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Abstract—The Unmanned Autonomous Systems (UAS) are an-

ticipated to have a permanent role in offshore operations, enhanc-

ing personnel, environmental, and asset safety. These systems can

alert onshore operators of hazardous occurrences in the environ-

ment, in the form of anomalies in data, during real-time inspec-

tions, enabling early prevention of hazardous events. Time series

data, collected by sensors that detect environmental phenomena,

enables the observation of anomalous data as dynamic instances

of the dataset. Recent research characterizes anomalies in terms of

their patterns of occurrence in data. However, there is insufficient

research on anomalous temporal change patterns. In this paper,

we examine anomalies in relation to one another and propose

a conceptual categorization system for anomalies based on their

temporal changes. We demonstrate the categorization through a

case study of potentially hazardous occurrences observed by UAS

during underwater pipeline inspection.Analyzing anomalies based

on their behavior can provide further information about current

environmental changes and enable the early discovery of unwanted

events, simultaneouslyminimizing false alarms that overwhelm the

systems with low-significance information in real-time.

Keywords—anomalies, anomalous change detection, anomaly

detection, time-series analysis, autonomous systems

I. INTRODUCTION

Sensors integrated into Unmanned Autonomous Systems

(UAS), such as underwater autonomous vehicles, are reshaping

our perception of the world by detecting environmental phe-

nomena and responding to them through inputs such as graphics,

motion, pressure, and heat. Underwater UAS, particularly in the

offshore industry, are intended to replace operators in remote

and potentially dangerous locations by residing on the seabed,

collecting the data, and continuously monitoring and inspect-

ing assets and the environment. In crucial situations, real-time

data collection and analysis of the environment or assets can

provide critical information, signaling us of potentially harmful

deviations within the data, known as anomalies. Failure to

capture anomalies effectively can have a devastating effect on

the environment and result in severe financial loss.

Despite their ample presence in research and industry,

anomaly detection methods have not yet matured as they are

frequently too specialized or complex to evaluate [1]. Detecting

anomalies, particularly for time-series data, is a challenging task

that needs real-time processing while learning from analyzed

data and making predictions [2]. Most anomaly detection meth-

ods are based on statistical samples of some data regions col-

lected over time [3]. When the input data for these data regions

changes, it becomes challenging to select the most appropri-

ate strategy for detecting anomalies [3]. More compellingly,

it becomes challenging to detect anomalies and capture their

changing nature in real-time. The anomalous change detection

method searches for unusual discrepancies between measure-

ments taken at the same site at various periods [4]. These

discrepancies may be due to harmless changes in atmosphere

or sensor equipment. However, they may also be pervasive and

potentially indicative of something hazardous evolving at the

monitored site, i.e., a deteriorating material of a pipeline surface

at the offshore oil and gas platform. Unfortunately, anomaly

detection methods can have two significant drawbacks: they

can ignore anomalies for the sake of efficiency as tolerable

collateral damage [5], or they can overload the system with

low-significance data, referred to as false alarms or noise [6].

The ideal outcome of anomaly detection is to alert operators

of anomalous occurrences as soon as they are detected while

minimizing false alarms [2].

Historically, anomalies have been defined primarily by their

pattern of occurrence in data. However, there is insufficient

investigation and categorization of anomalies based on how

they relate to one another, particularly by the patterns of their

temporal change. The time-series data enables the collection and

observation of anomalies as dynamic instances of data that alter,

evolve, disappear, and reappear. Therefore, this paper’s contri-

butions is a conceptual categorization of anomalies according

to patterns of their temporal change, through an overview of the

identification of anomalies during time-series change detection.

Analyzing anomalies based on their behavior can provide more

information about current environmental changes and allow for

the early detection of anomalous, potentially hazardous occur-

rences in real-time. Consequentially, analyzing anomalies by

their behavior can assist in minimizing false alarms by allowing

for the more certain elimination of noisy data.

