (line 4). Then, for each application, 
it calculates the required number of containers by comparing 
the stand-by containers with the predicted value (line 6- 13). 
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Based on this calculation the decision is made either no 
decision, instantiate, and terminate.  

3) Hybrid algorithm (see Figure 4): it brings both 
proactive and reactive algorithms together in the same SAS. 
The proactive algorithm runs at equal time intervals whereas 
the reactive is continuously running. 

4) Admission control algorithm (see Figure 5): it is 
responsible for accepting/rejecting the requests based on the 
container’s availability. Once a request is received, it checks 
if there is any stand-by container (line 2-6). If there is a stand-
by container from the same application category, the request 
will be accepted and executed on the targeted containerised 
application. Otherwise, the request will be rejected.  
 

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑥   

and Minimum # of containers𝐶𝑜𝑛𝑡𝑀𝑖𝑛 , predicted value 𝑃, 

maximum number of allowed containers 𝐶𝑜𝑛𝑡𝑀𝑎𝑥, and # of 

App. 𝐴𝑙𝑒𝑛 

Output: Elasticity decision (instantiate/ terminate) by 𝑦 

0: Begin 

1: While true do 

2:        For each time interval do 

3:                Call proactive algorithm  

4:        End for               

5:        Call reactive algorithm  

6: End while  

7: End 

Figure 4.  Hybrid algorithm (Algorithm 3). 

Input: # of stand-by containers for each App. 𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖  and the 

App. type of received request 𝑟𝑖,𝑥. 

Output: Accept or reject decision  

0: Begin 

1: While true do 

2:        If (𝐶𝑜𝑛𝑡𝑆𝐵
𝑎𝑖  > 0) 

3:                Accept 𝑟𝑖,𝑥 

4:        Else 

5:                Reject 𝑟𝑖,𝑥 

6:        End if 

7: End while 

8: End 

Figure 5.  Admission control algorithm (Algorithm 4). 

D. Applications Profiling 

This section describes the selection of the adopted 
applications. In fact, selecting the application is a critical 
decision that must be taken carefully as it plays a major role 
in any resource management research. Therefore, we select a 
set of applications that are different in terms of latency 
requirements where the EC paradigm is mainly emerged to 
support latency-sensitive applications and the resource 
requirements where the EC has limited resources by nature. 
In other words, both latency- and resource-requirement are 
important concepts for EC environments as it emerges to 
support latency-sensitive applications as well as often has 
limited resources which represents a bottleneck for IoT 
applications. For these reasons, we classify the applications 
into latency-sensitive, medium-latency, and latency-tolerant 

applications. Similarly, the application requirements are 
classified into high, medium, and low requirements. Thus, the 
requirements are specified using ranges as these requirements 
do not exist in the literature with consideration to the 
implementation environment. For example, the required 
number of CPU cores ranges between 1-4 cores. Similarly, the 
required processing speed and servers’ utilisation ranges 
between 500-2000 MIPS and 5%-20%, respectively. In case 
of the uploading and downloading data size, the assumptions 
are made according to the scenarios below as limited 
information is available in the literature. In short, we select 6 
different applications, two applications from each category. 
This variety of both applications and their requirements is 
critical as it shows the effectiveness of the proposed 
framework and represents a realistic scenario. The main 
configuration parameters of adopted applications are shown in 
Table II. They are set to be as realistic as possible based on 
the real scenarios below:  

TABLE II.  APPLICATIONS CONFIGURATIONS 

App. 
CPU 

cores 

Avg. 
processing 

speed (MIPS) 

Server’s 

utilisation (%) 

Avg. upload 

size 

Avg. 
download 

size (KB) 

