
University Timetabling Algorithm Considering

Lecturer’s Workload

Lintang Yuniar Banowosari1, Vega Valentine2

1Department of Computer Science and Technology
2Department of Industrial Technology

University of Gunadarma
Jakarta, Indonesia

1lintang@staff.gunadarma.ac.id, 2valentvga@gmail.com

Abstract—University Timetabling Problem is an allocation or
subject to constraints, of given resources being placed in space
time, in such a way as to satisfy as nearly as possible a set of
desirable university schedule requirements. In this paper,
university timetabling algorithm is implemented, considering
lecturer’s workload in order to have a balance between
lecturer’s workload as a teaching staff of the university and to
actualize the obligation of Tridharma Perguruan Tinggi,
regulation issued by Indonesia’s Ministry of Education. The
implementation of faculty timetabling, the workloads
summation and the lecture-class timetabling has successfully
built in Java Netbeans Swing GUI.

Keywords - University Timetabling Problem; lecturer’s
workload; university schedule requirements; university
timetabling algorithm; Tridharma Perguruan Tinggi; Java
Netbeans Swing GUI.

I. INTRODUCTION

Scheduling is a process or a way of organize time
according to arrangement of work order plan. It also means
a list or activity table or activity plan with a detailed
execution time [1]. In university terminology, this
scheduling problem is known as University Timetabling
Problem.

Every university has their own studying activities
organized in such a way to satisfy any requirements they
need. In schedule arrangement, universities tend to have a
system which can schedule all courses optimally. To have
such optimal condition of the course, a well-organized of all
scheduling components is needed.

A scheduling system is also the core of university
activities because it involves many elements in affiliations
to the university, that is human resources (lecturers and
students), time slot availability (length of lecture), type of
the activity (theory or lab practice), and the facility to
support those activities (classroom or laboratory) [6].

Bardadym (2006) classified the university timetabling
into five groups [4], they are:

• Faculty timetabling, assigns qualified teachers to
courses

• Class-Teacher timetabling, assigns courses with
the smallest timetabling unit being a class of
students

• Course Scheduling, assigns courses with the
smallest scheduling unit being an individual
student

• Examination Scheduling, assigns examination to
students such that students do not have two
examinations at the moment

• Classroom Assignment, assigns class-teacher
couples to classrooms

In fact, there are many algorithms used to organize
schedule in university timetabling. Algorithms such as
Genetic Algorithm, Simulated Annealing and Tabu Search,
are commonly used in university timetabling research.

But, which one is the best algorithm to do university
timetabling? This question cannot be generally answered,
because the problem is highly institution-specific. Every
university has its own way in manage scheduling, with
different requirements and regulations. In other words,
managing timetable will be dependent on what regulation
they hold and what requirements they need.

That is why no specific answer for the question. The best
solution will be an algorithm that violate the least constraint
or satisfy the most requirements or preferences for a certain
university regulation.

One of the constraints in doing timetabling is
nonetheless the activity of the lecturer itself because
teaching is not always their only activity. Some regulations,
such as the one issued from the government, obligate
lecturers to do other things in order to dedicate and
contribute more in education. In this paper, Tridharma
Perguruan Tinggi, issued by Education Ministry of
Indonesia, is taken as reference in defining activities of
lecturer which will lead to some calculations to obtain
optimal university timetable.

The outline of this paper is: Section II explains theory of
timetabling, Section III describes methodology of workload
calculation, and Section IV shows design and
implementation of the algorithm.

31

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

II. THEORETICAL FRAMEWORK

A. University Timetabling Problem (UTP)
University Timetabling Problem is an allocation or

subject to constraints, of given resources that is human
resources (lecturers and students), time slot availability (i.e.
length of lecture), type of the activity (theory or lab
practice), and the facility to support those activities
(classroom or laboratory) being placed in space time, in
such a way as to satisfy as nearly as possible a set of
desirable university schedule requirements.

Edmund Burke in his article titled ‘Applications to
Timetabling’ [6] specified the timetabling problem as a
problem with four parameters, T (a finite set of times), R (a
finite set of resources), M (a finite set of meeting) and C (a
finite set of constraints):

1. Times
A time t is an element of the set of times T of an
instance of the timetabling problem. A time slot is a
variable constrained to contain one time.