This paper is structured as follows: Section II discusses

related work exploring anomalies’ characteristics and

categorization, anomalous change detection methods, and

real-time anomaly detection. In Section III, we describe the

proposed anomaly categorization according to their temporal

changes. Section IV summarizes the findings and concludes

the paper. Finally, Section V discusses future research.
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II. RELATED WORK

A. Anomaly Characteristics and Categorization

Anomalies are instances in a dataset that are unusual in

some way and deviate from the dataset’s overall or predicted

trend [7]. There have been numerous attempts in the literature

to categorize anomalies based on their presence in data, the

data structures in which they arise, or even application-specific

high-level categorization.

1) Anomalies by Data Structure: In a recent review on

the nature and categories of anomalies, Foorthius [1] presents

an overview of anomaly categories from a data-centric

perspective. Because most datasets follow a well-defined,

organized format, the author [1] describes the anomalies by

examining the data structures that include them: cross-sectional,

time-series, time-oriented, sequence, graph, tree, spatial, and

spatio-temporal data structures. The author [1] then divides

anomalies into univariate, multivariate, and multivariate

aggregate anomalies, each of which includes numerical, class,

or categorical anomalies and mixed data anomalies.

2) Anomalies by Occurrence in Data: While categorizing

anomalies according to the data structure in which they occur

simplifies their detection, the literature most often refers to a

more general approach to anomaly categorization [8]:

• Global anomaly - one or more independent data points that

deviate from the rest of the data. Global anomalies are

alternatively referred to as point, and content anomalies [9]

[10].

• Collective anomalies - a group of data points that differ

from the rest of the data. When observed individually,

these points often do not constitute an anomaly. Collective

anomalies are alternatively referred to as group or aggre-

gate anomalies.

• Contextual anomalies - anomalies that deviate when an

intentionally chosen context is considered, i.e., weather,

season, or location. Contextual anomalies are alternatively

referred to as conditional anomalies [11].

3) Anomalies by Data Source: According to Erhan et al.,

[12], sensor systems have become the primary source of data.

Therefore, the authors [12] categorize anomalies according to

their origins and potential causes (see Table I). Sensor data

frequently deviate from predicted behavior. The authors [12]

underline the importance of evaluating the performance of

anomaly detection systems using physical world data, as op-

posed to virtual testing with simulators. Since anomalies occur

suddenly and are frequently unusual in physical world data,

artificially manufacturing them through simulations or data ex-

trapolation can be challenging.

TABLE I
ANOMALY CATEGORIZATION BY ORIGIN, ADAPTED FROM ERHAN ET AL. [12]

Anomaly origin Potential cause

Environment Unusual events, disasters, weather changes,
new objects or compounds

System Hardware limitations, system malfunctions

Communication Network loss or delay

Attacks Malevolent attacks on the physical components,
malevolent interference or attack in network

Spike Short peak in measured values,
distinct deviation from common measurements

Noise Increase in the variance in successive data samples

Constant A constant neutral value reported by sensor

Drift Off-set in the measurements

4) Application-Defined and Specific Anomaly Types:

Ragozin et al. [13] approached forecasting complex time-series

within an automated industrial system by basing anomalies

on their distinct dynamic characteristics to increase the ef-

ficiency of information security management within the ob-

served system. The authors [13] developed a method based on

structural analysis of multi-component time series and digital

signal processing technology for decomposing complex multi-

component time series into several essential components for fur-

ther real-time monitoring of the industrial information system

and detecting any component-specific behavior anomaly event

or proximity to such event.

Lutz et al. [14] analyzed operational safety-critical anoma-

lies. The authors [14] argue that despite the widely-established

benefits of anomaly analysis for operational software, research

on anomaly analysis for safety-critical systems has been sparse.

Patterns of software anomaly data for operational, safety-critical

systems, in particular, are poorly known [14]. The authors [14]

describe the findings of two hundred abnormalities on seven

spacecraft systems using classification methods. The results of

their study demonstrated various classification patterns, includ-

ing the causal significance of data access and delivery issues,

hardware degradation, and unusual incidents. Anomalies fre-

quently revealed hidden software needs critical for the system’s

robust, accurate operation [14].

