
Balancing LTE Protocol Load on a Multi-Core Hardware Platform Using EFSM
Migration

Anas Showk, Shadi Traboulsi, David Szczesny
Institute for Integrated Systems,

University of Bochum,
44801 Bochum, Germany

Email: [Anas.Showk, shadi.traboulsi, david.szczesny]@rub.de

Attila Bilgic
KROHNE Messtechnik GmbH,

Ludwig-Krohne-Str. 5,
47058 Duisburg, Germany

Email: A.Bilgic@krohne.com

Abstract—In the past decade the mobile communication data
rate is increased dramatically. Therefore, mobile terminals
must have enough processing capability by migrating to multi-
core processors. To exploit the multi-core processing power,
we focus on a critical component in the future mobile terminal
which is the load balancer. Its main role is to partition and
balance the load so as to achieve an optimal sharing of load
between cores and to eventually reduce power consumption.
In this paper, we show how a model driven layered protocol
stack can be parallelized and run on a multi-core modem. For
instance, we illustrate how the Extended Finite State Machines
(EFSMs) concurrency is employed to achieve the protocol
stack parallelism. Furthermore, we move the load balancer
to the modem subsystem layer by using the EFSM migration
between cores. The proposed migration scheme during run time
replaces the classic thread migration scheme and reduces the
thread context switching overhead which definitely improves
the performance. In addition, we present a semi-dynamic load
balancer implementation accompanied with customized data
pipeline scheduler for future multi-core LTE smart phones.

Keywords-LTE protocol stack, multi-core mobile terminal,
parallel embedded software, load balancing, model driven
development.

I. INTRODUCTION

The Long Term Evolution (LTE) is the enhancement
of Universal Mobile Telecommunications System (UMTS)
and is optimizing its radio access architecture. The targets
of LTE are to increase the data rates to 100 Mbit/s in
the downlink and 50 Mbit/s in the uplink. Due to the
exponential growth of data rate in the mobile communication
systems during the past decade, more efforts have been
invested in order to achieve the required performance that
satisfies the increasing processing demand for computational
intensive applications. The computational power provided by
single processing units, at reasonable power consumption,
seems to grow slower compared to the application needs.
Therefore, research is focused on migrating to multi-core
architectures which can provide a better balance between
performance, power consumption, flexibility and scalability.
For instance, multi-cores can provide the required computing
performance while allowing lower clock rates to achieve

power efficiency and offer a second dimension in resource
allocation.

Developing next generation mobile communication pro-
tocol can gain by reusing established approaches and best
practices like Model Driven Development (MDD). For in-
stance, the Specification Description Language (SDL) is
commonly used in the previous mobile communication
protocols. The dynamic behavior in an SDL system is
described in processes using Extended Finite State Machines
(EFSM) [1].

Data pipeline scheduling is accomplished by apportion-
ing protocol functionalities into a series independent steps,
where the output of one step is the input to the next.
However, each step can be executed on a different core
in order to constitute separated steps in a pipeline. These
parts might be different protocol stack layers or specific
protocol functions depending on the design. Pipelining can
be very powerful if the degree of parallelization is high. Even
though, it may take some efforts in order to fill the pipeline
and generate a constant throughput. For instance, pipeline
steps should have the same execution time and they must be
tuned such that one stage does not become a bottleneck.

A load balancer is a component that distributes the
computational load between two or more entities such as
cores, clustered computer systems, network links or other
resources, in order to get optimal resource utilization. In
the embedded domain, load balancing provides an efficient
execution of multiple threads on processors with multiple
cores for concurrent and parallel applications. Depending
on the implementation of the decision making of the load
balancer, it can be a static, dynamic, or combination of
them [2].

In this paper, we present the parallelization of model
driven LTE protocol stack. In addition, we illustrate the
design and implementation of a semi-dynamic load balancer
accompanied with data pipeline scheduling for future multi-
core LTE modems. It is moved to the modem subsystem
layer by migrating the EFSMs between cores depending on
the required data rate. For example, at very low data rates
all protocol EFSMs should run on single core. If the data

76

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

rate is increased some of the EFSMs are moved to a second
core in order to provide enough processing power. While
increasing the data rate further, the load balancer distributes
the EFSMs on more cores as needed.