FR 4 2000 20 450 MB 5  

ETM 4 2000 20 200 MB 5  

AR 2 1000 10 1 MB 50  

HM 2 1000 10 200 KB 5  

IHM 1 500 5 200 KB 20  

IP 1 500 5 4 KB 4  

1) Face Recognition (FR): Public safety domain includes 

a wide range of applications, such as FR and Cars’ plates 

identification [32][33][34]. This kind of applications is 

important as it helps the authority to track people, find a 

missing person, and track cars. It can be implemented by 

consuming video surveillance resources. In the context of this 

paper, we assume that FR application is used to find or track 

a person in any incident, thus, it is considered as a latency-

sensitive application in the sense that the video frames need 

to be analysed quickly. Further, due to the type of data (video 

frames), the FR is categorised as a data-intensive and 

computational-intensive application [32][35][36]. 

2) Emergency Traffic Management (ETM): Nowadays, 

traffic flow management systems are important applications 

that help improving traffic efficiency, reduce accidents, 

support emergency services, and manage traffic jams [37]. In 

this paper, ETM application focuses on supporting 

emergency services where the application can be requested 

by emergency services (e.g., ambulance and fire trucks) to 

perform better traffic management. The ETM can be 

classified as a latency-sensitive application as it is related to 

emergency cases. It is also considered data-intensive and 

computational-intensive in some use cases [38]. However, in 

our scenario, we assume that the data size is medium as it 

may require gathering data from different sources (e.g., 

infrastructure, vehicles, and pedestrians). At the same time, 

ETM is computational-intensive. Based on this scenario, the 

application configuration is set as shown in Table II.  
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3) Augmented Reality (AR): AR is a well-known 

application that can be used in many domains, such as 

healthcare, agriculture, and tourism [40][41][42][43]. For the 

purpose of this research, we assume that it is used to guide 

the people during their mobility in a city by displaying  

contextual information about the objects/ directions by 

analysing the captured figures (i.e., frames). We also assume 

that it requires medium latency as it is not an urgent 

application when compared to TFM and FR. It also requires 

a medium-requirments of resources.  

4) Health Monitoring (HM): It is a common application 

that benefits from EC. In general, it is classified as data- 

sensitive and latency-sensitive application [41][44][45][46]. 

However, we assume that the real-time and emergency data 

analysis is performed locally on the patients’ smartphones or 

wearable devices whereas the edge layer is utilised to perform 

a future health prediction in a form of requests. Then, the 

alarm will be sent to the hospital in case of any incident is 

predicted. This assumption makes this application requires 

medium latency and resources.    

5) Industrial Health Monitoring (IHM): IHM application 

covers a wide number of scenarios. In this research, we 

adopted the same scenario that is presented in [3], where the 

data is collected and sent to the edge for analysis and 

visualisation. In other words, the application is used to 

monitor the workers’ health and environment. Further, IHM 

is latency-tolerant and low-requirements application.  

6) Intelligent Parking (IP): IP is a smart city application 

which is used to search for parking slots [37]. It is assumed 

that the driver submitted a search request to the edge layer 

which is responsible for retrieving the relevant data about 

parking slots and suggestions to the user as a list of nearest 

parking spaces. Based on this scenario, IP is considered as a 

latency-tolerant and low-requirements application.    

IV. EXPERIMENTAL DESIGN 

This section presents the experimental design, which 
includes implementation scenarios, dataset, workload, 
evaluation metrics, and hypothesis.  

A. Implementation Scenarios 

The proposed elasticity SAS is implemented considering 
the proactive, reactive, and hybrid adaptation, separately. For 
instance, in the implementation of proactive adaptation, the 
reactive adaptation components are deactivated.  

To evaluate the effectiveness of these approaches two 
application-based scenarios are considered as summarised in 
Table III. The experiments are conducted considering 1) 
mixed applications, 2) single application. Further, in each 
scenario, the adaptation approaches are evaluated using three 
real workloads which will be discussed in the next section. In 
the single application scenario, the adaptation approaches are 
evaluated considering one application in each experiment. 
This means each adaptation approach is evaluated using FR 
application as a heavy load, AR application as a medium load, 

and IHM application as a low load. The consideration of these 
scenarios is important to design the most suitable SAS for EC 
environment considering the adaptation approaches, 
workload, and applications.   