B. Anomalous Change Detection

In a recent review of change detection, Liu et al. [15] clas-

sify change detection methods based on their application pur-

pose, data availability, and automation degree. The authors [15]

describe anomalous change detection, and time-series change

detection as application-specific methods most frequently used

in image analysis. By suppressing background and emphasiz-

ing alterations, anomalous change detection finds anomalous

changes between images. Anomalous change detection is typ-

ically focused on detecting minor changes caused by the inser-

tion, deletion, or movement of produced small items and on

small stationary objects that exhibit spectrum shifts between

images, as with camouflage concealment and deception [15].

The authors [15] argue that the critical point is to examine the

image statistics, increase the likelihood of detecting changes
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Fig. 1. (a,b) Predictable change in image contrast and brightnes; (c,d) Interesting
change with (artificially) added vehicle, adapted from [4]

induced by human activity, and suppress background in image

scene sequences.

Theiler et al. [4] employed anomaly detection to identify

uncommon changes in images of the same scene captured at

various periods and often under varying viewing conditions (see

Figure 1). The detection of anomalous changes in imaging is

of broad general interest and is particularly useful in remote

sensing [4]. The authors [4] emphasize that anomalous change

is distinct from and more unusual than changes across an entire

scene. The authors [4] propose a framework based on a non-

flat background distribution stated in terms of data distribution,

with anomaly detection treated as a classification problem.

The proposed framework identifies anomalous changes cap-

turing meaningful differences between images while avoiding

predictable noisy information caused by the camera’s focus,

contrast, or brightness.

C. Time-Series Anomaly Detection

Although many organizations collect time-series data, Fer-

emans et al. [16] contend that automatically analyzing them

and extracting valuable knowledge, such as a comprehensible

model that flags critical anomalies, remains a complex problem,

despite decades of effort. After examining various benchmark

datasets for time series anomaly detection, the authors [16]

discovered that these datasets frequently contain univariate time

series with local or global extrema or point anomalies. By

contrast, their research concentrated on collective and contex-

tual anomalies, requiring data analysis from multiple sources

to detect anomalies successfully. As a result, the authors [16]

proposed a method for detecting anomalies in mixed-type time

series. The method uses frequent pattern mining methods to cre-

ate an embedding of mixed-type time series to train a prevalent

anomaly detection method, isolation forest. Assuming that the

anomalies are infrequent in the data, the isolation forest isolates

them by continually splitting the data with low computational

costs [17]. Experiments on multiple real-world univariate and

multivariate time series and a synthetic mixed-type time series

demonstrate that the proposed method outperforms established

anomaly detection methods such as MatrixProfile, Pav, Mifpod,

and Fpof [16].

Hannon et al. [18] used anomaly detection on streaming data

to explain a power-grid system’s real-time behavior and provide

insight to system operators. The authors examined a real-time

anomaly detection followed by a data-driven framework based

on the statistical machine learning methods (decision trees and

k-nearest neighbors) to enable the remote analysis of individual

grid components for monitoring, detecting, and classifying

anomalies that generate warnings of possible shortcomings

in the system. They [18] concluded that classification of

identified anomalies using well-defined probabilistic scores

and classification of detected anomalies using interpretable

decision trees demonstrates a high level of accuracy, as a result

enabling operators to take corrective action to avert cascading

blackouts and prevent system failures.

Previous research has established a variety of applications for

anomaly detection and a need for a more profound comprehen-

sion of anomalies. In a discussion paperAnomalousness: How to

measure what you can’t define, Theiler [19] describes anomaly

detection as target detection with unknown targets and with the

objective to differentiate anomalies (unknown targets with stub-

bornly undefined attributes) from a background that is generally

too cluttered to support an explicit model. Despite the chal-

lenges in defining and categorizing anomalies, the outcomes

and discussions of previous studies demonstrate a promising

direction in application-specific and dynamic-oriented anomaly

categorization.