2. Resources
A resource r is an element of the set of resources R
of an instance of the timetabling problem. A resource
slot is a variable constrained to contain one resource.
What we called resources are teachers, rooms, items
of special equipment, students or group of students
that supports a meeting.

3. Meeting
A meeting m is a named collection of time slots and
resource slot. Assigning values to those slots means
that all of the assigned resources attend this meeting
at all of the assigned times.

4. Constraints
Constraints divided into two, hard constraint and soft
constraint. Hard constraint must be satisfied while
soft constraint is desirable, but not necessary, to
satisfy—more to optimization objective.
In university course timetabling, no-clashes
constraint would typically be a hard constraint for
lecturers but a soft constraint for student as far as
optional courses are concerned since it usually
impossible to satisfy every student.

B. Algorithms to Solve University Timetabling Problem
Algorithms had been developed and implemented in

building a timetable for universities. Literatures about
university course timetabling teach us that researchers
applied different approaches to tackle the problem [4].
Above many algorithms, there are three most applicable and
most widely used meta-heuristic algorithm to make an
optimal university timetabling:

1. Simulated Annealing
Simulated annealing is a probabilistic method proposed
in Kirkpatrick, Gellat, and Vecchi (1983) and Cerny

(1985) for finding the global minimum of a cost function
that may possess several local minima. It works by
emulating the physical process whereby a solid is slowly
cooled so that when eventually its structure is ’frozen’,
this happens at a minimum energy configuration [8].

Simulated annealing started with making the
mathematical formulation of the problem that is the hard
and soft constraints. After that, define properties of the
constraints such as teaching duration, available class,
etc. Then a lecture initially placed onto available
timeslot.

Energy function, cooling and acceptance probability
function also applied. The energy function is derived
from the main timetabling objective (considering times,
meeting, resource, and constraints), while cooling
schedule and acceptance probability function controls
accepting new solution with certain energy value. These
two functions used to reach the objective of building
optimized university timetable.

2. Genetic Algorithm
Genetic Algorithm was founded by John Holland in
Michigan University, United State (1975) through some
researches and David Goldberg introduced [9].

Three main aspects in genetic algorithm are
definitions of fitness function, implementation of genetic
representation and genetic operation. If the three aspects
are defined, then the algorithm will be well-performed.

The algorithm started with a set of randomly selected
state called population. Each state defined as a string. It
combines two main parent populations. Through some
crossover, mutation and fitness function, new children
population will be defined as the solution.

3. Tabu Search

The basic concept of Tabu Search as described by
Glover (1986) is ‘a meta-heuristic superimposed on
another heuristic’ or a higher-level meta-heuristic
procedure for solving discrete and continuous
optimization problems.

The overall approach is to avoid entrainment in
cycles by forbidding or penalizing moves which take the
solution, in the next iteration, to points in the solution
space previously visited. The solution space that has
been visited therefore listed as ‘tabu’ [10].

Three main strategies of tabu search are [11]:
• Forbidding strategy, control what enters the

tabu list
• Freeing strategy, control what exits the tabu list

and when
• Short-term strategy, manage interplay between

the forbidding strategy and freeing strategy to
select trial solutions

32

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Between those three algorithms, Tunçhan CURA,
Istanbul University research group, compare the
performance by modify those three algorithms [5] into a
similar structure design to be proper with the IUFBA
requirements. The proposed algorithm has been tested with
the 2006-2007 academic year, first term course timetabling
data of IUFBA.

From the comparison, he found that simulated annealing
has been the best algorithm to solve university timetabling
problem. He concludes this based on his experiments in
having the three algorithms to do the same case.

Thus for the case of lecturer’s workload, simulated
annealing algorithm will be used and the equation
performed by [5] will be modified to satisfy requirements as
explained in the next section.

C. Lecturer’s Workload
Lecturers stated as a professional educator and a scientist

whose prime objective is to transform, develop, and publish
knowledge, technology, and art through education, research,
and dedication to public [7].