This paper is organized such that, Section II shows the
previous work done in this field. The smart phone system
architecture is presented in Section III including the soft-
ware stack and the hardware platform. The data pipelining
scheduler for LTE protocol stack is discussed in Section IV.
In Section V, the load balancer design and implementation
is presented followed by the conclusion in Section VI.

II. RELATED WORK

Embedded multi-core scheduling is investigated by re-
searcher from different perspectives. For instance, the time
server technique was developed in order to cope with
scheduling several applications on the same platform [3].
This solution is used extensively for single core embed-
ded systems and was also extended for multi-processor
systems [4], [5]. Some power-aware scheduling algorithms
utilize Dynamic Voltage Scaling (DVS) so as to optimize the
power consumption [6], [7]. Moreover, in [8], a scheduling
solution was used to achieve fault-tolerance for embedded
systems with soft and hard timing constraints.

In [9], an efficient, optimal pipelining algorithm for
associating a task chain with a chain of processors was
explained. The pipelining algorithm is based on new data
structure, called the layered assignment graph. A flow graph
scheduling algorithm which considers pipelining, retiming
and hierarchical node decomposition is presented in [10].
Research on pipeline scheduling is at a significantly less
mature state than on the classical scheduling problem [11].

Researchers investigated load balancing for embedded
multi-core systems on the operating system’s level using the
thread migration technique. However, most of the embedded
multi-core system load balancing techniques used the thread
level migration. For instance, based on the virtualization
concept, the most common approaches in scheduling tech-
niques and load balancing for embedded mobile communica-
tion systems are discussed in [2]. However, to the best of our
knowledge, researchers have not used the EFSM migration
for load balancing. In contrast to the other researchers, we
develop an innovative EFSM migration scheme in order to
minimize the thread context switching frequency. In addi-
tion, we customize data pipeline scheduling and integrate it
with our load balancer in the modem subsystem layer so as
to have a parallel execution of LTE protocol stack on the
multi-core modem of a mobile terminal.

III. SYSTEM ARCHITECTURE

A mobile terminal architecture depicted in Fig. 1 is
divided into three main parts: the hardware platform, the op-
erating system layer and the modem subsystem layer. ARM
processors are widely used in mobile phones and specifically

the ARM11 core is representative for a mobile terminal
state-of-the-art hardware platform [12]. Therefore, we have
chosen ARM RealView R© base board including the ARM11
MPCoreTM to be our hardware platform. More details on
the base board can be found in [13], [14]. In addition the
L4/Fiasco microkernel is selected as an operating system.
Moreover, the modem subsystem layer is composed of the
load balancer and LTE protocol stack as illustrated in Fig. 1.
In the next subsections, more details are given about the
operating system and the modem subsystem layers.

Figure 1. The system architecture of the future mobile terminal.

A. The Operating System’s Layer

The L4/Fiasco Microkernel operating system is composed
of two layers, the L4/Fiasco microkernel and the L4 runtime
environment (L4Re) [15] as shown in Fig. 1. The selection of
such a modern operating system is done because it represents
a robust Real Time Operating Systems (RTOSs) as well
as utilizes the concepts of microkernels [16]. The services
of each layer of the deployed OS are illustrated in the
following.

The L4/Fiasco microkernel is running in processor priv-
ileged mode and is responsible for controlling the under-
lying hardware. It provides a minimal set of mechanisms
like tasks, threads, and Inter-Process Communication (IPC).
Fiasco kernel services are implemented in terms of kernel
objects. A task constitutes of an address space where one or
more threads can execute. Multiple threads are scheduled
by Fiasco’s priority-based and preemptive scheduler. The
scheduler is controlled by the timeslice length, priority and
the maximum controlled priority. Each thread is scheduled
for maximum time equal to the associated timeslice length.
The kernel uses multiple-level round-robin queues such that
there is a queue associated with each priority level. The
combination of all the queues represents the kernels ready
queue. Unlike the timeslice length and priority, the maxi-
mum controlled priority is not thread based but rather task
based. It is specified for every task at the creation time and
all threads in the task will have the same value. In addition,
an IPC kernel object provides the basic communication

77

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

mechanism in L4-based systems and is used mainly for
transmitting arbitrary data between threads.