TABLE III.  IMPLEMENTATION SCENARIOS 

Scenarios 
Adaptation 

approaches 

Considered 

applications 

1: Mixed applications 

Proactive All 

Reactive All 

Hybrid All 

2: Single 

application 

A 

Proactive FR 

Reactive FR 

Hybrid FR 

B 

Proactive AR 

Reactive AR 

Hybrid AR 

C 

Proactive IHM 

Reactive IHM 

Hybrid IHM 

B. Workload  

This paper adopts the Shanghai Telecom dataset [46] 
which is ideal for the consideration of IoT workload as 
previously used by [48][49][50][51]. It provides six months of 
mobile phones records accessing the Internet and connecting 
to base stations that are distributed over Shanghai city.  

The same workload pattern will be used as in our previous 
work [13]. In [13], the workload is divided into three patterns, 
which are decreasing, increasing, and fluctuating. Each 
pattern consists of a set of hours as each pattern represents a 
part of the day (i.e., late night and early morning as a 
decreasing pattern, morning as an increasing pattern, and 
afternoon to evening as a fluctuating pattern). Further, one 
hour from each pattern is selected (2nd hour from decreasing, 
12th hour from increasing, and 14th hour from fluctuating) to 
be used in training/ testing the proposed forecasting models.   

 

 

Figure 6.  Workload patterns. 

The testing part is used to evaluate the proposed SAS. It 
represents the last 12 minutes from each pattern named as 
decreasing, increasing, and fluctuating workload, which will 
be fed to the simulation environment. The workload is shown 
in Figure 6 over time interval. The use of 12 minutes is 
considered long enough to evaluate the SAS including the 
adaptation approaches and algorithms. Note that the workload 
in Figure 6 does not show the overall pattern (i.e., decreasing, 
increasing, or fluctuating) as it is a snip from the dataset by 
zooming in towards the adopted time frame by this paper. The 
patterns are named according to the previous work [13] to 
ensure consistency. 
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C. Simulation Setup   

The proposed elasticity SAS framework is implemented 
using the EdgeCloudSim simulator [51], which is built upon 
the CloudSim simulator. It allows simulating the EC 
environment with consideration to the IoT-, edge-, and cloud-
layers. It also can simulate different scenarios with/without 
cloud consideration and edge orchestrator. In this paper, two 
layers only are considered, the IoT- and edge-layers (the cloud 
layer out of our scope). The simulation duration is 14 minutes; 
the 1st minute is considered as a warm-up period and the last 
minute is waiting time to allow all tasks to be completed. The 
12 minutes in-between is the real workload that is fed to the 
simulator. Further, six applications are considered with 
different requirements to evaluate the proposed SAS. Also, 
considering four ENs is deemed sufficient to allow 
performing the evaluation process. In terms of the number of 
IoT devices and requests, these values are specified for each 
workload pattern according to the number of devices and 
requests in the dataset. The most important simulation 
parameters are shown in Table IV.     

TABLE IV.  SIMULATION CONFIGURATION 

Parameter Value 

Simulation time (min.) 14 

Warm-up period (min.) 1 

# of iterations  5 

IoT Applications (mixed/ Single) (6/1) 

# of IoT devices (decreasing/ increasing/ fluctuating)  (108/277/271) 

# of IoT requests (decreasing/ increasing/ fluctuating)  (115/331/334) 

# of edge nodes 4 

# of cores/edge node 4 

Processing speed/edge node (MIPS) 2000 

Resource check interval (sec.) 15 

D. Evaluation Metrics   

Two evaluation metrics are used. They are the acceptance 
rate and servers’ utilisation. The acceptance rate evaluates the 
effectiveness of each adaptation approach when dealing with 
dynamic workload. On the other hand, the servers’ utilisation 
refers to the CPU utilisation over the time intervals.  