In Indonesia, lecturer’s performance of education always
obeying the rule of Tridharma Perguruan Tinggi which
consists of three dharma. They are Dharma of Education
and Teaching, Dharma of Research and Dharma of Public
Dedication. Detailed description explained on the
calculation part (section three).

III. METHODOLOGY

A. Formulation of the Problem
The following subsection explains the process of listing

obligatory rules and constraints and the mathematical
formulation of rules and constraints defined.

1. Defining Obligatory Rules, Hard and Soft
Constraints

The obligatory rules that generally overdue in
universities are:

• No. 1: Each lecture must be assigned to only
one class of student at one day and to a single
time slot

• No. 2: The lengths of the lectures hours must be
taken into consideration while assigning the
lectures. For example if the lecture hours are
from 9 am to 5 pm and the length of the lecture
is 2 hours, this lecture cannot be assigned to 4
pm since it would have exceeded the official
lecture hours

• No. 3: More than one lecture cannot be
assigned to a given class at the same time
interval

• No. 4: A lecturer cannot have more than one
lecture assigned in a given time interval

The hard and soft constraints defined as seen in table I.

TABLE I. HARD AND SOFT CONSTRAINTS

Hard Constraints Soft Constraints

No resources (lecturer and a
class of students) may be
assigned to different events at
the same time

Every lecturer has his/her own
availability schedule or submits
a plan with desirable time
periods that suits him/her best

There is a maximum number
of time periods per day, that
may not be exceeded

Every lecturer has a minimum
and a maximum limit of weekly
work-hours

More than one lecture can not
be assigned to a given class at
the same time slot

Minimize the time gaps within
the schedule of each lecturer

Each lecture may be assigned
to a lecturer that belongs to a
specific set of lecturers that
can deliver the lecture

Minimize the time gaps within
the schedule of each given class

2. Mathematical Formulation of the Problem

Meeting of lectures, lecturers and rooms that
available, denoted by J, I and L respectively. Lectures
can be assigned to any lecture day from Monday to
Saturday. Each day consists of 10 hours. Thus, D = 6, H
= 10, denote the number of days and hours of timetable.
Thus, the rules will be denoted as follow:

• The general mathematical model for satisfying
the lecturer desires represented as:

() }{
∑∑∑∑∑ ∑
= = = = =

+

=

×××
J

j

I

i

D

d

H

h

L

l

HhY

hh
jldhiidhji

j

SCPX
1 1 1 1 1

,min

*

max (1)

• Obligatory rule 1 is imposed by:

∑∑∑
= = =

==
L

l

D

d

H

h
jldh JjS

1 1 1

,...,1,1 (2)

• Obligatory rule 2 is imposed by:

DdLlHhJj

Hjldh

,...,1;,...,1;,...,1;,...1 ====

≤β (3)

• Obligatory rule 3 is imposed by:

**ldhjjldhjldh S ββ ≤× (4)

• Obligatory rule 4 is imposed by:

****** ldhjjiijdhljjldh XXS ββ ≤××× (5)

Yj denotes the length of lecture j (j = 1,…, J). Xji is a

class of students with defined lecture j and lecturer i (i =
1,…, I). Pidh denotes the desire time slot (a higher value
indicating a higher preference) of lecturer i for day d (d
= 1,…, D) and hour h (h = 1,…, H). Ci denotes the
lecturer’s workload of lecturer i (i = 1,…, I). Sjldh is space
for lecture in the timetable. βjldh is a lecture with defined
length in hour (duration).

33

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

B. Lecturer’s Workload Calculation
Based on Lampiran II Surat Dirjen Dikti No.

3298/D/T/99 issued on 29 Desember 1999 [7] about
lecturer’s workload evaluation, the details of workload
calculation is described on table II.