On the other hand, the L4Re offers a basic set of abstrac-
tions and services, which are useful to implement user-level
applications on top of the L4/Fiasco microkernel. It consists
of a set of libraries mainly responsible for memory and IO
resource management. The kernel does not migrate threads
dynamically, but only supplies needed functionalities for its
applications.

B. Load Balancer

The main job of the load balancer is to monitor the
execution of applications and share the load between the
available cores. In addition, it should decide where applica-
tion components are initially started and when they need
to be migrated in order to satisfy an optimum criterion
like performance, power consumption, etc. Only the load
balancer has a global view on the total load of the system
and can thus distribute it on cores according to the previously
specified requirements.

The load balancing is achieved within the modem sub-
system layer by utilizing the EFSM migration scheme. It’s
design and development procedure can be divided into two
main steps offline analysis and online processing. The first
step (i.e., offline analysis) is accomplished at compile time
to collect the information about LTE protocol stack and
generate LTE scheduling tables which include the process-
thread mapping tables and LTE configuration table prior to
system execution. The process-thread mapping tables define
the association of the EFSMs to threads depending on LTE
states. LTE states are identified according the required data
rate and how many cores should be involved in order to
achieve this data rate. On the other hand, during system’s run
time the online processing includes all the actions needed to
reconfigure the system when the LTE state changes. For ex-
ample, when the load balancer detects an LTE state change,
it will flush the pipeline by processing all the scheduled task.
Then reconfigure the thread activation scenario and migrate
the EFSMs between cores depending on the new LTE state in
order to balance the load between cores. In Sect. V detailed
explanations of the load balancer design and implementation
are given.

C. LTE Protocol Stack

Developing software for LTE mobile terminal can greatly
benefit from reusing prevailing approaches and best prac-
tices. For over a decade, most global installations have
taken advantage of Model Driven Development (MDD) for
communication products; oftentimes with tools using the
Specification Description Language (SDL). Therefore, an
SDL tool is selected to develop the access stratum part of
LTE protocol stack in the mobile terminal side. Since the
user plane is more computational intensive, the modeling
targeted only the user plane part.

The access stratum part of LTE protocol stack includes
layer 2 which is divided into three sublayers: Medium Ac-
cess Control (MAC), Radio Link Control (RLC), and Packet
Data Convergence Protocol (PDCP) [17]. Fig. 2 illustrates
the LTE data flow from the mobile terminal perspective. In
the uplink direction the mobile terminal generates packets
and sends them through the air interface to an evolved
base station (eNodeB). The building of packets payload
and header as well as the downlink processing are modeled
according to the 3GPP standard of LTE [18], [19], [20].
On the other hand, the mobile terminal receives Transport
Blocks (TBs) in the downlink direction from the air interface
and processes them through the MAC, RLC, PDCP and
IP layers. The functionalities of the mentioned layers are
modeled as described in more details in [21], [22].

The dynamic behavior in SDL systems is described in
the SDL processes using EFSMs. Processes in SDL can be
created at system start, or created and terminated dynami-
cally at runtime. The concept of process instances that work
autonomously and concurrently makes SDL a true real time
language. The other advantage of the processes concurrency
is making the parallelism easier to identify and exploit in
contrast to pure C programming. It is clear, from Fig. 2, that
the processing of packets in each layer should be done after
the previous layer in a sequential manner. Therefore, the
LTE protocol stack is modeled by dividing its functionalities
into several EFSMs, which are communicating using the
SDL asynchronous messages communication facility. For
instance, the output from an EFSM is the input to the
next EFSM and the latter’s output represents the input to
the one after, and so on, formulating a chain of EFSMs.
Even though, the protocol stack processing is parallelized by
exploiting EFSMs concurrency together with data pipeline
scheduling.

IV. PIPELINE SCHEDULING

In general, scheduling algorithms suitable for embedded
systems are mapped to two major classes: static and dy-
namic. The scheduling involves three steps: assigning tasks
to processors, ordering execution of these tasks on each
processor, and determining when each task fires such that all
data precedence constraints are met. To reduce the run-time
computation, all the three steps are performed at compile
time by a static scheduler. On the other hand, the scheduler
which accomplishes these steps during run time is called a
dynamic scheduler.