E. Hypothesis 

Two hypotheses are considered to evaluate the 
effectiveness of adaptation approaches in the proposed 
elasticity SAS framework:  

Hypothesis 1: The use of the hybrid adaptation in an 
elasticity framework will provide the highest acceptance rate 
as compared to both proactive and reactive adaptations. 

Hypothesis 2: The proactive adaptation will perform 
better than the reactive adaptation due to the prediction 
ability that helps acting prior (i.e., in advance) events happen. 

V. PERFORMANCE EVALUATION 

This section evaluates and discusses the results as well as 
highlights the main findings.     

A. Adaptation Approaches Evaluation  

The adaptation approaches are compared with respect to 
the stated scenarios in Section IV-A.  

Scenario 1- mixed applications: it evaluates the adaptation 
approaches using all applications over decreasing, increasing, 
and fluctuating patterns.  

Scenario 2- single application: it evaluates the adaptation 
approaches with respect to the application category (i.e., 
heavy-, medium-, and low-load).   

1) Scenario 1 (All Apps.): the hybrid adaptation provides 

the highest acceptance rate overall pattern when compared to 

other adaptation approaches as shown in Figure 7.a. It 

performs about 10% higher than reactive adaptation for the 

increasing pattern and 7% for fluctuating pattern. It also 

performs about 20%, 14%, and 12% higher than proactive 

adaptation in decreasing, increasing, and fluctuating patterns, 

respectively. The hybrid adaptation superiority is due to its 

ability to trigger unpredicted requests thanks to the reactive 

adaptation side. The high acceptance rate leads to efficient 

utilisation of the ENs, see Figure 7.b, which shows the 

servers’ utilisations over time for the hybrid adaptation as it 

has the highest acceptance rate and utilisation. 
 

 
(a) 

 

 
(b) 

Figure 7.  Scenario 1. 

2) Scenario 2.A (FR): in this scenario, the hybrid 

adaptation also outperforms both proactive and reactive 

adaptation overall patterns as shown in Figure 8.a thanks to 

the consideration of both proactive and reactive adaptations 

where the reactive adaptation side can deal with unpredicted 

events. However, the proactive adaptation outperforms the 

reactive adaptation overall patterns. This due to the use of 

single application scenario. This means that all the submitted 

requests will be from the same type of application whereas in 

scenario 1 the predicted value will be divided over the 
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number of considered applications assuming that all these 

applications come on the same probability. In terms of 

servers’ utilisation, the FR application is considered as a 

heavy-load application. This means a higher workload is 

expected as compared to Scenario 1 which considers all 

applications. Figure 8.b shows the servers’ utilisation over 

thensimulation time for the hybrid adpatation which can 

reach about 15% in this scenario as a heavy-load application 

is considered. 
 

 
(a) 

 

 
(b) 

Figure 8.  Scenario 2A. 

3) Scenario 2.B (AR): in this scenario, the results are 

similar to Scenario 2.A where the hybrid adaptation 

outperforms all the adaptation approaches over different 

patterns as shown in Figure 9. The proactive adaptation also 

outperforms the reactive adaptation. The main difference is 

the average server utilisation which is lower than the avergae 

servers utilisation in the FR scenario where the AR 

application is considered as medium-load. 

4) Scenario 2.C (IHM): the acceptance rate of this 

scenario is similar to Scenario 2.B which is not presented due 

to space limitation. In terms of the servers’ utilisation, it is 

the lowest as compared to all previous experiments in the 

sense that it considers applications with low-load.  

B. Hypothesis Evaluation  

This section tests the hypotheses based on the considered 
scenarios.  

1) Hypothesis 1: The use of the hybrid adaptation in an 

elasticity framework will provide the highest acceptance rate 

as compared to both proactive and reactive adaptations. This 

holds true in all scenarios. The hybrid adaptation shows a 

great performance as compared to both proactive- and 

reactive-adaptation. This is due to the consideration of the 

proactive adaptation to prepare the containers prior receiving 

the requests as well as the use of threshold-based in the 

reactive adaptation to maintain the number of stand-by 

containers.   