TABLE II. LECTURER’S WORKLOAD IN DETAIL

No Activity Hour/week Multiplier
Notation

A Education

1. Give a lecture ‘X’ (y credits) y ∑class

2. Assess final examination 0.5 ∑exam

3. Assess thesis defense for 3
students 0.5 3)(÷∑ student

4. Thesis consultation to a
student 2 ∑ student

5. Student academic adviser for
20 students 1

20)(÷∑ student

B. Research

1. Make one research topic per
year (as main researcher) 10 ∑ research

2.
Writing papers to accredited
journal, a title per 2 year (as
main author)

1 ∑ paper

C. Public Dedication

 Giving a workshop for 1 topic
per semester 1 ∑workshop

D. Supporting Activities

1. Active in a committee during
a year 1 ∑committee

2. Attend campus event
(seminars, meetings, etc) 0.5 ∑event

Table III describes the maximum workload can be hold

by a lecturer according to ministry’s regulation.

TABLE III. WORKLOAD CALCULATION

No Activity
(appropriate to ideal lecturer’s workload) hour/week

A Education

1. Teaching a lecture ‘X’ (3 credits) 9

2. Teaching a lecture ‘Y’ (3 credits) 9

3. Giving consultation to students for
(undergraduate) thesis, 3 student per semester 6

4. Student advisor for 20 students per semester 1

5. Assessing final examination or (undergraduate)
thesis defense , 3 students per semester 0.5

6. Making one course dictate per year 2

 Total of A 27.5

B. Research

1. One research topic per year, as the main
researcher 10

No Activity
(appropriate to ideal lecturer’s workload) hour/week

2. Writing papers to accredited journal, a title per 2
year as main author 1

 Total of B 11

C. Public Dedication

 Giving a workshop for 1 topic per semester 1

D. Supporting Activities

 Active in a committee during a year 1

 Sum of Total 40.5

C. Timetabling Solver
1. Defining the Number of b Vectors

Let X be the number of different lecture lengths.
Thus, each different length, the number of bk where
hourk equals this length are denoted by λx, δx, and µx (x
= 1,…, X) respectively.

For example, if there are 3 lectures and their
lengths are 2 hours, 2 hours and 3 hours respectively,
then the number of different lengths (X) will be 2 (λ1 =
2 hours and λ2 = 3 hours), and δ1 will be 2 and δ2 will
be 1. The number, K, of b vectors imposed by equation
(6).

∑
=

X

x
x

1

µ (6)

For this study, the sample data was taken from
Gunadarma University’s Faculty of Psychology for 4th

grade class in ATA 2008/2009. For this sample, we got
X = 3 with λ1 = 1, λ2 = 2 and λ3 = 3. Thus by equation
above, we got K = 7 with δ1 = 1, δ2 = 5 and δ3 = 1.

2. Filling the b Vectors with Lectures

In this study, the process of assigning defined
lecture to b vectors using indirect representation. In
such representation, the encoded solution usually
represents an ordered list of events, which are placed
into the timetable according to some predefined
method, or so called timetable builder. The timetable
builder can use any combination of heuristics and local
search to place events into the timetable, while
observing the problem’s constraints.

For this work, the indirect representation encodes 3
fields for each event:

• Day and hour (time slot) to allocate the event
• Teacher (1 or more) to be assigned to the event
• Class of students that supposed to take the event
All fields are first encoded as integers and then

converted into appropriate variable type for further
process in the program. In generating the solution, the
solver first decodes it to gain these four fields for every
event in the schedule. Then it invokes the timetable
builder to works as in Figure 1.

34

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

IV. DESIGN & IMPLEMENTATION

A. Lecturer’s Workload Implementation in Timetabling
Algorithm
In this study, lecturer’s workload divided into two

different workloads. First is teaching workload
(workload_teach) and the second is administration
workload (workload_adm). Teaching workload is the total
workload of assigned course calculated by the amount of
SKS per course for each class. Administration workload is
the total workload of activity but teaching, which is defined
in the Tridharma.