Generally, pipeline schedulers aim to efficiently divide a
task into stages, allocate some cores to stages, and create
schedules for each pipeline stage. As a consequence, the
stage with the longest execution time in the pipeline deter-
mines the throughput of the multi-core system. In general,
pipelining can considerably increase the throughput beyond
what is obtainable by the classical (minimum-make-span)
scheduling algorithms. However, this increase in throughput

78

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 2. The LTE protocol data flow in the mobile terminal side.

may cost a significant increase of latency compared to the
classical (minimum-make-span) schedulers [11].

The new direction that is relevant to embedded multi-
core scheduling is the exploration of pipeline scheduling
algorithms, which concentrate on throughput as the main
performance metric. Hence, the presented data pipeline
scheduler is adopted and customized for LTE protocol stack
in order to improve the performance of the multi-core
hardware platform. In addition, the scheduler is implemented
on the SDL level by exploiting the message communication
between EFSMs for several thread activation scenarios de-
pending on number of needed cores.

As an example, a thread activation scenario of the LTE
protocol running on four cores is depicted as a message
sequence chart in Fig 3. All LTE EFSMs are distributed on
four cores in such a way that processing a packet within
the same core is illustrated as one task before the control is
given to the other core for further processing of the same
packet. For instance, the first packet (P1) is processed by
the first core (i.e., Core0) while other cores are idle. After
that, Core0 sends the packet P1 to Core1 for activating
the thread on Core1 to do further processing and sends
the message Trigger to itself in order to start processing
the second packet (P2). consequently, both packets P1 and
P2 are processed in parallel on cores Core1 and Core0,

respectively. After processing P1, Core1 and Core2 hand
it over to the next core and send the Trigger message to
Core0 to start working on a new packet. The last core
Core3 sends a Trigger message to Core0 when ever it
finishes processing a packet in order to keep the pipeline
full all the time. The only exception arises when there is
an LTE state change and the pipeline should be cleaned
thus it should not send this message. This technique of
asynchronous SDL message communication is used for
multi-core synchronization at a high abstraction level. One
of the disadvantages of this scenario is the long latency of
filling the pipeline (i.e., from start processing P1 on the first
core up to finish processing of the same packet on the last
core). However, the throughput will increase if the load is
distributed evenly between cores.

V. LOAD BALANCER DESIGN AND IMPLEMENTATION

Power consumption and performance are very important
factors for embedded multi-core systems dedicated to wire-
less communication protocol processing. Thus, in order to
have an efficient multi-core mobile modem we concentrate
on the load balancer which is one of the most critical
components of the system. For example, a load balancer
aims to share the load evenly between cores in order to
ensure an optimal performance as well as to reduce power
consumption. According to the load balancer design, it can

79

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 3. The message sequence chart of a thread activation scenario with
four cores.

be a static, dynamic or combination of them. In this work,
the load balancer development is divided into two main
steps: offline analysis and online processing as depicted in
Fig. 4. In the next sub-sections, more explanations of these
steps are given.

Figure 4. The offline analysis and online processing to balance LTE
protocol load.

A. Offline Analysis

The LTE protocol stack design is accomplished using
the hierarchical decomposition of SDL with system, block,
sub-block and process as the main building blocks. Every
protocol sublayer is realized by a sub-block (that is MAC,
RLC,PDCP and IP). The latter is divided into sub-sub-blocks
or processes depending on role or mode of the target layer.
The behavior of the protocol is implemented in the SDL
process level using concurrent EFSMs. Each EFSM is idle
in the current state until it is triggered by an event to execute
a transition and move to the next state. This event can be
a message from another EFSM or even itself, an expiration
of a timer or a change of internal variable.

A directed multi-graph is an ordered pair (A,E), where
A is a set of actors (sometimes called nodes or vertices) and
the set E is order pair of nodes called edges. Graphically,
actors are represented by circles and edges are represented
by arrows connecting the circles. Each edge is an ordered
pair (a1, a2) where a1, a2 ∈ A. If e = (a1, a2) ∈ E, we say
that e is directed from a1 to a2; a1 is the source actor of e,
and a2 is the sink actor of e. In a directed multi-graph two
or more edges can have the same source and sink actors and
loops from the actor itself are allowed.