III. CATEGORIZATION OF ANOMALIES BASED ON THEIR

TEMPORAL CHANGES

After decades of research on anomaly detection, selecting

anomalies to investigate and those to disregard as noise contin-

ues to be a complex problem, particularly with the pressure of a

growing need for autonomous systems. Given the poor camera

vision and ambiguous sensor inputs in the subsea environment

[20], it is only natural to assume that strange phenomena,

such as biological growth or misplaced objects, are frequently

misinterpreted. This misinterpretation can further result in the

misallocation of resources or the omission of signs indicating

a more hazardous occurrence. Using inspiration from prior re-

search on grouping time-series data [21] and integrating time-

series and event logs into itemsets [16], we open opportunities

to investigate prospects for isolating and analyzing changes

in anomalies based on their geospatial context. By combining

insights from time-series change detection on dynamic data

points [21]–[23] with application-specific anomalies [14] [24],

we observe that anomalies can display behavioral patterns such

as frequent or reoccurring, disappearing and reappearing, and

expanding.

a) Frequent or Recurring Anomalies: Feremans et al.

[16] discuss frequent patterns in data, assuming that because
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Fig. 2. (a) Visual inspection of underwater pipeline, images taken by au-
tonomous underwater vehicle, adapted from [20]; (b) 3D scan over the under-
water pipeline, adapted from [20]

anomalous activity infrequently occurs in time series, the fre-

quent patterns represent frequently seen normal behavior. The

main advantage of frequent pattern extraction is that the ex-

tracted patterns are easily interpretable and aid classifiers and

anomaly detection methods in differentiating between normal

and anomalous behavior in data. However, it might quickly

become problematic if an anomalous event occurs repeatedly or

in patterns.Anomalies that reoccur in patterns, hence generating

a recurrent pattern in obtained data, present a concern because

they can be difficult to spot or even mistaken as part of the

normal dataset. Normal data can mask these anomalies, mak-

ing it particularly difficult to detect when using unsupervised

methods.

A practical example, seen on Figure 2, is the pipeline

with unclear surface material, provided by images collected

during a visual inspection of sea bottom infrastructure by an

autonomous underwater vehicle. Visually inspecting structures

can detect various phenomena, from object detection to material

degradation such as corrosion monitoring [25]. However, a

less intrusive process, such as biological growth, happens

frequently and can readily obscure a more intrusive process,

corrosion. Although additional measurements like ultrasonic

testing and electromagnetic mapping are used to identify

additional information about the corrosion process, the pace

of corrosion (spread over time), the exact location, and even

plausible causes [25], relying on unsupervised visual inspection

of anomalies may not be sufficient.

b) Disappearing and Reappearing Anomalies: Although

disappearing anomalies are not usually mentioned in indus-

trial anomaly detection applications, they are a fairly common

topic in stock market anomaly detection. During the analysis of

the dynamic persistence of anomalies, Marquering et al. [26]

highlighted the occurrences of disappearing and reappearing

anomalies. Since most seasonal or predictable anomalies are

well-known, they should not persist [26]. However, the authors

[26] question the persistence of such anomalies as a source of

contention. They highlight essential questions on disappearing

and reappearing anomalies in data: Are there still anomalies in

recent data? Are they just existent during specific periods, or

did they completely vanish? What is the immediate cause of the

endurance of the anomaly? The occurrence of disappearing and

reappearing anomalies may be of interest in time-series change

detection for various applications.

During a real-time inspection of an underwater pipeline,

as depicted in Figure 3, recordings of fading unusual events

may represent a low-importance environmental phenomenon

that does not require comprehensive inspection, thus saving

additional resource allocation. However, the persistence of

such occurrences may represent something of more profound

research interest [26].

c) ExpandingAnomalies: As the environment evolves and

changes over time, assuming that anomalous occurrences will

exhibit similar changes is natural. Despite anomalies’ dynamic

and evolving nature being frequently discussed in sensor net-

works, it is not often discussed in other applications. What

appears to be an innocuous anomaly may grow to affect various

regions of the inspected structure. The purpose is to identify the

onset of the anomaly as fast as feasible while maintaining a low

false alarm rate [23]. This detection problem is formulated as a

stochastic optimization problem utilizing a delay metric based

on the anomaly’s worst-case path [23]. In Figure 4, we illustrate

a point anomaly (Figure 4 (a)) expanding into a collective

anomaly (Figure 4 (b-j)). At an early stage (Figure 4 (a)), the

detected point anomaly or a smaller collection of anomalies

may not yet indicate a high-significance unusual occurrence.