2) Hypothesis 2: The proactive adaptation will perform 

better than reactive adaptation due to prediction ability that 

helps acting prior (i.e., in advance) events happen. This 

hypothesis is disproved for the mixed scenario (i.e., Scenario 

1), while correct for the single scenarios (i.e., Scenarios 2A, 

2B, and 2C). In terms of the mixed scenario, the predicted 

workload by the CAPF is divided by the number of 

applications and assuming that all applications have the same 

arrival probability. This means the CAPF predicts the overall 

workload without any consideration to the applications’ 

arrival probability. This assumption is made as there is no 

previous information available in the real dataset about the 

type of applications that will be requested. In contrast, the 

proactive adaption outperforms the reactive in single 

scenarios as the predicted workload will be utilised by the 

same application.    
 

 

Figure 9.  Scenario 2B. 

C. Findings and Recommendations  

The main findings of this paper can be summarised as 
follows with some recommendations: 

1) Although the hybrid adaptation is complex and 

requires bringing both proactive and reactive adaptation 

together in a consistent manner, it provides the best 

performance over different scenarios and workload patterns 

and has the ability to adapt in a highly fluctuating 

environment. According to this finding, the hybrid SAS is 

recommended to be used in highly fluctuating environments, 

such as EC, as it provides a full monitoring loop with the 

ability to deal with unpredicted events. In other words, using 

either proactive or reactive adaptation approaches in a highly 

fluctuating environment may lead to low performance as 

there is a need to anticipate the future behaviour as well as 

using reactive adaptation for backup. The use of hybrid 

adaptation is also important even when the prediction models 

show great accuracy. 
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2) The hybrid adaptation efficiently utilises the EC 

resources as it is able to accept more requests and contributes 

to avoid over/under-prevision cases thanks to the use of the 

reactive adaptation as a back-up for the proactive adaptation 

to deal with the unpredicted workload. Its efficiency can be 

seen clearly in Scenario 1 when there is no previous 

knowledge about the request types. Thus, the hybrid 

adaptation is recommended in EC environments as these have 

limited resources by nature.  

3) The available information about submitted requests to 

the edge layer plays an important role in designing the 

elasticity SAS framework. In fact, the proactive adaptation is 

preferable as compared to the reactive adaptation as it acts 

prior the event occurrence and prepares the resources in 

advance. However, in case limited information about the 

predicted events is available, this may lead to low 

performance as compared to the reactive adaptation as well 

as unpredicted results. This can be seen in scenario 1 when 

using mixed applications where the predicted value 

represents the overall workload without the consideration of 

the arrival probability for each application type. 

4) It is important to evaluate the performance of the 

adaptation approaches in the implementation domain as their 

performance may vary according to the scenario and 

workload. 

VI. CONCLUSION AND FUTURE WORK 

This paper has presented and evaluated an elasticity SAS 
which is supported by proactive, reactive, hybrid, and 
admission control approaches as well as various application 
scenarios. The experiment results show that the most 
appropriate adaptation approach in an EC environment is the 
hybrid where its performance is at least 10% better than other 
approaches. The results also reveal that the performance of the 
adaptation approaches is domain, application, and scenario 
dependent.   

As future work, the proposed SAS will be evaluated using 
different workloads aiming to stress the SAS with higher 
request rates. In fact, the use of higher request rate to evaluate 
the proposed framework is important as some experiments 
show small servers utilization. Additionally, both the 
scalability and QoS will be considered with the aim to 
maximise the number of running applications with adequate 
QoS. Moreover, a policy management will be investigated to 
identify the trade-off between the service acceptance 
maximisation from the perspective of the service provider and 
the QoS from the consumer, respectively.     
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