The data-flow graph is a directed multi-graph which is a
conceptual notion for expressing the function of a system.
The actors are the computations and the edges are First-In-
First-Out (FIFO) queues. The latter direct the data (or token)
as an output from one computation to be an input to another
one. In terms of SDL and EFSMs, an actor is an EFSM (e.g.,
the active transition of a state machine form current state to
the next state), an edge is an SDL queue and a token is an
SDL message. Therefore, the collection of all EFSMs that
constitutes the LTE protocol can be represented by data-flow
graphs.

During offline analysis, the LTE protocol stack is profiled
to measure the cost of every EFSM. Afterward, the EFSMs
are ordered depending on which one will be executed first
according to the data precedences to look like the data-flow
graph example depicted in Fig 5. In the example, a data-flow
graph is illustrated by a set of pairs (A,E), where set A is
bounded by the big circle and E is not shown for sake of
clarity. The set A includes all the nodes which are part of
LTE protocol models where:

A =

N⋃
i=1

ai .

The execution time of each actor is represented by Ci

where i = [1, 2, 3, ..., N] is computed so as to calculate the
cost of a group of actors or even the total cost of the system.
For simplicity, we assume that the cost Ci includes the edges
delay (i.e., the transition time between actors when running
on the same core). Therefore, the cost of the chain of actors
between actor ax and actor ay can be calculated by the delay

80

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 5. The data-flow graph example illustrates the mapping of actors
into different sets in order to allocate them to one, two or three cores.

Dxy where:

Dxy =

y∑
i=x

Ci ; where 1 ≤ x, y ≤ N and x ≤ y .

Since the ARM RealView R© base board, which is used
as a hardware platform, has four cores, the costs Ci are
used to partition the set A in order to share the load evenly
when one, two, three or four cores are needed. For example,
subsets A1 and A2 in Fig. 5, which are bounded by octagons
with dashed lines, are chosen in such a way that they should
have almost equal costs (i.e., delay D1n3 is equal to delay
D(n3+1)N). Furthermore, the intersection between both sets
should be equal zero and the union of them is equal to set
A (or mathematically, A1∩A2 = φ and A1∪A2 = A). The
same conditions are valid for sets A3, A4 and A5 bounded
by the octagons with dotted lines. The work can be extended
to distribute the load on four cores by dividing the set A into
another four sets by applying the same rules.

The system has only four threads which are created at
the system startup and associated to each core. As a con-
sequence, the process-thread mapping table for every LTE
state in addition to the configuration tables are generated.
The process-thread table illustrates which EFSM will run on
which thread (core). The LTE state defines the number of
cores needed according to the targeted data rate in addition to
some other configuration parameters. For instance, a mobile
terminal working at low data rate (like voice calls) leads to
only one core that should be active. On the other hand, while
streaming a very big video file, the system should utilize all
the available four cores.

B. Online Processing

The SDL SuiteTM tool is equipped with a deployment
editor where the SDL system can be divided into separate
threads. For example, at the design time the user can
decide how many threads will be included and which EFSM

will run in which thread. Therefore, at system start SDL
system’s run time kernel creates threads and associates
different EFSMs with different threads according to the
created deployment diagram. If an EFSM receives a message
or other event occurs, the associated thread will be woken up
to execute the transition. In this paper we develop a method
to modify the EFSM parameters and move it from one thread
to another during run time. In addition, this is also possible
even if the two threads are running on different cores.

In this setup, at system start, four threads are created and
each ARM11 core processor is allocated to each thread using
L4/Fiasco’s thread migration facility. When the LTE state
changes during the LTE protocol execution, the SDL system
will report the situation to the load balancer by calling a load
balancer utility function to reconfigure the system. First of
all, the load balancer flushes the pipeline by finishing all
the scheduled tasks. After that, it reconfigures the thread
activation scenario according to the new LTE state. Finally,
it migrates some EFSMs depending on the process-thread
mapping tables which are generated offline at compile time
so as to balance the load between cores before restarting the
LTE system processing of a new packet.