However, if unexplored, the anomalous collection may develop

into a possibly hazardous state (Figure 4 (j)), leaving less time

for a reactive response. Detecting anomalies early enables pre-

ventative measures. Expanding fractures of the pipeline surface

material are a practical example of expanding anomalies during

an underwater pipeline inspection.

Fig. 3. (a) Visual inspection of underwater pipeline, images taken by au-
tonomous underwater vehicle: Possible material degradation or biological
growth?, adapted from [20]; (b) 3D scan over the underwater pipeline, adapted
from [20]
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Fig. 4. Anomalies that expand over time

TABLE II
DESCRIBING ANOMALIES BY TEMPORAL CHANGE

Anomaly Type Frequent / Recurring Disappearing and Reappearing Expanding

Point Frequently occurring point
anomaly.

Disappearing and reappearing point
anomaly may be a sign of pervasive
environmental phenomena.

Point anomaly may evolve into a
collective anomaly of larger size
and impact.

Collective Frequently occurring collection of
anomalies with similar properties
(i.e., geospatial context).

Disappearing and reappearing col-
lective anomaly may be a sign of
pervasive environmental phenom-
ena.

Collective anomalies may evolve
into a more intrusive anomalous oc-
currence of larger size and impact.

Contextual Anomalous depending on the con-
text due to a potential risk of being
misinterpreted as normal and left
unexposed or a frequent anomaly
collection obscuring more intrusive
processes.

Context (i.e., geospatial,
seasonal, weather) aids in
determining the anomalousness
of the disappearing/reappearing
phenomena and finding the causes
of their persistence.

Anomalous depending on the con-
text.

The proposed conceptual categorization of anomalies accord-

ing to their temporal changes does not impede their occurrence

in data as point, collective, and contextual anomalies. Table II

summarizes the two categories that are intended to complement

one another, aiding in our comprehension of unusual events

occurring during autonomous operations. Anomalies’ behavior

is highly dependent on context, not just on their occurrence

as a single point or collection of anomalies. The criticality of

frequently occurring point and collective anomalies varies by

context, as they may be seen as normal and therefore obscure

more intrusive processes. This increases the likelihood that the

unexposed anomaly may develop into a potentially hazardous

event that could have been discovered earlier. Similarly, the

context (i.e., seasonal, weather) of disappearing and reappearing

anomalies can aid in identifying the cause of their pervasiveness

and provide additional reasoning for unanticipated environmen-

tal phenomena. Additionally, the point anomaly may expand

creating a collective anomaly of more impactable volume and

intrusiveness. Contextual information (e.g., changed material

properties due to chemical or temperature variations) can as-

sist in determining the criticality and anomality of observed

unanticipated changes. Observing and categorizing anomalies

according to their temporal changes adds context to our un-

derstanding of how anomalies relate to one another and evolve

in a normal and predictable data environment. This knowledge

enables the UAS to perceive environmental phenomena and

anomalous events in their geospatial and temporal context,

improving understanding of the significance and criticality of

anomalous occurrences.

IV. CONCLUSION

The research on time-series anomaly detection has been

application-oriented and vague. Despite decades of research and

categorization approaches, persistent obstacles prevent anomaly

detection from maturing and becoming a dependable compo-

nent of autonomous systems. While an unsupervised and data-

driven strategy is common in industry and research, it is in-

sufficient to achieve reliable autonomy. Therefore, this paper

proposes a fundamentally different perspective of anomalies

via a conceptual categorization of anomalies according to their

temporal changes. Frequent or recurrent, disappearing and reap-

pearing, and expanding anomalies describe the behavior of

anomalies and provide context for their dynamics observed

through time-series data analysis. Observing anomalies as they

evolve through time enables us to deduce the underlying causes

of anomalous occurrences, focusing onmore pertinent data from

the vast collections of sensor measurements, thus allowing the

UAS to react if and when the situation requires it during real-

time operations.
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V. FUTURE WORK

We regard our approach of categorizing anomalies according

to their temporal change as a starting point for future research

to construct a framework for detecting anomalous change in

real-time by identifying practical time-series anomaly detec-

tion methods. Thus, future work involves simulating streaming

data and analyzing images collected by the UAS during visual

inspection of an underwater pipeline to validate the proposed

temporal categorization of anomalies and identify potential

shortcomings.
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