Pseudocode of Lecturer’s Workload implementation to
timetable is:
get lecturer’s workload_adm
get lecturer’s workload_teach
if workload_adm + workload_teaching < 40.5

then put lecturer into S(d,h) matrix
Do

insert lecture into S(d,h)
if any constraint violated

then search subsequent S(d,h) until no
violation

else continue inserting to S(d,h)
Until workload_teach = 0

else exceed lecturer’s max workload

For describing how the algorithm works in such a real
data, table IV is sample input case of lecturer’s activity in a
semester:

TABLE IV. LECTURER’S ACTIVITY AS INPUT TEST CASE

Administration Workload Teaching Workload
Assess 3 final examination
(A2)

Teach a lecture ‘M’ (2
credits) @ 3 classes (A1)

Give workshop for 3 topics
this semester (C1)

Teach a lecture ‘N’ (1 credit)
@ 6 classes (A1)

Write a paper to accredited
journal (B2)

Teach a lecture ‘P’ (1 credit)
@ 2 classes (A1)

Thesis consultation for 9
students (A3)

From Table IV, we can calculate weights for

administration and teaching workload as follow:
Administration Workload
1. Assess 3 final examination

∑ =×=× 5.135.05.0 exam

2. Give workshops for 3 topics

∑ =×=× 3311 workshop

3. Write a paper to accredited journal

∑ =×=× 1111 paper

4. Thesis consultation for 9 students

∑ =÷×=÷× 5.1)39(5.03)(5.0 students
Total administration workload = 7 hours per week

Teaching Workload
1. Teach a lecture ‘M’ (2 credits) @ 3 classes

∑ =×=× 632classy

2. Teach a lecture ‘N’ (1 credit) @ 6 classes

∑ =×=× 661classy

3. Teach a lecture ‘P’ (1 credit) @ 2 classes

∑ =×=× 221classy
Total teaching workload = 14 hours per week

From calculations above, we get the total result of 21

hours workload from administration workload plus teaching
workload (7+14). The value is below the maximum
workload of 40.5 hours per week. Thus, the lecturer can still
be assigned to another teaching assignment through the
timetable process (Figure 1) or other administration work.
While for some other that reach the total workload of 40.5,
they will have the opposite treatment such as workload
reduction either from administrational or teaching
assignment.

Figure 1. Timetable Builder Algorithm

The constraints involved so far are the hard and soft
constraints as listed in Table I. According to the
pseudocode, lecturers with maximum workload cannot be
assigned to another event anymore. This condition verifies
the soft constraint. The time slot is set to be a unique S(d,h)
matrix including the unique day and hours per week.
Therefore, an event-clash for related resources (lecturer and
class of student) can be automatically avoided. The
treatment for any other constraint will be the same, i.e.
search for the next available S(d,h) slot.

B. Implementation on Java, Netbeans Swing GUI
University Timetabling Application is a desktop

application which is developed to facilitate computerization

35

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

in solving the university timetabling problem. It is built in
Java programming language using Netbeans Swing GUI for
designing the graphical user interface and database, handled
by PostgreSQL.

This application built based on previous object-oriented
analysis through the system which also developed by the
algorithm already explained. The analysis then visualized
using Unified Modeling Language (UML), i.e. use case
diagram, class and activity diagram (Figure 2)

From the analysis, this application would contain five
modules. They are functioned to store subject’s data,
lecturer data, lecturer’s activity, to assign lecturers to
subjects and the timetable module.

The main parameter in this application is the credit of a
subject, number of class which should get the related subject
and the total credit taken by the lecturer. The total credit is

calculated by number of credits and class (as explained in
IV A) which provides total hours that should be taken by the
lecturers. The total hours considered as the lecturer’s
workload and determine whether the lecturer can still be
assigned to another event or not (Figure 1).

In Figure 3, the initial workload calculation of
administrative work is calculated by module ‘lecturer’s
activity’ (Figure 3a), while the assignment to teach a subject
organized by module ‘lecture assignment’ which shows the
detailed parameter of subjects (subject’s name, credit) and
also the initial administrative workload (Figure 3b).

The first four modules are already set and work
properly, while so far, the timetable module is still on
progress.

Figure 2. Unified Modeling Language for University Timetabling (a) Use Case for Assigning Lecture (b) Activity Diagram

Figure 3. Screenshot of University Timetabling Application’s GUI (a) Lecturer’s Activity Module (b) Lecture Assignment Module

36

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

V. CONCLUSION

In solving university timetabling problem, three
algorithms, Simulated Annealing, Genetic Algorithm, and
Tabu Search had been theoretically studied. Simulated
Annealing supports solving university timetabling problem
with consideration of additional variable, such as lecturer’s
workload, therefore selected for this case.