The EFSM migration is tested and the thread activities are
monitored and printed in Fig. 6. The LTE threads with the
names lte ps-main, lte ps10001, lte ps10002, lte ps10003
and lte ps10004 are executed on cores Core0, Core1,
Core2, Core3 and Core0 respectively. The main thread of
the system (i.e., lte ps-main) includes the SDL system’s run
time kernel as well as the load balancer. At the beginning,
all EFSMs are associated to thread lte ps10001 and run on
Core1. Then, for increasing LTE data rate some EFSMs
are moved to thread lte ps10002 in order to distribute the
load between Core1 and Core2 and the system output is
verified. The number of used cores is increased to three and
four while higher data rates are achieved.

In order to compare the performance of system when us-
ing EFSM migration with same system employing classical
thread migration, assume the EFSMs are statically associated
to different threads. Fig. 7 illustrate how the system load
can be divided to threads which are distributed on multi-
core. The X-axis represents the number of active cores in
each case. On the other hand, the Y-axis shows the portion
of the load on each core and the partitioning into threads.
It is clear that, the minimum number of threads needed to
distribute the load when activating one, two, three and four
cores is six threads.

For example, at low data rate all threads should be
migrated to run on only one core. As a consequence, the
processing time of a TB, on uplink and downlink together,
includes thread context switching costs due to the transition
from one thread to the other. In contrast, no thread context
switching occurs when using our EFSM migration scheme
which definitely improves the performance. Moreover, this
is still the case while running the LTE protocol on more than

81

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

Figure 6. The monitoring of thread activities on ARM11 multi-core.

Figure 7. The system load partition into threads and distribution on one,
two, three and four cores.

one core. More precisely, six, three and two thread context
switches are avoided on one, two and three cores situation
respectively. When four cores are active, four threads will
execute on two cores (i.e., two threads for each core), thus
introduces two thread context switches which can be avoided
by employing EFSM migration. After measuring the thread
context switching overhead, we found that it costs about
52 µs per switch. As a consequence, by utilizing EFSM
migration we save around 312, 156, 104 µs when executing

the LTE protocol on one, two, three cores respectively.
In addition, in the four cores situation 104 µs from the
execution time of processing one TB is reduced.

VI. CONCLUSION

A light version of the LTE protocol stack for the access
stratum user plane is modeled using the SDL SuiteTM tool.
The SDL model is composed of several EFSMs which are
associated with four threads to enable execution in a multi-
core platform. The generated code is executed on ARM
RealView R© baseboard on top of an L4/Fiasco based RTOS.
In this paper, we investigate load balancing and scheduling
of LTE model driven protocol stack on a state-of-the-art
multi-core mobile terminal. In addition, we show how the
SDL EFSMs concurrency is exploited in order to achieve a
parallel execution of the LTE protocol. As a result, we offer a
parallel software architecture for LTE which is not existing
today to the best of our knowledge. A new technique for
load balancing in the modem subsystem level using EFSM
migration is presented and successfully implemented. More-
over, the load balancing is accompanied with an adopted
and customized data pipeline scheduling in order to make it
suitable for the LTE protocol stack. In addition, we employ
the thread activation scenario as a high level synchronization
technique for multi-core mobile modem platform by utilizing
the asynchronous message communication facility of SDL
SuiteTM tool. Last but not least, we prove that our innovative
EFSM migration technique avoids the thread context switch-
ing and therefore, improves the performance in contrast to
the thread migration counterpart. For future work, we are
planning to continue enhancing the LTE mobile terminal
performance by optimizing the IPC cost and decreasing its
frequency. Even more, we will consider power consumption

82

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

as a parameter for scheduling in order to increase the battery
life time of the LTE mobile terminal.

REFERENCES

[1] IBM Rational R©, “SDL SuiteTM User Manual,” SDL SuiteTM

v6.1.

[2] D. Tudor, G. Macariu, C. Jebelean, and V. Cretu, “Towards
a Load Balancer Architecture for Multi-Core Mobile Com-
munication Systems,” in Proceedings of the 5th International
Symposium on Applied Computational Intelligence and Infor-
matics, May 2009, pp. 391–396.

[3] S. Baruah and G. Lipari, “A Multiprocessor Implementation
of the Total Bandwidth Server,” in Proceedings of the 18th
International Parallel and Distributed Processing Symposium
(IPDPS04), June 2004, p. 40a.

[4] B. Brandenburg and J. Anderson, “Integrating Hard/Soft Real-
Time Tasks and Best-effort Jobs on Multiprocessors,” in
Proceedings of the 19th Euromicro Conference on Real-Time
Systems (ECRTS07), July 2007, pp. 61–70.

[5] S. Baruah, J. Goossens, and G. Lipari, “Implementing
Constant-Bandwidth Servers upon Multiprocessor Platforms,”
in Proceedings of the Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS02), Septem-
ber 2002, pp. 154–163.

[6] Z. Shao, M. Wang, Y. Chen, C. Xue, M. Qiu, L. Yang,
and E. Sha, “Real-Time Dynamic Voltage Loop Scheduling
for Multi-Core Embedded Systems,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 54, no. 5, pp.
445–449, May 2007.

[7] Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao, and E. Sha,
“Minimizing Energy via Loop Scheduling and DVS for
Multi-Core Embedded Systems,” in Proceedings of the 11th
international Conference on Parallel and Distributed Systems
- Workshops (ICPADS’05), vol. 2, July 2005, pp. 2–6.

[8] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling
of Fault- Tolerant Embedded Systems with Soft and Hard
Timing Constraints,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’08), March
2008, pp. 915–920.

[9] S. H. Bokhari, “Partitioning Problems in Parallel, Pipelined,
and Distributed Computing,” IEEE Transactions on Comput-
ers, vol. 37, no. 1, p. 4857, January 1988.

[10] P. Hoang and J. M. Rabaey, “Scheduling of DSP Pro-
grams onto Multiprocessors for Maximum Throughput,”
IEEE Transactions on Signal Processing, vol. 41, no. 6, pp.
2225–2235, June 1993.

[11] S. Sriram and S. S. Bhattacharyya, Embedded Multiproces-
sors: Scheduling and Synchronization, 2nd ed. New York,
NY, USA: Taylor & Francis Group, CRC., 2009.

[12] C. van Berkel, “Multi-core for Mobile Phones,” in Proceed-
ings of the Conference on Design, Automation and Test in
Europe, April 2009, pp. 1260–1265.

[13] ARM, “RealView R© Platform Baseboard
for ARM11 MPCoreTM User Guide,”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0351c,
March 2009.

[14] ARM, “ARM11 MPCoreTM Proces-
sor Technical Reference Manual,”
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f,
October 2008.

[15] TU Dresden, “The Fiasco Microkernel,” http://os.inf.tu-
dresden.de/fiasco.

[16] S. Traboulsi, F. Bruns, A. Showk, D. Szczesny, S. Hessel,
E. Gonzalez, and A. Bilgic, “SDL/Virtual Prototype Co-
design for Rapid Architectural Exploration of a Mobile Phone
Platform,” in Design for Motes and Mobiles. Springer-
Verlag, September 2009, pp. 239–255.

[17] 3rd Generation Partnership Project (3GPP), “The LTE Proto-
col Specification, 3GPP Rel8,” http://www.3gpp.org/Release-
8.

[18] 3GPP TS 36.323, “Evolved Universal Terrestrial Radio Ac-
cess (E UTRA); Medium Access Control (MAC) Protocol
Specification,” March 2009.

[19] 3GPP TS 36.322, “Evolved Universal Terrestrial Radio Ac-
cess (E UTRA); Radio Link Control (RLC) Protocol Speci-
fication,” March 2009.

[20] 3GPP TS 36.323, “Evolved Universal Terrestrial Radio Ac-
cess (E UTRA); Packet Data Convergence Protocol (PDCP)
Specification,” March 2009.

[21] A. Showk, D. Szczesny, S. Traboulsi, I. Badr, E. Gonzalez,
and A. Bilgic, “Modeling LTE Protocol for Mobile Terminals
using a Formal Description Technique,” in Design for Motes
and Mobiles. Springer-Verlag, September 2009, pp. 222–
238.

[22] A. Showk, F. Bruns, S. Hessel, A. Bilgic, and I. Badr, “Op-
timal resource management for a model driven lte protocol
stack on a multicore platform,” in Proceedings of the 8th
ACM international symposium on Mobility management and
wireless access (MobiWac’10). ACM, October 2010, pp.
91–98.

83

ICCGI 2011 : The Sixth International Multi-Conference on Computing in the Global Information Technology

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-139-7