Lecturer’s activity had been categorized and being
weighted. It applied to an input test case, simulating
calculation of the lecturer’s workloads, together results the
output of calculation. This output will determine placement
of schedule onto the timetable, obeying the obligatory rule,
hard, and soft constraints.

However, the implementation of the algorithm using
GUI Swing Netbeans has only reached the process of
faculty timetabling, the workloads summation and the
lecture-class timetabling. Further refinement needed to be
done to get the optimal University Timetabling Application.
Cooling function for this application is to be considered for
the whole timetable because so far it only considers
individual lecturer’s workload.

REFERENCES

[1] D. Sugono, “Kamus Besar Bahasa Indonesia”, Pusat Pembinaan dan

Pengembangan Bahasa Indonesia, Departemen Pendidikan dan
Kebudayaan, Balai Pustaka PN, 1993.

[2] V. Bardadym, “Computer-Aided School and University Timetabling:
the New Wave”, Selected and Revised Papers of the 1st International
Conference on Practice and Theory of Automated Timetabling,
(PATAT 1995), Edinburgh, Springer LNCS 1153, 22-45, 1996.

[3] B. Oestereich, “Developing Software with UML: Object-Oriented
Analysis and Design in Practice”, Second Edition, 2002, Edinburgh
Gate, Harlow CM20 2JE, Pearson Education.

[4] A. Mieke, P. Causmaecker, P. Demeester, and G. Berghe, “Tackling
the University Course Timetabling Problem With an Aggregation
Approach”, KaHo Sint-Lieven Information Technology & Katholieke
Universiteit Leuven Campus Kortrijk, Belgium, 2005.

[5] T. Cura, “Timetabling of Faculty Lectures Using Simulated
Annealing Algorithm”, İstanbul Ticaret Üniversitesi Fen Bilimleri
Dergisi, Turkey, 2007.

[6] E. Burke, D. Werra, and J. Kingston, “Applications to Timetabling”,
University of Nottingham (UK), École Polytechnique Federale de
Lausanne (Switzerland), University of Sidney (Australia), 2003.

[7] Lampiran II Surat Dirjen Dikti No. 3298/D/T/99 issued on 29
Desember 1999.

[8] D. Bertsimas and J. Tsitsiklis, “Simulted Annealing”, Statistical
Science Vol. 8 No. 1 pp 10-15, Sloan School of Management &
Electrical Engineering and Computer Science Management,
Massachusetts Institute of Technology, Cambridge, 1993.

[9] S. Kazarlis, V. Petridis and P. Fragkou, “Solving University
Timetabling Problem Using Advanced Genetic Algorithms”,
Technological Educational Institute of Serres & Aristotle University
of Thessaloniki, Greece, 2002.

[10] R. Battiti, P. Gray, W. Hart, “Tabu Search”, 1997, Sandia National
Laboratories, Albuquerque, NM 87185.
(http://www.cs.sandia.gov/opt/survey/ts.html) [accessed 19 August
2010]

[11] H. Zhang, “Artificial Intelligent: Tabu Search”, 22C:145 – Artificial

Intelligence, 24 October 2008, The University of Iowa, Fall 2008.
(http://www.cs.uiowa.edu/~hzhang/c145/notes/04ts-search-6p.pdf)
[accessed 19 August 2010]

37

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

http://www.cs.sandia.gov/opt/survey/ts.html
http://www.cs.uiowa.edu/~hzhang/c145/notes/04ts-search-6p.pdf

	I. Introduction
	II. Theoretical Framework
	A. University Timetabling Problem (UTP)
	B. Algorithms to Solve University Timetabling Problem
	C. Lecturer’s Workload

	III. Methodology
	A. Formulation of the Problem
	B. Lecturer’s Workload Calculation
	C. Timetabling Solver

	IV. Design & Implementation
	A. Lecturer’s Workload Implementation in Timetabling Algorithm
	B. Implementation on Java, Netbeans Swing GUI

	V. Conclusion
	References

